Search results for: natural hazard detection
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9320

Search results for: natural hazard detection

8270 Machine Learning Approach for Stress Detection Using Wireless Physical Activity Tracker

Authors: B. Padmaja, V. V. Rama Prasad, K. V. N. Sunitha, E. Krishna Rao Patro

Abstract:

Stress is a psychological condition that reduces the quality of sleep and affects every facet of life. Constant exposure to stress is detrimental not only for mind but also body. Nevertheless, to cope with stress, one should first identify it. This paper provides an effective method for the cognitive stress level detection by using data provided from a physical activity tracker device Fitbit. This device gathers people’s daily activities of food, weight, sleep, heart rate, and physical activities. In this paper, four major stressors like physical activities, sleep patterns, working hours and change in heart rate are used to assess the stress levels of individuals. The main motive of this system is to use machine learning approach in stress detection with the help of Smartphone sensor technology. Individually, the effect of each stressor is evaluated using logistic regression and then combined model is built and assessed using variants of ordinal logistic regression models like logit, probit and complementary log-log. Then the quality of each model is evaluated using Akaike Information Criterion (AIC) and probit is assessed as the more suitable model for our dataset. This system is experimented and evaluated in a real time environment by taking data from adults working in IT and other sectors in India. The novelty of this work lies in the fact that stress detection system should be less invasive as possible for the users.

Keywords: physical activity tracker, sleep pattern, working hours, heart rate, smartphone sensor

Procedia PDF Downloads 245
8269 Determining Abnomal Behaviors in UAV Robots for Trajectory Control in Teleoperation

Authors: Kiwon Yeom

Abstract:

Change points are abrupt variations in a data sequence. Detection of change points is useful in modeling, analyzing, and predicting time series in application areas such as robotics and teleoperation. In this paper, a change point is defined to be a discontinuity in one of its derivatives. This paper presents a reliable method for detecting discontinuities within a three-dimensional trajectory data. The problem of determining one or more discontinuities is considered in regular and irregular trajectory data from teleoperation. We examine the geometric detection algorithm and illustrate the use of the method on real data examples.

Keywords: change point, discontinuity, teleoperation, abrupt variation

Procedia PDF Downloads 155
8268 Current Medical and Natural Synchronization Methods in Small Ruminants

Authors: Mehmet Akoz, Mustafa Kul

Abstract:

Ewes and goats are seasonally polyestrus animals. Their reproductive activities are associated with the reduction or extending of daylight. Melatonin releasing from pineal gland regulates the sexual activities depending on daylight. In recent years, number of ewes decreased in our country. This situation dispatched to developing of some methods to increase productivity. Small ruminants can be synchronized with the natural and medical methods. known methods from natural light set with ram and goat participation. The most important natural methods of male influence, daylight is regulated and feed. On the other hand, progestagens, PGF2α, melatonin, and gonadotropins are commonly used for the purpose of estrus synchranization. But it is not effective PGF2α anestrous season The short-term and long-term progesterone treatment was effective to synchronize estrus in small ruminats during both breeding and anestrus seasons. Alternative choices of progesterone/progestagen have been controlled internal drug release (CIDR) devices, supplying natural progesterone, norgestomet implants, and orally active melengestrol acetate Melatonin anestrous season and should be applied during the transition period, but the season can be synchronized. Estrus synchronisation shortens anestrus season, decreases labor for mating/insemination and estrus pursuit, and induces multiple pregnancies.

Keywords: ewes, goat, synchronization, progestagen, PGF2α

Procedia PDF Downloads 330
8267 Artificial Intelligence Based Abnormality Detection System and Real Valuᵀᴹ Product Design

Authors: Junbeom Lee, Jaehyuck Cho, Wookyeong Jeong, Jonghan Won, Jungmin Hwang, Youngseok Song, Taikyeong Jeong

Abstract:

This paper investigates and analyzes meta-learning technologies that use multiple-cameras to monitor and check abnormal behavior in people in real-time in the area of healthcare fields. Advances in artificial intelligence and computer vision technologies have confirmed that cameras can be useful for individual health monitoring and abnormal behavior detection. Through this, it is possible to establish a system that can respond early by automatically detecting abnormal behavior of the elderly, such as patients and the elderly. In this paper, we use a technique called meta-learning to analyze image data collected from cameras and develop a commercial product to determine abnormal behavior. Meta-learning applies machine learning algorithms to help systems learn and adapt quickly to new real data. Through this, the accuracy and reliability of the abnormal behavior discrimination system can be improved. In addition, this study proposes a meta-learning-based abnormal behavior detection system that includes steps such as data collection and preprocessing, feature extraction and selection, and classification model development. Various healthcare scenarios and experiments analyze the performance of the proposed system and demonstrate excellence compared to other existing methods. Through this study, we present the possibility that camera-based meta-learning technology can be useful for monitoring and testing abnormal behavior in the healthcare area.

Keywords: artificial intelligence, abnormal behavior, early detection, health monitoring

Procedia PDF Downloads 77
8266 WO₃-SnO₂ Sensors for Selective Detection of Volatile Organic Compounds for Breath Analysis

Authors: Arpan Kumar Nayak, Debabrata Pradhan

Abstract:

A simple, single-step and one-pot hydrothermal method was employed to synthesize WO₃-SnO₂ mixed nanostructured metal oxides at 200°C in 12h. The SnO₂ nanoparticles were found to be uniformly decorated on the WO₃ nanoplates. Though it is widely known that noble metals such as Pt, Pd doping or decoration on metal oxides improve the sensing response and sensitivity, we varied the SnO₂ concentration in the WO₃-SnO₂ mixed oxide and demonstrated their performance in ammonia, ethanol and acetone sensing. The sensing performance of WO₃-(x)SnO₂ [x = 0.27, 0.54, 1.08] mixed nanostructured oxides was found to be not only superior to that of pristine oxides but also higher/better than that of reported noble metal-based sensors. The sensing properties (selectivity, limit of detection, response and recovery times) are measured as a function of operating temperature (150-350°C). In particular, the gas selectivity is found to be highly temperature-dependent with optimum performance obtained at 200°C, 300°C and 350°C for ammonia, ethanol, and acetone, respectively. The present results on cost effective WO₃-SnO₂ sensors can find potential application in human breath analysis by noninvasive detection.

Keywords: gas sensing, mixed oxides, nanoplates, ammonia, ethanol, acetone

Procedia PDF Downloads 233
8265 Lung Disease Detection from the Chest X Ray Images Using Various Transfer Learning

Authors: Aicha Akrout, Amira Echtioui, Mohamed Ghorbel

Abstract:

Pneumonia remains a significant global health concern, posing a substantial threat to human lives due to its contagious nature and potentially fatal respiratory complications caused by bacteria, fungi, or viruses. The reliance on chest X-rays for diagnosis, although common, often necessitates expert interpretation, leading to delays and potential inaccuracies in treatment. This study addresses these challenges by employing transfer learning techniques to automate the detection of lung diseases, with a focus on pneumonia. Leveraging three pre-trained models, VGG-16, ResNet50V2, and MobileNetV2, we conducted comprehensive experiments to evaluate their performance. Our findings reveal that the proposed model based on VGG-16 demonstrates superior accuracy, precision, recall, and F1 score, achieving impressive results with an accuracy of 93.75%, precision of 94.50%, recall of 94.00%, and an F1 score of 93.50%. This research underscores the potential of transfer learning in enhancing pneumonia diagnosis and treatment outcomes, offering a promising avenue for improving healthcare delivery and reducing mortality rates associated with this debilitating respiratory condition.

Keywords: chest x-ray, lung diseases, transfer learning, pneumonia detection

Procedia PDF Downloads 23
8264 Green Synthesis of Red-Fluorescent Gold Nanoclusters: Characterization and Application for Breast Cancer Detection

Authors: Agnė Mikalauskaitė, Renata Karpicz, Vitalijus Karabanovas, Arūnas Jagminas

Abstract:

The use of biocompatible precursors for the synthesis and stabilization of fluorescent gold nanoclusters (NCs) with strong red photoluminescence creates an important link between natural sciences and nanotechnology. Herein, we report the cost-effective synthesis of Au nanoclusters by templating and reduction of chloroauric acid with the cheap amino acid food supplements. This synthesis under the optimized conditions leads to the formation of biocompatible Au NCs having good stability and intense red photoluminescence, peaked at 680 to 705 nm, with a quantum yield (QY) of ≈7% and the average lifetime of up to several µs. The composition and luminescent properties of the obtained NCs were compared with ones formed via well-known bovine serum albumin reduction approach. Our findings implied that synthesized Au NCs tend to accumulate in more tumorigenic breast cancer cells (line MDA-MB-213) and after dialysis can be prospective for bio imagining.

Keywords: gold nanoclusters, proteins, materials chemistry, red-photoluminescence, bioimaging

Procedia PDF Downloads 256
8263 Reduction Study of As(III)-Cysteine Complex through Linear Sweep Voltammetry

Authors: Sunil Mittal, Sukhpreet Singh, Hardeep Kaur

Abstract:

A simple voltammetric technique for on-line analysis of arsenite [As (III)] is reported. Owing to the affinity of As (III) with thiol group of proteins and enzymes, cysteine has been employed as reducing agent. The reduction study of As(III)-cysteine complex on indium tin oxide (ITO) electrode has been explored. The experimental parameters such as scan rate, cysteine concentration, pH etc. were optimized to achieve As (III) determination. The developed method provided dynamic linear range of detection from 0.1 to 1 mM with a detection limit of 0.1 mM. The method is applicable to environmental monitoring of As (III) from highly contaminated sources such as industrial effluents, wastewater sludge etc.

Keywords: arsenite, cysteine, linear sweep voltammetry, reduction

Procedia PDF Downloads 230
8262 Detecting the Edge of Multiple Images in Parallel

Authors: Prakash K. Aithal, U. Dinesh Acharya, Rajesh Gopakumar

Abstract:

Edge is variation of brightness in an image. Edge detection is useful in many application areas such as finding forests, rivers from a satellite image, detecting broken bone in a medical image etc. The paper discusses about finding edge of multiple aerial images in parallel .The proposed work tested on 38 images 37 colored and one monochrome image. The time taken to process N images in parallel is equivalent to time taken to process 1 image in sequential. The proposed method achieves pixel level parallelism as well as image level parallelism.

Keywords: edge detection, multicore, gpu, opencl, mpi

Procedia PDF Downloads 465
8261 A Nanosensor System Based on Disuccinimydyl – CYP2E1 for Amperometric Detection of the Anti-Tuberculosis Drug, Pyrazinamide

Authors: Rachel F. Ajayi, Unathi Sidwaba, Usisipho Feleni, Samantha F. Douman, Ezo Nxusani, Lindsay Wilson, Candice Rassie, Oluwakemi Tovide, Priscilla G.L. Baker, Sibulelo L. Vilakazi, Robert Tshikhudo, Emmanuel I. Iwuoha

Abstract:

Pyrazinamide (PZA) is among the first-line pro-drugs in the tuberculosis (TB) combination chemotherapy used to treat Mycobacterium tuberculosis. Numerous reports have suggested that hepatotoxicity due to pyrazinamide in patients is due to inappropriate dosing. It is therefore necessary to develop sensitive and reliable techniques for determining the PZA metabolic profile of diagnosed patients promptly and at point-of-care. This study reports the determination of PZA based on nanobiosensor systems developed from disuccinimidyl octanedioate modified Cytochrome P450-2E1 (CYP2E1) electrodeposited on gold substrates derivatised with (poly(8-anilino-1-napthalene sulphonic acid) PANSA/PVP-AgNPs nanocomposites. The rapid and sensitive amperometric PZA detection gave a dynamic linear range of 2 µM to 16 µM revealing a limit of detection of 0.044 µM and a sensitivity of 1.38 µA/µM. The Michaelis-Menten parameters; KM, KMapp and IMAX were also calculated and found to be 6.0 µM, 1.41 µM and 1.51 µA respectively indicating a nanobiosensor suitable for use in serum.

Keywords: tuberculosis, cytochrome P450-2E1, disuccinimidyl octanedioate, pyrazinamide

Procedia PDF Downloads 403
8260 Internet of Things Networks: Denial of Service Detection in Constrained Application Protocol Using Machine Learning Algorithm

Authors: Adamu Abdullahi, On Francisca, Saidu Isah Rambo, G. N. Obunadike, D. T. Chinyio

Abstract:

The paper discusses the potential threat of Denial of Service (DoS) attacks in the Internet of Things (IoT) networks on constrained application protocols (CoAP). As billions of IoT devices are expected to be connected to the internet in the coming years, the security of these devices is vulnerable to attacks, disrupting their functioning. This research aims to tackle this issue by applying mixed methods of qualitative and quantitative for feature selection, extraction, and cluster algorithms to detect DoS attacks in the Constrained Application Protocol (CoAP) using the Machine Learning Algorithm (MLA). The main objective of the research is to enhance the security scheme for CoAP in the IoT environment by analyzing the nature of DoS attacks and identifying a new set of features for detecting them in the IoT network environment. The aim is to demonstrate the effectiveness of the MLA in detecting DoS attacks and compare it with conventional intrusion detection systems for securing the CoAP in the IoT environment. Findings: The research identifies the appropriate node to detect DoS attacks in the IoT network environment and demonstrates how to detect the attacks through the MLA. The accuracy detection in both classification and network simulation environments shows that the k-means algorithm scored the highest percentage in the training and testing of the evaluation. The network simulation platform also achieved the highest percentage of 99.93% in overall accuracy. This work reviews conventional intrusion detection systems for securing the CoAP in the IoT environment. The DoS security issues associated with the CoAP are discussed.

Keywords: algorithm, CoAP, DoS, IoT, machine learning

Procedia PDF Downloads 59
8259 From User's Requirements to UML Class Diagram

Authors: Zeineb Ben Azzouz, Wahiba Ben Abdessalem Karaa

Abstract:

The automated extraction of UML class diagram from natural language requirements is a highly challenging task. Many approaches, frameworks and tools have been presented in this field. Nonetheless, the experiments of these tools have shown that there is no approach that can work best all the time. In this context, we propose a new accurate approach to facilitate the automatic mapping from textual requirements to UML class diagram. Our new approach integrates the best properties of statistical Natural Language Processing (NLP) techniques to reduce ambiguity when analysing natural language requirements text. In addition, our approach follows the best practices defined by conceptual modelling experts to determine some patterns indispensable for the extraction of basic elements and concepts of the class diagram. Once the relevant information of class diagram is captured, a XMI document is generated and imported with a CASE tool to build the corresponding UML class diagram.

Keywords: class diagram, user’s requirements, XMI, software engineering

Procedia PDF Downloads 458
8258 The Relationship between Human Pose and Intention to Fire a Handgun

Authors: Joshua van Staden, Dane Brown, Karen Bradshaw

Abstract:

Gun violence is a significant problem in modern-day society. Early detection of carried handguns through closed-circuit television (CCTV) can aid in preventing potential gun violence. However, CCTV operators have a limited attention span. Machine learning approaches to automating the detection of dangerous gun carriers provide a way to aid CCTV operators in identifying these individuals. This study provides insight into the relationship between human key points extracted using human pose estimation (HPE) and their intention to fire a weapon. We examine the feature importance of each keypoint and their correlations. We use principal component analysis (PCA) to reduce the feature space and optimize detection. Finally, we run a set of classifiers to determine what form of classifier performs well on this data. We find that hips, shoulders, and knees tend to be crucial aspects of the human pose when making these predictions. Furthermore, the horizontal position plays a larger role than the vertical position. Of the 66 key points, nine principal components could be used to make nonlinear classifications with 86% accuracy. Furthermore, linear classifications could be done with 85% accuracy, showing that there is a degree of linearity in the data.

Keywords: feature engineering, human pose, machine learning, security

Procedia PDF Downloads 83
8257 Carbon Sequestration under Hazelnut (Corylus avellana) Agroforestry and Adjacent Land Uses in the Vicinity of Black Sea, Trabzon, Turkey

Authors: Mohammed Abaoli Abafogi, Sinem Satiroglu, M. Misir

Abstract:

The current study has addressed the effect of Hazelnut (Corylus avellana) agroforestry on carbon sequestration. Eight sample plots were collected from Hazelnut (Corylus avellana) agroforestry using random sampling method. The diameter of all trees in each plot with ≥ 2cm at 1.3m DBH was measured by using a calliper. Average diameter, aboveground biomass, and carbon stock were calculated for each plot. Comparative data for natural forestland was used for C was taken from KTU, and the soil C was converted from the biomass conversion equation. Biomass carbon was significantly higher in the Natural forest (68.02Mgha⁻¹) than in the Hazelnut agroforestry (16.89Mgha⁻¹). SOC in Hazelnut agroforestry, Natural forest, and arable agricultural land were 7.70, 385.85, and 0.00 Mgha⁻¹ respectively. Biomass C, on average accounts for only 0.00% of the total C in arable agriculture, and 11.02% for the Hazelnut agroforestry while 88.05% for Natural forest. The result shows that the conversion of arable crop field to Hazelnut agroforestry can sequester a large amount of C in the soil as well as in the biomass than Arable agricultural lands.

Keywords: arable agriculture, biomass carbon, carbon sequestration, hazelnut (Corylus avellana) agroforestry, soil organic carbon

Procedia PDF Downloads 297
8256 Numerical Investigation of Natural Convection of Pine, Olive and Orange Leaves

Authors: Ali Reza Tahavvor, Saeed Hosseini, Nazli Jowkar, Behnam Amiri

Abstract:

Heat transfer of leaves is a crucial factor in optimal operation of metabolic functions in plants. In order to quantify this phenomenon in different leaves and investigate the influence of leaf shape on heat transfer, natural convection for pine, orange and olive leaves was simulated as representatives of different groups of leaf shapes. CFD techniques were used in this simulation with the purpose to calculate heat transfer of leaves in similar environmental conditions. The problem was simulated for steady state and three-dimensional conditions. From obtained results, it was concluded that heat fluxes of all three different leaves are almost identical, however, total rate of heat transfer have highest and lowest values for orange leaves and pine leaves, respectively.

Keywords: computational fluid dynamic, heat flux, heat transfer, natural convection

Procedia PDF Downloads 343
8255 A Distributed Mobile Agent Based on Intrusion Detection System for MANET

Authors: Maad Kamal Al-Anni

Abstract:

This study is about an algorithmic dependence of Artificial Neural Network on Multilayer Perceptron (MPL) pertaining to the classification and clustering presentations for Mobile Adhoc Network vulnerabilities. Moreover, mobile ad hoc network (MANET) is ubiquitous intelligent internetworking devices in which it has the ability to detect their environment using an autonomous system of mobile nodes that are connected via wireless links. Security affairs are the most important subject in MANET due to the easy penetrative scenarios occurred in such an auto configuration network. One of the powerful techniques used for inspecting the network packets is Intrusion Detection System (IDS); in this article, we are going to show the effectiveness of artificial neural networks used as a machine learning along with stochastic approach (information gain) to classify the malicious behaviors in simulated network with respect to different IDS techniques. The monitoring agent is responsible for detection inference engine, the audit data is collected from collecting agent by simulating the node attack and contrasted outputs with normal behaviors of the framework, whenever. In the event that there is any deviation from the ordinary behaviors then the monitoring agent is considered this event as an attack , in this article we are going to demonstrate the  signature-based IDS approach in a MANET by implementing the back propagation algorithm over ensemble-based Traffic Table (TT), thus the signature of malicious behaviors or undesirable activities are often significantly prognosticated and efficiently figured out, by increasing the parametric set-up of Back propagation algorithm during the experimental results which empirically shown its effectiveness  for the ratio of detection index up to 98.6 percentage. Consequently it is proved in empirical results in this article, the performance matrices are also being included in this article with Xgraph screen show by different through puts like Packet Delivery Ratio (PDR), Through Put(TP), and Average Delay(AD).

Keywords: Intrusion Detection System (IDS), Mobile Adhoc Networks (MANET), Back Propagation Algorithm (BPA), Neural Networks (NN)

Procedia PDF Downloads 182
8254 Hierarchical Scheme for Detection of Rotating Mimo Visible Light Communication Systems Using Mobile Phone Camera

Authors: Shih-Hao Chen, Chi-Wai Chow

Abstract:

Multiple-input and multiple-output (MIMO) scheme can extend the transmission capacity for the light-emitting-diode (LED) visible light communication (VLC) system. The MIMO VLC system using the popular mobile-phone camera as the optical receiver (Rx) to receive MIMO signal from n x n Red-Green-Blue (RGB) LED array is desirable. The key step of decoding the received RGB LED array signals is detecting the direction of received array signals. If the LED transmitter (Tx) is rotated, the signal may not be received correctly and cause an error in the received signal. In this work, we propose and demonstrate a novel hierarchical transmission scheme which can reduce the computation complexity of rotation detection in LED array VLC system. We use the n x n RGB LED array as the MIMO Tx. A novel two dimension Hadamard coding scheme is proposed and demonstrated. The detection correction rate is above 95% in the indoor usage distance. Experimental results confirm the feasibility of the proposed scheme.

Keywords: Visible Light Communication (VLC), Multiple-input and multiple-output (MIMO), Red-Green-Blue (RGB), Hadamard coding scheme

Procedia PDF Downloads 410
8253 Landslide Susceptibility Analysis in the St. Lawrence Lowlands Using High Resolution Data and Failure Plane Analysis

Authors: Kevin Potoczny, Katsuichiro Goda

Abstract:

The St. Lawrence lowlands extend from Ottawa to Quebec City and are known for large deposits of sensitive Leda clay. Leda clay deposits are responsible for many large landslides, such as the 1993 Lemieux and 2010 St. Jude (4 fatalities) landslides. Due to the large extent and sensitivity of Leda clay, regional hazard analysis for landslides is an important tool in risk management. A 2018 regional study by Farzam et al. on the susceptibility of Leda clay slopes to landslide hazard uses 1 arc second topographical data. A qualitative method known as Hazus is used to estimate susceptibility by checking for various criteria in a location and determine a susceptibility rating on a scale of 0 (no susceptibility) to 10 (very high susceptibility). These criteria are slope angle, geological group, soil wetness, and distance from waterbodies. Given the flat nature of St. Lawrence lowlands, the current assessment fails to capture local slopes, such as the St. Jude site. Additionally, the data did not allow one to analyze failure planes accurately. This study majorly improves the analysis performed by Farzam et al. in two aspects. First, regional assessment with high resolution data allows for identification of local locations that may have been previously identified as low susceptibility. This then provides the opportunity to conduct a more refined analysis on the failure plane of the slope. Slopes derived from 1 arc second data are relatively gentle (0-10 degrees) across the region; however, the 1- and 2-meter resolution 2022 HRDEM provided by NRCAN shows that short, steep slopes are present. At a regional level, 1 arc second data can underestimate the susceptibility of short, steep slopes, which can be dangerous as Leda clay landslides behave retrogressively and travel upwards into flatter terrain. At the location of the St. Jude landslide, slope differences are significant. 1 arc second data shows a maximum slope of 12.80 degrees and a mean slope of 4.72 degrees, while the HRDEM data shows a maximum slope of 56.67 degrees and a mean slope of 10.72 degrees. This equates to a difference of three susceptibility levels when the soil is dry and one susceptibility level when wet. The use of GIS software is used to create a regional susceptibility map across the St. Lawrence lowlands at 1- and 2-meter resolutions. Failure planes are necessary to differentiate between small and large landslides, which have so far been ignored in regional analysis. Leda clay failures can only retrogress as far as their failure planes, so the regional analysis must be able to transition smoothly into a more robust local analysis. It is expected that slopes within the region, once previously assessed at low susceptibility scores, contain local areas of high susceptibility. The goal is to create opportunities for local failure plane analysis to be undertaken, which has not been possible before. Due to the low resolution of previous regional analyses, any slope near a waterbody could be considered hazardous. However, high-resolution regional analysis would allow for more precise determination of hazard sites.

Keywords: hazus, high-resolution DEM, leda clay, regional analysis, susceptibility

Procedia PDF Downloads 61
8252 Use of Giant Magneto Resistance Sensors to Detect Micron to Submicron Biologic Objects

Authors: Manon Giraud, Francois-Damien Delapierre, Guenaelle Jasmin-Lebras, Cecile Feraudet-Tarisse, Stephanie Simon, Claude Fermon

Abstract:

Early diagnosis or detection of harmful substances at low level is a growing field of high interest. The ideal test should be cheap, easy to use, quick, reliable, specific, and with very low detection limit. Combining the high specificity of antibodies-functionalized magnetic beads used to immune-capture biologic objects and the high sensitivity of a GMR-based sensors, it is possible to even detect these biologic objects one by one, such as a cancerous cell, a bacteria or a disease biomarker. The simplicity of the detection process makes its use possible even for untrained staff. Giant Magneto Resistance (GMR) is a recently discovered effect consisting in the electrical resistance modification of some conductive layers when exposed to a magnetic field. This effect allows the detection of very low variations of magnetic field (typically a few tens of nanoTesla). Magnetic nanobeads coated with antibodies targeting the analytes are mixed with a biological sample (blood, saliva) and incubated for 45 min. Then the mixture is injected in a very simple microfluidic chip and circulates above a GMR sensor that detects changes in the surrounding magnetic field. Magnetic particles do not create a field sufficient to be detected. Therefore, only the biological objects surrounded by several antibodies-functionalized magnetic beads (that have been captured by the complementary antigens) are detected when they move above the sensor. Proof of concept has been carried out on NS1 mouse cancerous cells diluted in PBS which have been bonded to magnetic 200nm particles. Signals were detected in cells-containing samples while none were recorded for negative controls. Binary response was hence assessed for this first biological model. The precise quantification of the analytes and its detection in highly diluted solution is the step now in progress.

Keywords: early diagnosis, giant magnetoresistance, lab-on-a-chip, submicron particle

Procedia PDF Downloads 242
8251 Urea and Starch Detection on a Paper-Based Microfluidic Device Enabled on a Smartphone

Authors: Shashank Kumar, Mansi Chandra, Ujjawal Singh, Parth Gupta, Rishi Ram, Arnab Sarkar

Abstract:

Milk is one of the basic and primary sources of food and energy as we start consuming milk from birth. Hence, milk quality and purity and checking the concentration of its constituents become necessary steps. Considering the importance of the purity of milk for human health, the following study has been carried out to simultaneously detect and quantify the different adulterants like urea and starch in milk with the help of a paper-based microfluidic device integrated with a smartphone. The detection of the concentration of urea and starch is based on the principle of colorimetry. In contrast, the fluid flow in the device is based on the capillary action of porous media. The microfluidic channel proposed in the study is equipped with a specialized detection zone, and it employs a colorimetric indicator undergoing a visible color change when the milk gets in touch or reacts with a set of reagents which confirms the presence of different adulterants in the milk. In our proposed work, we have used iodine to detect the percentage of starch in the milk, whereas, in the case of urea, we have used the p-DMAB. A direct correlation has been found between the color change intensity and the concentration of adulterants. A calibration curve was constructed to find color intensity and subsequent starch and urea concentration. The device has low-cost production and easy disposability, which make it highly suitable for widespread adoption, especially in resource-constrained settings. Moreover, a smartphone application has been developed to detect, capture, and analyze the change in color intensity due to the presence of adulterants in the milk. The low-cost nature of the smartphone-integrated paper-based sensor, coupled with its integration with smartphones, makes it an attractive solution for widespread use. They are affordable, simple to use, and do not require specialized training, making them ideal tools for regulatory bodies and concerned consumers.

Keywords: paper based microfluidic device, milk adulteration, urea detection, starch detection, smartphone application

Procedia PDF Downloads 49
8250 Edge Detection in Low Contrast Images

Authors: Koushlendra Kumar Singh, Manish Kumar Bajpai, Rajesh K. Pandey

Abstract:

The edges of low contrast images are not clearly distinguishable to the human eye. It is difficult to find the edges and boundaries in it. The present work encompasses a new approach for low contrast images. The Chebyshev polynomial based fractional order filter has been used for filtering operation on an image. The preprocessing has been performed by this filter on the input image. Laplacian of Gaussian method has been applied on preprocessed image for edge detection. The algorithm has been tested on two test images.

Keywords: low contrast image, fractional order differentiator, Laplacian of Gaussian (LoG) method, chebyshev polynomial

Procedia PDF Downloads 621
8249 HLB Disease Detection in Omani Lime Trees using Hyperspectral Imaging Based Techniques

Authors: Jacintha Menezes, Ramalingam Dharmalingam, Palaiahnakote Shivakumara

Abstract:

In the recent years, Omani acid lime cultivation and production has been affected by Citrus greening or Huanglongbing (HLB) disease. HLB disease is one of the most destructive diseases for citrus, with no remedies or countermeasures to stop the disease. Currently used Polymerase chain reaction (PCR) and enzyme-linked immunosorbent assay (ELISA) HLB detection tests require lengthy and labor-intensive laboratory procedures. Furthermore, the equipment and staff needed to carry out the laboratory procedures are frequently specialized hence making them a less optimal solution for the detection of the disease. The current research uses hyperspectral imaging technology for automatic detection of citrus trees with HLB disease. Omani citrus tree leaf images were captured through portable Specim IQ hyperspectral camera. The research considered healthy, nutrition deficient, and HLB infected leaf samples based on the Polymerase chain reaction (PCR) test. The highresolution image samples were sliced to into sub cubes. The sub cubes were further processed to obtain RGB images with spatial features. Similarly, RGB spectral slices were obtained through a moving window on the wavelength. The resized spectral-Spatial RGB images were given to Convolution Neural Networks for deep features extraction. The current research was able to classify a given sample to the appropriate class with 92.86% accuracy indicating the effectiveness of the proposed techniques. The significant bands with a difference in three types of leaves are found to be 560nm, 678nm, 726 nm and 750nm.

Keywords: huanglongbing (HLB), hyperspectral imaging (HSI), · omani citrus, CNN

Procedia PDF Downloads 64
8248 A Low-Power Two-Stage Seismic Sensor Scheme for Earthquake Early Warning System

Authors: Arvind Srivastav, Tarun Kanti Bhattacharyya

Abstract:

The north-eastern, Himalayan, and Eastern Ghats Belt of India comprise of earthquake-prone, remote, and hilly terrains. Earthquakes have caused enormous damages in these regions in the past. A wireless sensor network based earthquake early warning system (EEWS) is being developed to mitigate the damages caused by earthquakes. It consists of sensor nodes, distributed over the region, that perform majority voting of the output of the seismic sensors in the vicinity, and relay a message to a base station to alert the residents when an earthquake is detected. At the heart of the EEWS is a low-power two-stage seismic sensor that continuously tracks seismic events from incoming three-axis accelerometer signal at the first-stage, and, in the presence of a seismic event, triggers the second-stage P-wave detector that detects the onset of P-wave in an earthquake event. The parameters of the P-wave detector have been optimized for minimizing detection time and maximizing the accuracy of detection.Working of the sensor scheme has been verified with seven earthquakes data retrieved from IRIS. In all test cases, the scheme detected the onset of P-wave accurately. Also, it has been established that the P-wave onset detection time reduces linearly with the sampling rate. It has been verified with test data; the detection time for data sampled at 10Hz was around 2 seconds which reduced to 0.3 second for the data sampled at 100Hz.

Keywords: earthquake early warning system, EEWS, STA/LTA, polarization, wavelet, event detector, P-wave detector

Procedia PDF Downloads 170
8247 Evaluation of Drilling-Induced Delamination of Flax/Epoxy Composites by Non-Destructive Testing Methods

Authors: Hadi Rezghimaleki, Masatoshi Kubouchi, Yoshihiko Arao

Abstract:

The use of natural fiber composites (NFCs) is growing at a fast rate regarding industrial applications and principle researches due to their eco-friendly, renewable nature, and low density/costs. Drilling is one of the most important machining operations that are carried out on natural fiber composites. Delamination is a major concern in the drilling process of NFCs that affects the structural integrity and long-term reliability of the machined components. Flax fiber reinforced epoxy composite laminates were prepared by hot press technique. In this research, we evaluated drilling-induced delamination of flax/epoxy composites by X-ray computed tomography (CT), ultrasonic testing (UT), and optical methods and compared the results.

Keywords: natural fiber composites, flax/epoxy, X-ray CT, ultrasonic testing

Procedia PDF Downloads 287
8246 Classification of State Transition by Using a Microwave Doppler Sensor for Wandering Detection

Authors: K. Shiba, T. Kaburagi, Y. Kurihara

Abstract:

With global aging, people who require care, such as people with dementia (PwD), are increasing within many developed countries. And PwDs may wander and unconsciously set foot outdoors, it may lead serious accidents, such as, traffic accidents. Here, round-the-clock monitoring by caregivers is necessary, which can be a burden for the caregivers. Therefore, an automatic wandering detection system is required when an elderly person wanders outdoors, in which case the detection system transmits a ‘moving’ followed by an ‘absence’ state. In this paper, we focus on the transition from the ‘resting’ to the ‘absence’ state, via the ‘moving’ state as one of the wandering transitions. To capture the transition of the three states, our method based on the hidden Markov model (HMM) is built. Using our method, the restraint where the ‘resting’ state and ‘absence’ state cannot be transmitted to each other is applied. To validate our method, we conducted the experiment with 10 subjects. Our results show that the method can classify three states with 0.92 accuracy.

Keywords: wander, microwave Doppler sensor, respiratory frequency band, the state transition, hidden Markov model (HMM).

Procedia PDF Downloads 172
8245 Natural Monopolies and Their Regulation in Georgia

Authors: Marina Chavleishvili

Abstract:

Introduction: Today, the study of monopolies, including natural monopolies, is topical. In real life, pure monopolies are natural monopolies. Natural monopolies are used widely and are regulated by the state. In particular, the prices and rates are regulated. The paper considers the problems associated with the operation of natural monopolies in Georgia, in particular, their microeconomic analysis, pricing mechanisms, and legal mechanisms of their operation. The analysis was carried out on the example of the power industry. The rates of natural monopolies in Georgia are controlled by the Georgian National Energy and Water Supply Regulation Commission. The paper analyzes the positive role and importance of the regulatory body and the issues of improving the legislative base that will support the efficient operation of the branch. Methodology: In order to highlight natural monopolies market tendencies, the domestic and international markets are studied. An analysis of monopolies is carried out based on the endogenous and exogenous factors that determine the condition of companies, as well as the strategies chosen by firms to increase the market share. According to the productivity-based competitiveness assessment scheme, the segmentation opportunities, business environment, resources, and geographical location of monopolist companies are revealed. Main Findings: As a result of the analysis, certain assessments and conclusions were made. Natural monopolies are quite a complex and versatile economic element, and it is important to specify and duly control their frame conditions. It is important to determine the pricing policy of natural monopolies. The rates should be transparent, should show the level of life in the country, and should correspond to the incomes. The analysis confirmed the significance of the role of the Antimonopoly Service in the efficient management of natural monopolies. The law should adapt to reality and should be applied only to regulate the market. The present-day differential electricity tariffs varying depending on the consumed electrical power need revision. The effects of the electricity price discrimination are important, segmentation in different seasons in particular. Consumers use more electricity in winter than in summer, which is associated with extra capacities and maintenance costs. If the price of electricity in winter is higher than in summer, the electricity consumption will decrease in winter. The consumers will start to consume the electricity more economically, what will allow reducing extra capacities. Conclusion: Thus, the practical realization of the views given in the paper will contribute to the efficient operation of natural monopolies. Consequently, their activity will be oriented not on the reduction but on the increase of increments of the consumers or producers. Overall, the optimal management of the given fields will allow for improving the well-being throughout the country. In the article, conclusions are made, and the recommendations are developed to deliver effective policies and regulations toward the natural monopolies in Georgia.

Keywords: monopolies, natural monopolies, regulation, antimonopoly service

Procedia PDF Downloads 77
8244 An Image Processing Scheme for Skin Fungal Disease Identification

Authors: A. A. M. A. S. S. Perera, L. A. Ranasinghe, T. K. H. Nimeshika, D. M. Dhanushka Dissanayake, Namalie Walgampaya

Abstract:

Nowadays, skin fungal diseases are mostly found in people of tropical countries like Sri Lanka. A skin fungal disease is a particular kind of illness caused by fungus. These diseases have various dangerous effects on the skin and keep on spreading over time. It becomes important to identify these diseases at their initial stage to control it from spreading. This paper presents an automated skin fungal disease identification system implemented to speed up the diagnosis process by identifying skin fungal infections in digital images. An image of the diseased skin lesion is acquired and a comprehensive computer vision and image processing scheme is used to process the image for the disease identification. This includes colour analysis using RGB and HSV colour models, texture classification using Grey Level Run Length Matrix, Grey Level Co-Occurrence Matrix and Local Binary Pattern, Object detection, Shape Identification and many more. This paper presents the approach and its outcome for identification of four most common skin fungal infections, namely, Tinea Corporis, Sporotrichosis, Malassezia and Onychomycosis. The main intention of this research is to provide an automated skin fungal disease identification system that increase the diagnostic quality, shorten the time-to-diagnosis and improve the efficiency of detection and successful treatment for skin fungal diseases.

Keywords: Circularity Index, Grey Level Run Length Matrix, Grey Level Co-Occurrence Matrix, Local Binary Pattern, Object detection, Ring Detection, Shape Identification

Procedia PDF Downloads 220
8243 Developing a Set of Primers Targeting Chondroitin Ac Lyase Gene for Specific and Sensitive Detection of Flavobacterium Columnare, a Causative Agent of Freshwater Columnaris

Authors: Mahmoud Mabrok, Channarong Rodkhum

Abstract:

Flavobacterium columanre is one of the devastating pathogen that causes noticeable economic losses in freshwater cultured fish. Like other filamentous bacteria, F. columanre tends to aggregate and fluctuate to all kind of media, thus revealing obstacles in recognition of its colonies. Since the molecular typing is the only fundamental tool for rapid and precise detection of this pathgen. The present study developed a species-specific PCR assay based on cslA unique gene of F. columnare. The cslA gene sequences of 13 F. columnare, strains retrieved from gene bank database, were aligned to identify a conserved homologous segment prior to primers design. The new primers yielded amplicons of 287 bp from F. columnare strains but not from relevant or other pathogens, unlike to other published set that showed no specificity and cross-reactivity with F. indicum. The primers were sensitive and detected as few as 7 CFUs of bacteria and 3 pg of gDNA template. The sensitivity was reduced ten times when using tissue samples. These primers precisely defined all field isolates in a double-blind study, proposing their applicable use for field detection.

Keywords: Columnaris infection, cslA gene, Flavobacterium columnare, PCR

Procedia PDF Downloads 116
8242 The Genetic Diversity and Conservation Status of Natural Populus Nigra Populations in Turkey

Authors: Asiye Ciftci, Zeki Kaya

Abstract:

Populus nigra is one of the most economically and ecologically important forest trees in Turkey, well known for its rapid growth, good ability to vegetative propagation and the extreme uses of its wood. Due to overexploitation, loss of natural distribution area and extreme hybridization and introgression, Populus nigra is one of the most threatened tree species in Turkey and Europe. Using 20 nuclear microsatellite loci, the genetic structure of European black poplar populations along the two largest rivers of Turkey was analyzed. All tested loci were highly polymorphic, displaying 5 to 15 alleles per locus. Observed heterozygosity (overall Ho = 0.79) has been higher than the expected (overall He = 0.58) in each population. Low level of genetic differentiation among populations (FST= 0,03) and excess of heterozygotes for each river were found. Human-mediated dispersal, phenotypic selection, high level of gene flow and extensive circulations of clonal materials may cause those situations. The genetic data obtained from this study could provide the basis for efficient in situ and ex-situ conservation and restoration of species natural populations in its natural habitat as well as having sustainable breeding and poplar plantations in the future.

Keywords: populus, clonal, loci, ex situ

Procedia PDF Downloads 283
8241 Oxygenation in Turbulent Flows over Block Ramps

Authors: Thendiyath Roshni, Stefano Pagliara

Abstract:

Block ramps (BR) or rock chutes are eco-friendly natural river restoration structures. BR are made of ramp of rocks and flows over BR develop turbulence and helps in the entrainment of ambient air. These act as natural aerators in river flow and therefore leads to oxygenation of water. As many of the hydraulic structures in rivers, hinders the natural path for aquatic habitat. However, flows over BR ascertains a natural rocky flow and ensures safe and natural movement for aquatic habitat. Hence, BR is considered as a better alternative for drop structures. As water quality is concerned, turbulent and aerated flows over BR or macro-roughness conditions improves aeration and thereby oxygenation. Hence, the objective of this paper is to study the oxygenation in the turbulent flows over BR. Experimental data were taken for a slope (S) of 27.5% for three discharges (Q = 9, 15 and 21 lps) conditions. Air concentration were measured with the help of air concentration probe for three different discharges in the uniform flow region. Oxygen concentration is deduced from the air concentration as ambient air is entrained in the flows over BR. Air concentration profiles and oxygen profiles are plotted in the uniform flow region for three discharges and found that air concentration and oxygen concentration does not show any remarkable variation in properties in the longitudinal profile in uniform flow region. An empirical relation is developed for finding the average oxygen concentration (Oₘ) for S = 27.5% in the uniform flow region for 9 < Q < 21 lps. The results show that as the discharge increases over BR, there is a reduction of oxygen concentration in the uniform flow region.

Keywords: aeration, block ramps, oxygenation, turbulent flows

Procedia PDF Downloads 167