Search results for: solid oxide fuel cell
6985 Friction Stir Welding Process as a Solid State Joining -A Review
Authors: Mohd Anees Siddiqui, S. A. H. Jafri, Shahnawaz Alam
Abstract:
Through this paper an attempt is made to review a special welding technology of friction stir welding (FSW) which is a solid-state joining. Friction stir welding is used for joining of two plates which are applied compressive force by using fixtures over the work table. This is a non consumable type welding technique in which a rotating tool of cylindrical shape is used. Process parameters such as tool geometry, joint design and process speed are discussed in the paper. Comparative study of Friction stir welding with other welding techniques such as MIG, TIG & GMAW is also done. Some light is put on several major applications of friction stir welding in different industries. Quality and environmental aspects of friction stir welding is also discussed.Keywords: friction stir welding (FSW), process parameters, tool, solid state joining processes
Procedia PDF Downloads 5036984 Sampling and Characterization of Fines Created during the Shredding of Non Hazardous Waste
Authors: Soukaina Oujana, Peggy Zwolinski
Abstract:
Fines are heterogeneous residues created during the shredding of non-hazardous waste. They are one of the most challenging issues faced by recyclers, because they are at the present time considered as non-sortable and non-reusable mixtures destined to landfill. However, fines contain a large amount of recoverable materials that could be recycled or reused for the production of solid recovered fuel. This research is conducted in relation to a project named ValoRABES. The aim is to characterize fines and establish a suitable sorting process in order to extract the materials contained in the mixture and define their suitable recovery paths. This paper will highlight the importance of a good sampling and will propose a sampling methodology for fines characterization. First results about the characterization will be also presented.Keywords: fines, non-hazardous waste, recovery, shredding residues, waste characterization, waste sampling
Procedia PDF Downloads 1906983 Development and Characterization of Cathode Materials for Sodium-Metal Chloride Batteries
Authors: C. D’Urso, L. Frusteri, M. Samperi, G. Leonardi
Abstract:
Solid metal halides are used as active cathode ingredients in the case of Na-NiCl2 batteries that require a fused secondary electrolyte, sodium tetrachloraluminate (NaAlCl4), to facilitate the movement of the Na+ ion into the cathode. The sodium-nickel chloride (Na - NiCl2) battery has been extensively investigated as a promising system for large-scale energy storage applications. The growth of Ni and NaCl particles in the cathodes is one of the most important factors that degrade the performance of the Na-NiCl2 battery. The larger the particles of active ingredients contained in the cathode, the smaller the active surface available for the electrochemical reaction. Therefore, the growth of Ni and NaCl particles can lead to an increase in cell polarization resulting from the reduced active area. A higher current density, a higher state of charge (SOC) at the end of the charge (EOC) and a lower Ni / NaCl ratio are the main parameters that result in the rapid growth of Ni particles. In light of these problems, cathode and chemistry Nano-materials with recognized and well-documented electrochemical functions have been studied and manufactured to simultaneously improve battery performance and develop less expensive and more performing, sustainable and environmentally friendly materials. Starting from the well-known cathodic material (Na-NiCl2), the new electrolytic materials have been prepared on the replacement of nickel with iron (10-90%substitution of Nichel with Iron), to obtain a new material with potential advantages compared to current battery technologies; for example,, (1) lower cost of cathode material compared to state of the art as well as (2) choices of cheaper materials (stainless steels could be used for cell components, including cathode current collectors and cell housings). The study on the particle size of the cathode and the physicochemical characterization of the cathode was carried out in the test cell using, where possible, the GITT method (galvanostatic technique of intermittent titration). Furthermore, the impact of temperature on the different cathode compositions of the positive electrode was studied. Especially the optimum operating temperature is an important parameter of the active material.Keywords: critical raw materials, energy storage, sodium metal halide, battery
Procedia PDF Downloads 1136982 Green Synthesis and Characterization of Zinc Oxide Nanoparticles Using Neem (Azadirachta Indica) Leaf Extract and Investigation of Its Antibacterial Activities
Authors: Emineh Tsegahun Gedif
Abstract:
Zinc oxide nanoparticles (ZnO NPs) have garnered significant attention due to their diverse applications encompassing catalytic, optical, photonic, and antibacterial properties. In this study, we successfully synthesized zinc oxide nanoparticles using a rapid, environmentally benign, and cost-effective method. Neem (Azadirachta indica) leaf extract served as the reducing agent for Zn (NO₃)₂.6H2O solution under optimized conditions (pH = 9). Qualitative screening techniques and FT-IR Spectroscopy confirmed the presence of active biomolecules such as flavonoids, phenolic groups, alkaloids, terpenoids, and tannins within the Neem leaf extract, both before and after reduction. The formation of ZnO NPs was visually evident through a distinct color change from colorless to light yellow. The biosynthesized nanoparticles underwent comprehensive characterization through UV-visible, FT-IR, and XRD spectroscopies. The reduction process proved to be straightforward and user-friendly, with UV-visible spectroscopy demonstrating a surface plasmon resonance (SPR) at 321 nm, unequivocally confirming the ZnO NP formation. X-ray diffraction analysis elucidated the crystal structure, revealing an average particle size of approximately 20 nm using Scherrer's equation based on the line width of the plane. Furthermore, the synthesized zinc oxide nanoparticles were evaluated for their antimicrobial properties against both Gram-positive and Gram-negative bacteria. The results showcased significant inhibitory activity, with the highest zone of inhibition observed against Escherichia coli (15 mm) and comparatively lower activity against Staphylococcus aureus. This research underscores the potential of Neem leaf extract-mediated synthesis of ZnO NPs as an eco-friendly and effective approach for various applications, including antibacterial agents.Keywords: zinc oxide nanoparticles (ZnO NPs), bioreducing agent, green synthesis, antibacterial activity
Procedia PDF Downloads 666981 A Comparison of Sulfur Mustard Cytotoxic Effects on the Two Human Lung Origin Cell Lines
Authors: P. Jost, L. Muckova, M. Matula, J. Pejchal, D. Jun, R. Stetina
Abstract:
Sulfur mustard (bis(2-chlorethyl) sulfide) is highly toxic, chemical warfare agent that has been used in the past in several armed conflicts. Except for the skin, respiratory tract is one of the important routes of exposure. The elucidation and understanding of the mechanism of toxicity of SM have been effort intensive research. The multiple targets character of SM caused cellular damage resulted in activation of many different mechanisms which contribute to cellular response and participate in the final cytopathology effect. In our present work, we compared time-dependent changes in sulfur mustard exposed adult human lung fibroblasts NHLF and lung epithelial alveolar cell line A-549. Cell viability (MTT assay, Calcein-AM assay, and xCELLigence - real-time cell analysis), apoptosis (flow cytometry), mitochondrial membrane potential (Δψm, flow cytometry), reactive oxygen species induction (DC and cell cycle distribution (flow cytometry) were studied. We observed significantly decreased mitochondrial membrane potential and subsequent induction of apoptosis correlating with decreased cellular viability in the sulfur mustard exposed cells. In low concentrations, sulfur mustard-induced S-phase cell cycle arrest, on the other hand, high concentrations, cell cycle phase distribution of sulfur mustard exposed cells resembled cell cycle phase distribution of control group, which implies nonspecific cell cycle inhibition. Epithelial cells A-549 was found as more sensible to sulfur mustard toxicity. Acknowledgements: This work was supported by a long-term organization development plan Medical Aspects of Weapons of Mass Destruction of the Faculty of Military Health Sciences, University of Defence.Keywords: apoptosis, cell cycle, cytotoxicity, sulfur mustard
Procedia PDF Downloads 1936980 Performance and Combustion Characteristics of a DI Diesel Engine Fueled with Jatropha Methyl Esters and its Blends
Authors: Ajay V. Kolhe, R. E. Shelke, S. S. Khandare
Abstract:
This study discusses the performance and combustion characteristics of a direct injection diesel engine fueled with Jatropha methyl ester (JME). In order to determine the performance and combustion characteristics, the experiments were conducted at the constant speed mode (1500rpm) under the full load condition of the engine on single cylinder 4-stroke CI engine. The result indicated that when the test engine was fuelled with JME, the engine performance slightly weakened, the combustion characteristics slightly changed when compared to petroleum based diesel fuel. The biodiesel caused reduction in carbon monoxide (CO), unburned hydrocarbon (HC) emissions, but they caused to increases in nitrogen oxides (NOx) emissions. The useful brake power obtained is similar to diesel fuel for all loads. Oxygen content in the exhaust is more with JME blend due to the reason that fuel itself contains oxygen. JME as a new Biodiesel and its blends can be used in diesel engines without any engine modification.Keywords: biodiesel, combustion, CI engine, jatropha curcas oil, performance and emission
Procedia PDF Downloads 3686979 Integration of a Microbial Electrolysis Cell and an Oxy-Combustion Boiler
Authors: Ruth Diego, Luis M. Romeo, Antonio Morán
Abstract:
In the present work, a study of the coupling of a Bioelectrochemical System together with an oxy-combustion boiler is carried out; specifically, it proposes to connect the combustion gas outlet of a boiler with a microbial electrolysis cell (MEC) where the CO2 from the gases are transformed into methane in the cathode chamber, and the oxygen produced in the anode chamber is recirculated to the oxy-combustion boiler. The MEC mainly consists of two electrodes (anode and cathode) immersed in an aqueous electrolyte; these electrodes are separated by a proton exchange membrane (PEM). In this case, the anode is abiotic (where oxygen is produced), and it is at the cathode that an electroactive biofilm is formed with microorganisms that catalyze the CO2 reduction reactions. Real data from an oxy-combustion process in a boiler of around 20 thermal MW have been used for this study and are combined with data obtained on a smaller scale (laboratory-pilot scale) to determine the yields that could be obtained considering the system as environmentally sustainable energy storage. In this way, an attempt is made to integrate a relatively conventional energy production system (oxy-combustion) with a biological system (microbial electrolysis cell), which is a challenge to be addressed in this type of new hybrid scheme. In this way, a novel concept is presented with the basic dimensioning of the necessary equipment and the efficiency of the global process. In this work, it has been calculated that the efficiency of this power-to-gas system based on MEC cells when coupled to industrial processes is of the same order of magnitude as the most promising equivalent routes. The proposed process has two main limitations, the overpotentials in the electrodes that penalize the overall efficiency and the need for storage tanks for the process gases. The results of the calculations carried out in this work show that certain real potentials achieve an acceptable performance. Regarding the tanks, with adequate dimensioning, it is possible to achieve complete autonomy. The proposed system called OxyMES provides energy storage without energetically penalizing the process when compared to an oxy-combustion plant with conventional CO2 capture. According to the results obtained, this system can be applied as a measure to decarbonize an industry, changing the original fuel of the oxy-combustion boiler to the biogas generated in the MEC cell. It could also be used to neutralize CO2 emissions from industry by converting it to methane and then injecting it into the natural gas grid.Keywords: microbial electrolysis cells, oxy-combustion, co2, power-to-gas
Procedia PDF Downloads 1086978 Cells Detection and Recognition in Bone Marrow Examination with Deep Learning Method
Authors: Shiyin He, Zheng Huang
Abstract:
In this paper, deep learning methods are applied in bio-medical field to detect and count different types of cells in an automatic way instead of manual work in medical practice, specifically in bone marrow examination. The process is mainly composed of two steps, detection and recognition. Mask-Region-Convolutional Neural Networks (Mask-RCNN) was used for detection and image segmentation to extract cells and then Convolutional Neural Networks (CNN), as well as Deep Residual Network (ResNet) was used to classify. Result of cell detection network shows high efficiency to meet application requirements. For the cell recognition network, two networks are compared and the final system is fully applicable.Keywords: cell detection, cell recognition, deep learning, Mask-RCNN, ResNet
Procedia PDF Downloads 1926977 Hybrid Nano Material of Ground Egg Shells with Metal Oxide for Lead Removal
Authors: A. Threepanich, S. Youngme, P. Praipipat
Abstract:
Although ground egg shells had the ability to eliminate lead in water, their efficiency may decrease in a case of contaminating of other cations such as Na⁺, Ca²⁺ in the water. The development of ground egg shells may solve this problem in which metal oxides are a good choice for this case since they have the ability to remove any heavy metals including lead in the water. Therefore, this study attempts to use this advantage for improving ground egg shells for the specific lead removal efficiency in the water. X-ray fluorescence (XRF) technique was used for the chemical element contents analysis of ground egg shells (GES) and ground egg shells with metal oxide (GESM), and Transmission electron microscope (TEM) technique was used to examine the material sizes. The batch test studies were designed to investigate the factor effects on dose (5, 10, 15 grams), pH (5, 7, 9), and settling time (1, 3, 5 hours) for the lead removal efficiency in the water. The XRF analysis results showed GES contained calcium (Ca) 91.41% and Silicon (Si) 4.03% and GESM contained calcium (Ca) 91.41%, Silicon (Si) 4.03%, and Iron (Fe) 3.05%. TEM results confirmed the sizes of GES and GESM in the range of 1-20 nm. The batch test studies showed the best optimum conditions for the lead removal in the water of GES and GESM in dose, pH, and settling time were 10 grams, pH 9, 5 hours and 5 grams, pH 9, 3 hours, respectively. The competing ions (Na⁺ and Ca²⁺) study reported GESM had the higher % lead removal efficiency than GES at 90% and 60%, respectively. Therefore, this result can confirm that adding of metal oxide to ground egg shells helps to improve the lead removal efficiency in the water.Keywords: nano material, ground egg shells, metal oxide, lead
Procedia PDF Downloads 1356976 Study of Waveguide Silica Glasses by Raman Spectroscopy
Authors: Mohamed Abdelmounim Bakkali, Mustapha El Mataouy, Abellatif Aaliti, Mouhamed Khaddor
Abstract:
In the paper, we study the effects of introducing hafnium oxide on Raman spectra of silica glass planar waveguide activated by 0.3 mol% Er3+ ions. This work compares Raman spectra measured for three thin films deposited on silicon substrate. The films were prepared with different molar ratio of Si/Hf using sol-gel method and deposited by dip coating technique. The effect of hafnium oxide incorporation on the waveguides shows the evolution of the structure of this material. This structural information is useful to understand the luminescence intensity by means of ion–ion interaction mechanisms.Keywords: optical amplifiers, non-bridging oxygen, erbium, sol-gel, waveguide, silica-hafnia
Procedia PDF Downloads 3096975 Characterization of Emissions from the open burning of Municipal Solid Waste (MSW) under Tropical Environment
Authors: Anju Elizbath Peter, S. M. Shiva Nagendra, Indumathi M.Nambi
Abstract:
The deliberate fires initiated by dump managers and human scavengers to reduce the volume of waste and recovery of valuable metals/materials are common at municipal solid waste (MSW) disposal sites in developed country. A large amount of toxic gases released due to this act is responsible for the deterioration of regional and local air quality, which causes visibility impairment and acute respiratory diseases. The present study was aimed at the characterization of MSW and emission characteristics of burning of MSW in the laboratory. MSW samples were collected directly from the one of the open dumpsite located in Chennai city. Solid waste sampling and laboratory analysis were carried out according to American Society of Testing and Materials (ASTM) standards. Results indicated the values of moisture content, volatile solids (VS) and calorific values of solid waste samples were 16.67%,8%,9.17MJ/kg, respectively. The elemental composition showed that the municipal solid waste contains 25.84% of carbon, 3.69% of hydrogen, 1.57% of nitrogen and 0.26% of sulphur. The calorific value of MSW was found to be 9.17 MJ/Kg which is sufficient to facilitate self-combustion of waste. The characterization of emissions from the burning of 1 kg of MSW in the test chamber showed a total of 90 mg/kg of PM10 and 243 mg/kg of PM2.5. The current research study results will be useful for municipal authorities to formulate guideline and policy structure regarding the MSW management to reduce the impact of air emissions at an open dump site.Keywords: characterization, MSW, open burning, PM10, PM2.5
Procedia PDF Downloads 3406974 Locally Produced Solid Biofuels – Carbon Dioxide Emissions and Competitiveness with Conventional Ways of Individual Space Heating
Authors: Jiri Beranovsky, Jaroslav Knapek, Tomas Kralik, Kamila Vavrova
Abstract:
The paper deals with the results of research focused on the complex aspects of the use of intentionally grown biomass on agricultural land for the production of solid biofuels as an alternative for individual household heating. . The study primarily deals with the analysis of CO2 emissions of the logistics cycle of biomass for the production of energy pellets. Growing, harvesting, transport and storage are evaluated in the pellet production cycle. The aim is also to take into account the consumption profile during the year in terms of heating of common family houses, which are typical end-market segment for these fuels. It is assumed that in family houses, bio-pellets are able to substitute typical fossil fuels, such as brown coal and old wood burning heating devices and also electric boilers. One of the competing technology with the pellets are heat pumps. The results show the CO2 emissions related with considered fuels and technologies for their utilization. Comparative analysis is aimed biopellets from intentionally grown biomass, brown coal, natural gas and electricity used in electric boilers and heat pumps. Analysis combines CO2 emissions related with individual fuels utilization with costs of these fuels utilization. Cost of biopellets from intentionally grown biomass is derived from the economic models of individual energy crop plantations. At the same time, the restrictions imposed by EU legislation on Ecodesign's fuel and combustion equipment requirements and NOx emissions are discussed. Preliminary results of analyzes show that to achieve the competitiveness of pellets produced from specifically grown biomass, it would be necessary to either significantly ecological tax on coal (from about 0.3 to 3-3.5 EUR/GJ), or to multiply the agricultural subsidy per area. In addition to the Czech Republic, the results are also relevant for other countries, such as Bulgaria and Poland, which also have a high proportion of solid fuels for household heating.Keywords: CO2 emissions, heating costs, energy crop, pellets, brown coal, heat pumps, economical evaluation
Procedia PDF Downloads 1146973 Estimation of Greenhouse Gas (GHG) Reductions from Solar Cell Technology Using Bottom-up Approach and Scenario Analysis in South Korea
Authors: Jaehyung Jung, Kiman Kim, Heesang Eum
Abstract:
Solar cell is one of the main technologies to reduce greenhouse gas (GHG). Thereby, accurate estimation of greenhouse gas reduction by solar cell technology is crucial to consider strategic applications of the solar cell. The bottom-up approach using operating data such as operation time and efficiency is one of the methodologies to improve the accuracy of the estimation. In this study, alternative GHG reductions from solar cell technology were estimated by a bottom-up approach to indirect emission source (scope 2) in Korea, 2015. In addition, the scenario-based analysis was conducted to assess the effect of technological change with respect to efficiency improvement and rate of operation. In order to estimate GHG reductions from solar cell activities in operating condition levels, methodologies were derived from 2006 IPCC guidelines for national greenhouse gas inventories and guidelines for local government greenhouse inventories published in Korea, 2016. Indirect emission factors for electricity were obtained from Korea Power Exchange (KPX) in 2011. As a result, the annual alternative GHG reductions were estimated as 21,504 tonCO2eq, and the annual average value was 1,536 tonCO2eq per each solar cell technology. Those results of estimation showed to be 91% levels versus design of capacity. Estimation of individual greenhouse gases (GHGs) showed that the largest gas was carbon dioxide (CO2), of which up to 99% of the total individual greenhouse gases. The annual average GHG reductions from solar cell per year and unit installed capacity (MW) were estimated as 556 tonCO2eq/yr•MW. Scenario analysis of efficiency improvement by 5%, 10%, 15% increased as much as approximately 30, 61, 91%, respectively, and rate of operation as 100% increased 4% of the annual GHG reductions.Keywords: bottom-up approach, greenhouse gas (GHG), reduction, scenario, solar cell
Procedia PDF Downloads 2216972 Solar Photocatalytic Hydrogen Production from Glycerol Reforming Using Ternary Cu/TiO2/Graphene
Authors: Tumelo W. P. Seadira, Thabang Ntho, Cornelius M. Masuku, Michael S. Scurrell
Abstract:
A ternary Cu/TiO2/rGO photocatalysts was prepared using solvothermal method. Firstly, pure anatase TiO2 hollow spheres were prepared with titanium butoxide, ethanol, ammonium sulphate, and urea via hydrothermal method; and Cu nanoparticles were subsequently loaded on the surface of the hollow spheres by wet impregnation. During the solvothermal process, the deposition and well dispersion of Cu-TiO2 hollow spheres composites onto the graphene oxide surface, as well as the reduction of graphene oxide to graphene were achieved. The morphological and structural properties of the prepared samples were characterized by Brunauer-Emmett-Tellet (BET), X-ray Diffraction (XRD), Scanning Electron Microscope (SEM), Transmission Electron Microscopy (TEM), and UV-vis DRS, and photoelectrochemical. The activities of the prepared catalysts were tested for hydrogen production via simultaneous photocatalytic water-splitting and glycerol reforming under visible light irradiation. The excellent photocatalytic activity of the Cu-TiO2-hollow-spheres/rGO catalyst was attributed the rGO which acts as both storage and transferor of electrons generated at the Cu and TiO2 heterojunction, thus increasing the electron-hole pairs separation. This paper reports the preparation of photocatalyst which is highly active by coupling reduced graphene oxide with nano-structured TiO2 with high surface area that can efficiently harvest the visible light for effective water-splitting and glycerol photocatalytic reforming in order to achieve efficient hydrogen evolution.Keywords: glycerol reforming, hydrogen evolution, graphene oxide, Cu/TiO2-hollow-spheres/rGO
Procedia PDF Downloads 1576971 PPRA Regulates DNA Replication Initiation and Cell Morphology in Escherichia coli
Authors: Ganesh K. Maurya, Reema Chaudhary, Neha Pandey, Hari S. Misra
Abstract:
PprA, a pleiotropic protein participating in radioresistance, has been reported for its roles in DNA replication initiation, genome segregation, cell division and DNA repair in polyextremophile Deinococcus radiodurans. Interestingly, expression of deinococcal PprA in E. coli suppresses its growth by reducing the number of colony forming units and provides better resistance against γ-radiation than control. We employed different biochemical and cell biology studies using PprA and its DNA binding/polymerization mutants (K133E & W183R) in E. coli. Cells expressing wild type PprA or its K133E mutant showed reduction in the amount of genomic DNA as well as chromosome copy number in comparison to W183R mutant of PprA and control cells, which suggests the role of PprA protein in regulation of DNA replication initiation in E. coli. Further, E. coli cells expressing PprA or its mutants exhibited different impact on cell morphology than control. Expression of PprA or K133E mutant displayed a significant increase in cell length upto 5 folds while W183R mutant showed cell length similar to uninduced control cells. We checked the interaction of deinococcal PprA and its mutants with E. coli DnaA using Bacterial two-hybrid system and co-immunoprecipitation. We observed a functional interaction of EcDnaA with PprA and K133E mutant but not with W183R mutant of PprA. Further, PprA or K133E mutant has suppressed the ATPase activity of EcDnaA but W183R mutant of PprA failed to do so. These observations suggested that PprA protein regulates DNA replication initiation and cell morphology of surrogate E. coli.Keywords: DNA replication, radioresistance, protein-protein interaction, cell morphology, ATPase activity
Procedia PDF Downloads 696970 Influence of AgNO3 Treatment on the Flavonolignan Production in Cell Suspension Culture of Silybum marianum (L.) Gaertn
Authors: Anna Vildová, H. Hendrychová, J. Kubeš, L. Tůmová
Abstract:
The abiotic elicitation is one of the methods for increasing the secondary metabolites production in plant tissue cultures and it seems to be more effective than traditional strategies. This study verified the use of silver nitrate as elicitor to enhance flavonolignans and flavonoid taxifolin production in suspension culture of Sylibum marianum (L.) Gaertn. Silver nitrate in various concentrations (5.887.10-3 mol/L, 5.887.10-4 mol/L, 5.887.10-5 mol/L) was used as elicitor. The content of secondary metabolites in cell suspension cultures was determined by high performance liquid chromatography. The samples were taken after 6, 12, 24, 48, 72 and 168 hours of treatment. The highest content of taxifolin production (2.2 mg.g-1) in cell suspension culture of Silybum marianum (L.) Gaertn. was detected after silver nitrate (5.887.10-4 mol/L) treatment and 72 h application. Flavonolignans such as silybinA, silybin B, silydianin, silychristin, isosilybin A, isosilybin B were not produced by cell suspension culture of S. marianum after elicitor treatment. Our results show that the secondarymetabolites could be released from S. marianum cells into the nutrient medium by changed permeability of cell wall.Keywords: Silybum marianum (L.) Gaertn., elicitation, silver nitrate, taxifolin
Procedia PDF Downloads 4466969 Modeling of the Cellular Uptake of Rigid Nanoparticles: Investigating the Influence of the Adaptation of the Cell’s Mechanical Properties during Endocytosis
Authors: Sarah Iaquinta, Christophe Blanquart, Elena Ishow, Sylvain Freour, Frederic Jacquemin, Shahram Khazaie
Abstract:
Nanoparticles have recently emerged as a possible cancer treatment tool. Several formulations have been used to enhance the uptake of these nanoparticles by cancer cells and avoid their immediate clearance when administrated in vivo. Most of the previous studies focus on the investigation of the influence of the mechanical properties of the cell membrane and the particle. However, these studies do not account for the variation of adhesion and tension during the wrapping of the nanoparticle by the membrane. These couplings should be considered since the cell adapts to the interaction with the nanoparticle by, e.g., increasing the number of interactions (consequently leading to an increase of the cell membrane/nanoparticle adhesion) and by reorganizing its cytoskeleton, leading to the releasing of the tension of the cell membrane. The main contribution of this work is the proposal of a novel model for representing the cellular uptake of rigid circular nanoparticles based on an energetic model tailored to take into account the adaptation of the nanoparticle/cell membrane adhesion and of the membrane stress during wrapping. Several coupling models using sigmoidal functions are considered and compared. The study calculations revealed that the results considering constant parameters underestimated the final wrapping degree of the particle by up to 50%.Keywords: adhesion, cellular adaptation, cellular uptake, mechanical properties, tension
Procedia PDF Downloads 2146968 Theoretical Investigation of Proton-Bore Fusion in Hot Spots
Authors: Morteza Habibi
Abstract:
As an alternative to D–T fuel, one can consider advanced fuels like D3-He and p-11B fuels, which have potential advantages concerning availability and/or environmental impact. Hot spots are micron-sized magnetically self-contained sources observed in pinched plasma devices. In hot spots, fusion power for 120 keV < Ti < 800 keV and 32 keV < Te < 129 keV exceeds bremsstrahlung loss and fraction of fusion power to bremsstrahlung loss reaches to 1.9. In this case, gain factor for a 150 kJ typical pulsed generator as a hot spot source will be 7.8 which is considerable for a commercial pinched plasma device.Keywords: P-B fuel, hot spot, bremmsstrahlung loss, ion temperature
Procedia PDF Downloads 5286967 Formulation and Evaluation of Glimepiride (GMP)-Solid Nanodispersion and Nanodispersed Tablets
Authors: Ahmed. Abdel Bary, Omneya. Khowessah, Mojahed. al-jamrah
Abstract:
Introduction: The major challenge with the design of oral dosage forms lies with their poor bioavailability. The most frequent causes of low oral bioavailability are attributed to poor solubility and low permeability. The aim of this study was to develop solid nanodispersed tablet formulation of Glimepiride for the enhancement of the solubility and bioavailability. Methodology: Solid nanodispersions of Glimepiride (GMP) were prepared using two different ratios of 2 different carriers, namely; PEG6000, pluronic F127, and by adopting two different techniques, namely; solvent evaporation technique and fusion technique. A full factorial design of 2 3 was adopted to investigate the influence of formulation variables on the prepared nanodispersion properties. The best chosen formula of nanodispersed powder was formulated into tablets by direct compression. The Differential Scanning Calorimetry (DSC) analysis and Fourier Transform Infra-Red (FTIR) analysis were conducted for the thermal behavior and surface structure characterization, respectively. The zeta potential and particle size analysis of the prepared glimepiride nanodispersions was determined. The prepared solid nanodispersions and solid nanodispersed tablets of GMP were evaluated in terms of pre-compression and post-compression parameters, respectively. Results: The DSC and FTIR studies revealed that there was no interaction between GMP and all the excipients used. Based on the resulted values of different pre-compression parameters, the prepared solid nanodispersions powder blends showed poor to excellent flow properties. The resulted values of the other evaluated pre-compression parameters of the prepared solid nanodispersion were within the limits of pharmacopoeia. The drug content of the prepared nanodispersions ranged from 89.6 ± 0.3 % to 99.9± 0.5% with particle size ranged from 111.5 nm to 492.3 nm and the resulted zeta potential (ζ ) values of the prepared GMP-solid nanodispersion formulae (F1-F8) ranged from -8.28±3.62 mV to -78±11.4 mV. The in-vitro dissolution studies of the prepared solid nanodispersed tablets of GMP concluded that GMP- pluronic F127 combinations (F8), exhibited the best extent of drug release, compared to other formulations, and to the marketed product. One way ANOVA for the percent of drug released from the prepared GMP-nanodispersion formulae (F1- F8) after 20 and 60 minutes showed significant differences between the percent of drug released from different GMP-nanodispersed tablet formulae (F1- F8), (P<0.05). Conclusion: Preparation of glimepiride as nanodispersed particles proven to be a promising tool for enhancing the poor solubility of glimepiride.Keywords: glimepiride, solid Nanodispersion, nanodispersed tablets, poorly water soluble drugs
Procedia PDF Downloads 4886966 Regulation of SHP-2 Activity by Small Molecules for the Treatment of T Cell-Mediated Diseases
Authors: Qiang Xu, Xingxin Wu, Wenjie Guo, Xingqi Wang, Yang Sun, Renxiang Tan
Abstract:
The phosphatase SHP-2 is known to exert regulatory activities on cytokine receptor signaling and the dysregulation of SHP-2 has been implicated in the pathogenesis of a variety of diseases. Here we report several small molecule regulators of SHP-2 for the treatment of T cell-mediated diseases. The new cyclodepsipeptide trichomides A, isolated from the fermentation products of Trichothecium roseum, increased the phosphorylation of SHP-2 in activated T cells, and ameliorated contact dermatitis in mice. The trichomides A’s effects were significantly reversed by using the SHP-2-specific inhibitor PHPS1 or T cell-conditional SHP-2 knockout mice. Another compound is a cerebroside Fusaruside isolated from the endophytic fungus Fusarium sp. IFB-121. Fusaruside also triggered the tyrosine phosphorylation of SHP-2, which provided a possible mean of selectively targeting STAT1 for the treatment of Th1 cell-mediated inflammation and led to the discovery of the non-phosphatase-like function of SHP-2. Namely, the Fusaruside-activated pY-SHP-2 selectively sequestrated the cytosolic STAT1 to prevent its recruitment to IFN-R, which contributed to the improvement of experimental colitis in mice. Blocking the pY-SHP-2-STAT1 interaction, with SHP-2 inhibitor NSC-87877 or using T cells from conditional SHP-2 knockout mice, reversed the effects of fusaruside. Furthermore, the fusaruside’s effect is independent of the phosphatase activity of SHP-2, demonstrating a novel role for SHP-2 in regulating STAT1 signaling and Th1-type immune responses.Keywords: SHP-2, small molecules, T cell, T cell-mediated diseases
Procedia PDF Downloads 3136965 The Molecular Bases of Δβ T-Cell Mediated Antigen Recognition
Authors: Eric Chabrol, Sidonia B.G. Eckle, Renate de Boer, James McCluskey, Jamie Rossjohn, Mirjam H.M. Heemskerk, Stephanie Gras
Abstract:
αβ and γδ T-cells are disparate T-cell lineages that, via their use of either αβ or γδ T-cell antigen receptors (TCRs) respectively, can respond to distinct antigens. Here we characterise a new population of human T-cells, term δβ T-cells, that express TCRs comprising a TCR-δ variable gene fused to a Joining-α/Constant-α domain, paired with an array of TCR-β chains. We characterised the cellular, functional, biophysical and structural characteristic feature of this new T-cells population that reveal some new insight into TCR diversity. We provide molecular bases of how δβ T-cells can recognise viral peptide presented by Human Leukocyte Antigen (HLA) molecule. Our findings highlight how components from αβ and γδTCR gene loci can recombine to confer antigen specificity thus expanding our understanding of T-cell biology and TCR diversity.Keywords: new delta-beta TCR, HLA, viral peptide, structural immunology
Procedia PDF Downloads 4256964 PPRA Controls DNA Replication and Cell Growth in Escherichia Coli
Authors: Ganesh K. Maurya, Reema Chaudhary, Neha Pandey, Hari S. Misra
Abstract:
PprA, a pleiotropic protein participating in radioresistance, has been reported for its roles in DNA replication initiation, genome segregation, cell division and DNA repair in polyextremophile Deinococcus radiodurans. Interestingly, expression of deinococcal PprA in E. coli suppresses its growth by reducing the number of colony forming units and provide better resistance against γ-radiation than control. We employed different biochemical and cell biology studies using PprA and its DNA binding/polymerization mutants (K133E & W183R) in E. coli. Cells expressing wild type PprA or its K133E mutant showed reduction in the amount of genomic DNA as well as chromosome copy number in comparison to W183R mutant of PprA and control cells, which suggests the role of PprA protein in regulation of DNA replication initiation in E. coli. Further, E. coli cells expressing PprA or its mutants exhibited different impact on cell morphology than control. Expression of PprA or K133E mutant displayed a significant increase in cell length upto 5 folds while W183R mutant showed cell length similar to uninduced control cells. We checked the interaction of deinococcal PprA and its mutants with E. coli DnaA using Bacterial two-hybrid system and co-immunoprecipitation. We observed a functional interaction of EcDnaA with PprA and K133E mutant but not with W183R mutant of PprA. Further, PprA or K133E mutant has suppressed the ATPase activity of EcDnaA but W183R mutant of PprA failed to do so. These observations suggested that PprA protein regulates DNA replication initiation and cell morphology of surrogate E. coli.Keywords: DNA replication, radioresistance, protein-protein interaction, cell morphology, ATPase activity
Procedia PDF Downloads 706963 Photo-Degradation of a Pharmaceutical Product in the Presence of a Catalyst Supported on a Silicoaluminophosphate Solid
Authors: I. Ben Kaddour, S. Larbaoui
Abstract:
Since their first synthesis in 1984, silicoaluminophosphates have proven their effectiveness as a good adsorbent and catalyst in several environmental and energy applications. In this work, the photocatalytic reaction of the photo-degradation of a pharmaceutical product in water was carried out in the presence of a series of materials based on titanium oxide, anatase phase, supported on the microporous framework of the SAPO4-5 at different levels, under ultraviolet light. These photo-catalysts were characterized by different physicochemical analysis methods in order to determine their structural, textural, and morphological properties, such as X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), microscopy scanning electronics (SEM), nitrogen adsorption measurements, UV-visible diffuse reflectance spectroscopy (UV-Vis-DRS). In this study, liquid chromatography coupled with spectroscopy of mass (LC-MS) was used to determine the nature of the intermediate products formed during the photocatalytic degradation of DCF.Keywords: photocatalysis, titanium dioxide, SAPO-5, diclofenac
Procedia PDF Downloads 686962 Designing Self-Healing Lubricant-Impregnated Surfaces for Corrosion Protection
Authors: Sami Khan, Kripa Varanasi
Abstract:
Corrosion is a widespread problem in several industries and developing surfaces that resist corrosion has been an area of interest since the last several decades. Superhydrophobic surfaces that combine hydrophobic coatings along with surface texture have been shown to improve corrosion resistance by creating voids filled with air that minimize the contact area between the corrosive liquid and the solid surface. However, these air voids can incorporate corrosive liquids over time, and any mechanical faults such as cracks can compromise the coating and provide pathways for corrosion. As such, there is a need for self-healing corrosion-resistance surfaces. In this work, the anti-corrosion properties of textured surfaces impregnated with a lubricant have been systematically studied. Since corrosion resistance depends on the area and physico-chemical properties of the material exposed to the corrosive medium, lubricant-impregnated surfaces (LIS) have been designed based on the surface tension, viscosity and chemistry of the lubricant and its spreading coefficient on the solid. All corrosion experiments were performed in a standard three-electrode cell using iron, which readily corrodes in a 3.5% sodium chloride solution. In order to obtain textured iron surfaces, thin films (~500 nm) of iron were sputter-coated on silicon wafers textured using photolithography, and subsequently impregnated with lubricants. Results show that the corrosion rate on LIS is greatly reduced, and offers an over hundred-fold improvement in corrosion protection. Furthermore, it is found that the spreading characteristics of the lubricant are significant in ensuring corrosion protection: a spreading lubricant (e.g., Krytox 1506) that covers both inside the texture, as well as the top of the texture, provides a two-fold improvement in corrosion protection as compared to a non-spreading lubricant (e.g., Silicone oil) that does not cover texture tops. To enhance corrosion protection of surfaces coated with a non-spreading lubricant, pyramid-shaped textures have been developed that minimize exposure to the corrosive solution, and a consequent twenty-fold increased in corrosion protection is observed. An increase in viscosity of the lubricant scales with greater corrosion protection. Finally, an equivalent cell-circuit model is developed for the lubricant-impregnated systems using electrochemical impedance spectroscopy. Lubricant-impregnated surfaces find attractive applications in harsh corrosive environments, especially where the ability to self-heal is advantageous.Keywords: lubricant-impregnated surfaces, self-healing surfaces, wettability, nano-engineered surfaces
Procedia PDF Downloads 1366961 Application of Subversion Analysis in the Search for the Causes of Cracking in a Marine Engine Injector Nozzle
Authors: Leszek Chybowski, Artur Bejger, Katarzyna Gawdzińska
Abstract:
Subversion analysis is a tool used in the TRIZ (Theory of Inventive Problem Solving) methodology. This article introduces the history and describes the process of subversion analysis, as well as function analysis and analysis of the resources, used at the design stage when generating possible undesirable situations. The article charts the course of subversion analysis when applied to a fuel injection nozzle of a marine engine. The work describes the fuel injector nozzle as a technological system and presents principles of analysis for the causes of a cracked tip of the nozzle body. The system is modelled with functional analysis. A search for potential causes of the damage is undertaken and a cause-and-effect analysis for various hypotheses concerning the damage is drawn up. The importance of particular hypotheses is evaluated and the most likely causes of damage identified.Keywords: complex technical system, fuel injector, function analysis, importance analysis, resource analysis, sabotage analysis, subversion analysis, TRIZ (Theory of Inventive Problem Solving)
Procedia PDF Downloads 6206960 Fundamental Study on Reconstruction of 3D Image Using Camera and Ultrasound
Authors: Takaaki Miyabe, Hideharu Takahashi, Hiroshige Kikura
Abstract:
The Government of Japan and Tokyo Electric Power Company Holdings, Incorporated (TEPCO) are struggling with the decommissioning of Fukushima Daiichi Nuclear Power Plants, especially fuel debris retrieval. In fuel debris retrieval, amount of fuel debris, location, characteristics, and distribution information are important. Recently, a survey was conducted using a robot with a small camera. Progress report in remote robot and camera research has speculated that fuel debris is present both at the bottom of the Pressure Containment Vessel (PCV) and inside the Reactor Pressure Vessel (RPV). The investigation found a 'tie plate' at the bottom of the containment, this is handles on the fuel rod. As a result, it is assumed that a hole large enough to allow the tie plate to fall is opened at the bottom of the reactor pressure vessel. Therefore, exploring the existence of holes that lead to inside the RCV is also an issue. Investigations of the lower part of the RPV are currently underway, but no investigations have been made inside or above the PCV. Therefore, a survey must be conducted for future fuel debris retrieval. The environment inside of the RPV cannot be imagined due to the effect of the melted fuel. To do this, we need a way to accurately check the internal situation. What we propose here is the adaptation of a technology called 'Structure from Motion' that reconstructs a 3D image from multiple photos taken by a single camera. The plan is to mount a monocular camera on the tip of long-arm robot, reach it to the upper part of the PCV, and to taking video. Now, we are making long-arm robot that has long-arm and used at high level radiation environment. However, the environment above the pressure vessel is not known exactly. Also, fog may be generated by the cooling water of fuel debris, and the radiation level in the environment may be high. Since camera alone cannot provide sufficient sensing in these environments, we will further propose using ultrasonic measurement technology in addition to cameras. Ultrasonic sensor can be resistant to environmental changes such as fog, and environments with high radiation dose. these systems can be used for a long time. The purpose is to develop a system adapted to the inside of the containment vessel by combining a camera and an ultrasound. Therefore, in this research, we performed a basic experiment on 3D image reconstruction using a camera and ultrasound. In this report, we select the good and bad condition of each sensing, and propose the reconstruction and detection method. The results revealed the strengths and weaknesses of each approach.Keywords: camera, image processing, reconstruction, ultrasound
Procedia PDF Downloads 1046959 Sustainable Membranes Based on 2D Materials for H₂ Separation and Purification
Authors: Juan A. G. Carrio, Prasad Talluri, Sergio G. Echeverrigaray, Antonio H. Castro Neto
Abstract:
Hydrogen as a fuel and environmentally pleasant energy carrier is part of this transition towards low-carbon systems. The extensive deployment of hydrogen production, purification and transport infrastructures still represents significant challenges. Independent of the production process, the hydrogen generally is mixed with light hydrocarbons and other undesirable gases that need to be removed to obtain H₂ with the required purity for end applications. In this context, membranes are one of the simplest, most attractive, sustainable, and performant technologies enabling hydrogen separation and purification. They demonstrate high separation efficiencies and low energy consumption levels in operation, which is a significant leap compared to current energy-intensive options technologies. The unique characteristics of 2D laminates have given rise to a diversity of research on their potential applications in separation systems. Specifically, it is already known in the scientific literature that graphene oxide-based membranes present the highest reported selectivity of H₂ over other gases. This work explores the potential of a new type of 2D materials-based membranes in separating H₂ from CO₂ and CH₄. We have developed nanostructured composites based on 2D materials that have been applied in the fabrication of membranes to maximise H₂ selectivity and permeability, for different gas mixtures, by adjusting the membranes' characteristics. Our proprietary technology does not depend on specific porous substrates, which allows its integration in diverse separation modules with different geometries and configurations, looking to address the technical performance required for industrial applications and economic viability. The tuning and precise control of the processing parameters allowed us to control the thicknesses of the membranes below 100 nanometres to provide high permeabilities. Our results for the selectivity of new nanostructured 2D materials-based membranes are in the range of the performance reported in the available literature around 2D materials (such as graphene oxide) applied to hydrogen purification, which validates their use as one of the most promising next-generation hydrogen separation and purification solutions.Keywords: membranes, 2D materials, hydrogen purification, nanocomposites
Procedia PDF Downloads 1346958 Regulation of RON-Receptor Tyrosine Kinase Functions by Epstein-Barr-Virus (EBV) Nuclear Antigen 3C
Authors: Roshika Tyagi, Shuvomoy Banerjee
Abstract:
Among various diseases, cancer has become a huge threat to human beings globally. In the context of viral infection, Epstein–Barr virus (EBV) infection is ubiquitous in nature world-wide as well as in India. Recepteur d’Origine Nantais (RON) receptor tyrosine kinase is overexpressed in Lymphoblastoid cell lines (LCLs) but undetectable in primary B-cells. Biologically, RON expression was found to be essential for EBV transformed LCLs proliferation. In our study, we investigated whether EBV latent antigen EBNA3C is playing a crucial role in regulating RON receptor tyrosine kinase function in EBV-induced malignancies. Interestingly, we observed that expression pattern of RON was modulated by EBNA3C in EBV transformed LCLs compared with EBV negative BJAB cell line by PCR and western blot analysis. Moreover, in the absence of EBNA3C, RON expression was found low in western blot and immunofluorescence analysis and cell proliferation rate was significantly reduced in LCLs by cell viability assays. Therefore, our study clearly indicating the potential role of EBNA3C expressed in EBV-infected B-cells for modulating the functions of oncogenic kinases that leads to EBV induced B-cell transformation.Keywords: apoptosis, cell proliferation, Epstein–barr virus, receptor tyrosine kinase
Procedia PDF Downloads 2296957 The Influence of Polysaccharide Isolated from Morinda citrifolia Fruit to the Growth of Vero, He-La and T47D Cell Lines against Doxorubicin in vitro
Authors: Ediati Budi Cahyono, Triana Hertiani, Nauval Arrazy Asawimanda, Wahyu Puji Pratomo
Abstract:
Background: Doxorubicin is widely used as a chemotherapeutic drug despite having many side effects. It may cause macrophage dysfunction and decreasing proliferation of lymphocyte. Noni (Morinda citrifolia) fruit which has rich of polysaccharide content has potential as antitumor and immunostimulant effect. The isolation of polysaccharide from Noni fruit has been optimized according to four different methods based on macrophage and lymphocyte activities. We found the highest polysaccharide content from one of the four methods isolation. A method of polysaccharide isolation which has the highest immunostimulant effect was used for further observation as co-chemotherapy. The aim of the study: was to evaluate the isolated polysaccharide from the method of choice as co-chemotherapy of doxorubicin for the growth of Vero, He-La, and T47D cell lines in vitro. The method: in vitro growth assay of Vero, He-La, and T47D cell lines was done using MTT-reduction method, and apoptosis test was done by double staining method to evaluate the induction apoptotic effect of the combination. Every group was treated with doxorubicin and isolated polysaccharide from method of choice with 4 variances of concentrations (25 µg/ml, 50 µg/ml, 100 µg/ml and 200 µg/ml) a long with negative control (doxorubicin only) and normal control (without doxorubicin or polysaccharide administration). Results: The combination of polysaccharide fraction in the concentration of 100μg/ml with 2μmol of doxorubicin against He-La and T47D cell lines influenced the highest cytotoxic effect by suppressing cell viability comparing with doxorubicin only. The combination of polysaccharide fraction in the concentration of 100μg/ml with 2μmol of doxorubicin-induced apoptotic effect the He-La cell line comparing with doxorubicin only. The result of the study: it can be concluded that the combination of polysaccharide fraction and doxorubicin effect more selective toward He-La and T47D cell lines than to Vero cell line. It can be suggested isolated polysaccharide from the method of choice has co-chemotherapy activity against doxorubicin.Keywords: polysaccharide, noni fruit, doxorubicin, cancer cell lines, vero cell line
Procedia PDF Downloads 2536956 Ni Mixed Oxides Type-Spinel for Energy: Application in Dry Reforming of Methane for Syngas (H2 and CO) Production
Authors: Bedarnia Ishak
Abstract:
In the recent years, the dry reforming of methane has received considerable attention from an environmental view point because it consumes and eliminates two gases (CH4 and CO2) responsible for global warming by greenhouse effect. Many catalysts containing noble metal (Rh, Ru, Pd, Pt and Ir) or transition metal (Ni, Co and Fe) have been reported to be active in this reaction. Compared to noble metals, Ni-materials are cheap but very easily deactivated by coking. Ni-based mixed oxides structurally well-defined like perovskites and spinels are being studied because they possibly make solid solutions and allow to vary the composition and thus the performances properties. In this work, nano-sized nickel ferrite oxides are synthesized using three different methods: Co-precipitation (CP), hydrothermal (HT) and sol gel (SG) methods and characterized by XRD, Raman, XPS, BET, TPR, SEM-EDX and TEM-EDX. XRD patterns of all synthesized oxides showed the presence of NiFe2O4 spinel, confirmed by Raman spectroscopy. Hematite was present only in CP sample. Depending on the synthesis method, the surface area, particle size, as well as the surface Ni/Fe atomic ratio (XPS) and the behavior upon reduction varied. The materials were tested in methane dry reforming with CO2 at 1 atm and 650-800 °C. The catalytic activity of the spinel samples was not very high (XCH4 = 5-20 mol% and XCO2 = 25-40 mol %) when no pre-reduction step was carried out. A significant contribution of RWGS explained the low values of H2/CO ratio obtained. The reoxidation step of the catalyst carried out after reaction showed little amounts of coke deposition. The reducing pretreatment was particularly efficient in the case of SG (XCH4 = 80 mol% and XCO2 = 92 mol%, at 800 °C), with H2/CO > 1. In conclusion, the influence of preparation was strong for most samples and the catalytic behavior could be interpreted by considering the distribution of cations among octahedral (Oh) and tetrahedral (Td) sites as in (Ni2+1-xFe3+x) Td (Ni2+xFe3+2-x) OhO2-4 influenced the reducibility of materials and thus their catalytic performance.Keywords: NiFe2O4, dry reforming of methane, spinel oxide, oxide zenc
Procedia PDF Downloads 282