Search results for: metal load
3990 An Efficient Activated Carbon for Copper (II) Adsorption Synthesized from Indian Gooseberry Seed Shells
Authors: Somen Mondal, Subrata Kumar Majumder
Abstract:
Removal of metal pollutants by efficient activated carbon is challenging research in the present-day scenario. In the present study, the characteristic features of an efficient activated carbon (AC) synthesized from Indian gooseberry seed shells for the copper (II) adsorption are reported. A three-step chemical activation method consisting of the impregnation, carbonization and subsequent activation is used to produce the activated carbon. The copper adsorption kinetics and isotherms onto the activated carbon were analyzed. As per present investigation, Indian gooseberry seed shells showed the BET surface area of 1359 m²/g. The maximum adsorptivity of the activated carbon at a pH value of 9.52 was found to be 44.84 mg/g at 30°C. The adsorption process followed the pseudo-second-order kinetic model along with the Langmuir adsorption isotherm. This AC could be used as a favorable and cost-effective copper (II) adsorbent in wastewater treatment to remove the metal contaminants.Keywords: activated carbon, adsorption isotherm, kinetic model, characterization
Procedia PDF Downloads 1633989 Buckling of Plates on Foundation with Different Types of Sides Support
Authors: Ali N. Suri, Ahmad A. Al-Makhlufi
Abstract:
In this paper the problem of buckling of plates on foundation of finite length and with different side support is studied. The Finite Strip Method is used as tool for the analysis. This method uses finite strip elastic, foundation, and geometric matrices to build the assembly matrices for the whole structure, then after introducing boundary conditions at supports, the resulting reduced matrices is transformed into a standard Eigenvalue-Eigenvector problem. The solution of this problem will enable the determination of the buckling load, the associated buckling modes and the buckling wave length. To carry out the buckling analysis starting from the elastic, foundation, and geometric stiffness matrices for each strip a computer program FORTRAN list is developed. Since stiffness matrices are function of wave length of buckling, the computer program used an iteration procedure to find the critical buckling stress for each value of foundation modulus and for each boundary condition. The results showed the use of elastic medium to support plates subject to axial load increase a great deal the buckling load, the results found are very close with those obtained by other analytical methods and experimental work. The results also showed that foundation compensates the effect of the weakness of some types of constraint of side support and maximum benefit found for plate with one side simply supported the other free.Keywords: buckling, finite strip, different sides support, plates on foundation
Procedia PDF Downloads 2433988 Effect of Cadmium on Oxidative Enzymes Activity in Persian Clover (Trifolium resupinatum L.)
Authors: Homayun Ghasemi, Mojtaba Yousefirad, Mozhgan Farzamisepehr
Abstract:
Heavy metals are among soil pollutant resources that in case of accumulation in the soil and absorption by the plant, enter into the food chain and poison the plants or the people who consume those plants. This research was performed in order to examine the role of cadmium as a heavy metal in the activity of catalase and peroxidase as well as protein concentration in Trifolium resupinatum L. based on a randomized block design with three repetitions. The used treatments included consumption of Cd (NO3)2 at four levels, namely, 0, 100, 200, and 300 ppm. The plants under study were treated for 10 days. The results of the study showed that catalase activity decreased by the increase of cadmium. Moreover, peroxidase activity increased by an increase inthe consumption of cadmium. The analysis of protein level showed that plantlet protein decreased in high cadmium concentrations. The findings also demonstrated that cadmium concentration in roots was higher than in shoots.Keywords: catalase, heavy metal, peroxidase, protein
Procedia PDF Downloads 2483987 Multivariate Statistical Process Monitoring of Base Metal Flotation Plant Using Dissimilarity Scale-Based Singular Spectrum Analysis
Authors: Syamala Krishnannair
Abstract:
A multivariate statistical process monitoring methodology using dissimilarity scale-based singular spectrum analysis (SSA) is proposed for the detection and diagnosis of process faults in the base metal flotation plant. Process faults are detected based on the multi-level decomposition of process signals by SSA using the dissimilarity structure of the process data and the subsequent monitoring of the multiscale signals using the unified monitoring index which combines T² with SPE. Contribution plots are used to identify the root causes of the process faults. The overall results indicated that the proposed technique outperformed the conventional multivariate techniques in the detection and diagnosis of the process faults in the flotation plant.Keywords: fault detection, fault diagnosis, process monitoring, dissimilarity scale
Procedia PDF Downloads 2093986 Starting Characteristic Analysis of LSPM for Pumping System Considering Demagnetization
Authors: Subrato Saha, Yun-Hyun Cho
Abstract:
This paper presents the design process of a high performance 3-phase 3.7 kW 2-pole line start permanent magnet synchronous motor for pumping system. A method was proposed to study the starting torque characteristics considering line start with high inertia load. A d-q model including cage was built to study the synchronization capability. Time-stepping finite element method analysis was utilized to accurately predict the dynamic and transient performance, efficiency, starting current, speed curve and, etc. Considering the load torque of pumps during starting stage, the rotor bar was designed with minimum demagnetization of permanent magnet caused by huge starting current.Keywords: LSPM, starting analysis, demagnetization, FEA, pumping system
Procedia PDF Downloads 4723985 Toxicological Standardization of Heavy Metals and Microbial Contamination Haematinic Herbal Formulations Marketed in India
Authors: A. V. Chandewar, Sanjay Bais
Abstract:
Backgound: In India, drugs of herbal origin have been used in traditional systems of medicines such as Unani and Ayurveda since ancient times. WHO limit for Escherichia coli is 101/gm cfu, for Staphylococus aureus 105/gm cfu, and for Pseudomonas aeruginosa 103/gm cfu and for Salmonella species nil cfu. WHO mentions maximum permissible limits in raw materials only for arsenic, cadmium, and lead, which amount to 1.0, 0.3, and 10 ppm, respectively. Aim: The main purpose of the investigation was to document evidence for the users, and practitioners of marketed haematinic herbal formulations. In the present study haematinic herbal formulations marketed in Yavatmal India were determined for the presence of microbial and heavy metal content. Method: The investigations were performed by using specific medias and atomic absorption spectrometry. Result: The present work indicates the presence of heavy metal contents in herbal formulations selected for study. It was found that arsenic content in formulations was below the permissible limit in all formulations. The cadmium and lead content in six formulations were above the permissible limits. Such formulations are injurious to health of patient if consumed regularly. The specific medias were used to determining the presence of Escherichia coli 4 samples, Staphylococcus aureus 3 samples, and P. aeruginosa 4 samples. The data indicated suggest that there is requirement of in process improvement to provide better quality for consumer health in order to be competitive in international markets. Summary/Conclusion: The presence of microbial and heavy metal content above WHO limits indicates that the GMP was not followed during manufacturing of herbal formulations marketed in India.Keywords: toxicological standardization, heavy metals, microbial contamination, haematinic herbal formulations
Procedia PDF Downloads 4513984 Geometric Nonlinear Dynamic Analysis of Cylindrical Composite Sandwich Shells Subjected to Underwater Blast Load
Authors: Mustafa Taskin, Ozgur Demir, M. Mert Serveren
Abstract:
The precise study of the impact of underwater explosions on structures is of great importance in the design and engineering calculations of floating structures, especially those used for military purposes, as well as power generation facilities such as offshore platforms that can become a target in case of war. Considering that ship and submarine structures are mostly curved surfaces, it is extremely important and interesting to examine the destructive effects of underwater explosions on curvilinear surfaces. In this study, geometric nonlinear dynamic analysis of cylindrical composite sandwich shells subjected to instantaneous pressure load is performed. The instantaneous pressure load is defined as an underwater explosion and the effects of the liquid medium are taken into account. There are equations in the literature for pressure due to underwater explosions, but these equations have been obtained for flat plates. For this reason, the instantaneous pressure load equations are arranged to be suitable for curvilinear structures before proceeding with the analyses. Fluid-solid interaction is defined by using Taylor's Plate Theory. The lower and upper layers of the cylindrical composite sandwich shell are modeled as composite laminate and the middle layer consists of soft core. The geometric nonlinear dynamic equations of the shell are obtained by Hamilton's principle, taken into account the von Kàrmàn theory of large displacements. Then, time dependent geometric nonlinear equations of motion are solved with the help of generalized differential quadrature method (GDQM) and dynamic behavior of cylindrical composite sandwich shells exposed to underwater explosion is investigated. An algorithm that can work parametrically for the solution has been developed within the scope of the study.Keywords: cylindrical composite sandwich shells, generalized differential quadrature method, geometric nonlinear dynamic analysis, underwater explosion
Procedia PDF Downloads 1953983 Nonlinear Analysis of Steel Fiber Reinforced Concrete Frames Considering Shear Behaviour of Members under Varying Axial Load
Authors: Habib Akbarzadeh Bengar, Mohammad Asadi Kiadehi, Ali Rameeh
Abstract:
The result of the past earthquakes has shown that insufficient amount of stirrups and brittle behavior of concrete lead to the shear and flexural failure in reinforced concrete (RC) members. In this paper, an analytical model proposed to predict the nonlinear behavior of RC and SFRC elements and frames. In this model, some important parameter such as shear effect, varying axial load, and longitudinal bar buckling are considered. The results of analytical model were verified with experimental tests. The results of verification have shown that the proposed analytical model can predict the nonlinear behavior of RC and SFRC members and also frames accurately. In addition, the results have shown that use of steel fibers increased bearing capacity and ductility of RC frame. Due to this enhancement in shear strength and ductility, insufficient amount of stirrups, which resulted in shear failure, can be offset with usage of the steel fibers. In addition to the steps taken, to analyze the effects of fibers percentages on the bearing capacity and ductility of frames parametric studies have been performed to investigate of these effects.Keywords: nonlinear analysis, SFRC frame, shear failure, varying an axial load
Procedia PDF Downloads 2203982 Spectroscopic Relation between Open Cluster and Globular Cluster
Authors: Robin Singh, Mayank Nautiyal, Priyank Jain, Vatasta Koul, Vaibhav Sharma
Abstract:
The curiosity to investigate the space and its mysteries was dependably the main impetus of human interest, as the particle of livings exists from the "debut de l'Univers" (beginning of the Universe) typified with its few other living things. The sharp drive to uncover the secrets of stars and their unusual deportment was dependably an ignitor of stars investigation. As humankind lives in civilizations and states, stars likewise live in provinces named ‘clusters’. Clusters are separates into 2 composes i.e. open clusters and globular clusters. An open cluster is a gathering of thousand stars that were moulded from a comparable goliath sub-nuclear cloud and for the most part; contain Propulsion I (extremely metal-rich) and Propulsion II (mild metal-rich), where globular clusters are around gathering of more than thirty thousand stars that circles a galactic focus and basically contain Propulsion III (to a great degree metal-poor) stars. Futurology of this paper lies in the spectroscopic investigation of globular clusters like M92 and NGC419 and open clusters like M34 and IC2391 in different color bands by using software like VIREO virtual observatory, Aladin, CMUNIWIN, and MS-Excel. Assessing the outcome Hertzsprung-Russel (HR) diagram with exemplary cosmological models like Einstein model, De Sitter and Planck survey demonstrate for a superior age estimation of respective clusters. Colour-Magnitude Diagram of these clusters was obtained by photometric analysis in g and r bands which further transformed into BV bands which will unravel the idea of stars exhibit in the individual clusters.Keywords: color magnitude diagram, globular clusters, open clusters, Einstein model
Procedia PDF Downloads 2263981 Exploring the Gas Sensing Performance of Cu-Doped Iron Oxide Derived from Metal-Organic Framework
Authors: Annu Sheokand, Vinay Kumar
Abstract:
Hydrogen sulfide (H₂S) detection is essential for environmental monitoring and industrial safety due to its high toxicity, even at low concentrations. This study explores the H₂S gas sensing properties of Cu-doped Fe₂O₃ materials derived from metal-organic frameworks (MOFs), which offer high surface area and controlled porosity for optimized gas sensing. The structural and morphological characteristics of the synthesized material were thoroughly analyzed using techniques such as X-ray Diffraction (XRD), Field Emission Scanning Electron Microscopy (FE-SEM), and UV-Vis Spectroscopy. The resulting sensor exhibited remarkable sensitivity and selectivity, achieving a detection limit at the ppb level for H₂S. The study indicates that Cu doping significantly enhances the gas sensing performance of Fe₂O₃ by introducing abundant active sites within the material. These enhanced sensing properties emphasize the potential of MOF-derived Cu-doped Fe₂O₃ as a highly effective material for H₂S gas sensors in various applications.Keywords: detection limit, doping, MOF, sensitivity, sensor
Procedia PDF Downloads 163980 Comparative Study of Al₂O₃ and HfO₂ as Gate Dielectric on AlGaN/GaN Metal Oxide Semiconductor High-Electron Mobility Transistors
Authors: Kaivan Karami, Sahalu Hassan, Sanna Taking, Afesome Ofiare, Aniket Dhongde, Abdullah Al-Khalidi, Edward Wasige
Abstract:
We have made a comparative study on the influence of Al₂O₃ and HfO₂ grown using atomic layer deposition (ALD) technique as dielectric in the AlGaN/GaN metal oxide semiconductor high electron mobility transistor (MOS-HEMT) structure. Five samples consisting of 20 nm and 10 nm each of Al₂O₃ and HfO₂ respectively and a Schottky gate HEMT, were fabricated and measured. The threshold voltage shifts towards negative by 0.1 V and 1.8 V for 10 nm thick HfO2 and 10 nm thick Al₂O₃ gate dielectric layers respectively. The negative shift for the 20 nm HfO2 and 20 nm Al₂O₃ were 1.2 V and 4.9 V respectively. Higher gm/IDS (transconductance to drain current) ratio was also obtained in HfO₂ than Al₂O₃. With both materials as dielectric, a significant reduction in the gate leakage current in the order of 10^4 was obtained compared to the sample without the dielectric material.Keywords: AlGaN/GaN HEMTs, Al2O3, HfO2, MOSHEMTs.
Procedia PDF Downloads 1043979 Assessment of Metal Dynamics in Dissolved and Particulate Phase in Human Impacted Hooghly River Estuary, India
Authors: Soumita Mitra, Santosh Kumar Sarkar
Abstract:
Hooghly river estuary (HRE), situated at the north eastern part of Bay of Bengal has global significance due to its holiness. It is of immense importance to the local population as it gives perpetual water supply for various activities such as transportation, fishing, boating, bathing etc. to the local people who settled on both the banks of this estuary. This study was done to assess the dissolved and particulate trace metal in the estuary covering a stretch of about 175 Km. The water samples were collected from the surface (0-5 cm) along the salinity gradient and metal concentration were studied both in dissolved and particulate phase using Graphite Furnace Atomic Absorption Spectrophotometer (GF-AAS) along some physical characteristics such as water temperature, salinity, pH, turbidity and total dissolved solids. Although much significant spatial variation was noticed but little enrichment was found along the downstream of the estuary. The mean concentration of the metals in the dissolved and particulate phase followed the same trend and as follows: Fe>Mn>Cr>Zn>Cu>Ni>Pb. The concentration of the metals in the particulate phase were much greater than that in dissolved phase which was also depicted from the values of the partition coefficient (Kd)(ml mg-1). The Kdvalues ranged from 1.5x105 (in case of Pb) to 4.29x106 (in case of Cr). The high value of Kd for Cr denoted that the metal Cr is mostly bounded with the suspended particulate matter while the least value for Pb signified it presence more in dissolved phase. Moreover, the concentrations of all the studied metals in the dissolved phase were many folds higher than their respective permissible limits assested by WHO 2008, 2009 and 2011. On the other hand, according to Sediment Quality Guidelines (SQGs), Zn, Cu and Ni in the particulate phase lied between ERL and ERM values but Cr exceeded ERM values at all the stations confirming that the estuary is mostly contaminated with the particulate Cr and it might cause frequent adverse effects on the aquatic life. Multivariate statistics Cluster analysis was also performed which separated the stations according to the level of contamination from several point and nonpoint sources. Thus, it is found that the estuarine system is much polluted by the toxic metals and further investigation, toxicological studies should be implemented for full risk assessment of this system, better management and restoration of the water quality of this globally significant aquatic system.Keywords: dissolved and particulate phase, Hooghly river estuary, partition coefficient, surface water, toxic metals
Procedia PDF Downloads 2803978 The Behavior of Masonry Wall Constructed Using Biaxial Interlocking Concrete Block, Solid Concrete Block and Cement Sand Brick Subjected to the Compressive Load
Authors: Fauziah Aziz, Mohd.fadzil Arshad, Hazrina Mansor, Sedat Kömürcü
Abstract:
Masonry is an isotropic and heterogeneous material due to the presence of the different components within the assembly process. Normally the mortar plays a significant role in the compressive behavior of the traditional masonry structures. Biaxial interlocking concrete block is a masonry unit that comes out with the interlocking concept. This masonry unit can improve the quality of the construction process, reduce the cost of labor, reduce high skill workmanship, and speeding the construction time. Normally, the interlocking concrete block masonry unit in the market place was designed in a way interlocking concept only either x or y-axis, shorter in length, and low compressive strength value. However, the biaxial interlocking concrete block is a dry-stack concept being introduced in this research, offered the specialty compared to the normal interlocking concrete available in the market place due to its length and the geometry of the groove and tongue. This material can be used as a non-load bearing wall, or load-bearing wall depends on the application of the masonry. But, there is a lack of technical data that was produced before. This paper presents a finding on the compressive resistance of the biaxial interlocking concrete block masonry wall compared to the other traditional masonry walls. Two series of biaxial interlocking concrete block masonry walls, namely M1 and M2, a series of solid concrete block and cement sand brick walls M3, and M4 have tested the compressive resistance. M1 is the masonry wall of a hollow biaxial interlocking concrete block meanwhile; M2 is the grouted masonry wall, M3 is a solid concrete block masonry wall, and M4 is a cement sand brick masonry wall. All the samples were tested under static compressive load. The results examine that M2 is higher in compressive resistance compared to the M1, M3, and M4. It shows that the compressive strength of the concrete masonry units plays a significant role in the capacity of the masonry wall.Keywords: interlocking concrete block, compressive resistance, concrete masonry unit, masonry
Procedia PDF Downloads 1673977 The Synthesis, Structure and Catalytic Activity of Iron(II) Complex with New N2O2 Donor Schiff Base Ligand
Authors: Neslihan Beyazit, Sahin Bayraktar, Cahit Demetgul
Abstract:
Transition metal ions have an important role in biochemistry and biomimetic systems and may provide the basis of models for active sites of biological targets. The presence of copper(II), iron(II) and zinc(II) is crucial in many biological processes. Tetradentate N2O2 donor Schiff base ligands are well known to form stable transition metal complexes and these complexes have also applications in clinical and analytical fields. In this study, we present salient structural features and the details of cathecholase activity of Fe(II) complex of a new Schiff Base ligand. A new asymmetrical N2O2 donor Schiff base ligand and its Fe(II) complex were synthesized by condensation of 4-nitro-1,2 phenylenediamine with 6-formyl-7-hydroxy-5-methoxy-2-methylbenzopyran-4-one and by using an appropriate Fe(II) salt, respectively. Schiff base ligand and its metal complex were characterized by using FT-IR, 1H NMR, 13C NMR, UV-Vis, elemental analysis and magnetic susceptibility. In order to determine the kinetics parameters of catechol oxidase-like activity of Schiff base Fe(II) complex, the oxidation of the 3,5-di-tert-butylcatechol (3,5-DTBC) was measured at 25°C by monitoring the increase of the absorption band at 390-400 nm of the product 3,5-di-tert-butylcatequinone (3,5-DTBQ). The compatibility of catalytic reaction with Michaelis-Menten kinetics also investigated by the method of initial rates by monitoring the growth of the 390–400 nm band of 3,5-DTBQ as a function of time. Kinetic studies showed that Fe(II) complex of the new N2O2 donor Schiff base ligand was capable of acting as a model compound for simulating the catecholase properties of type-3 copper proteins.Keywords: catecholase activity, Michaelis-Menten kinetics, Schiff base, transition metals
Procedia PDF Downloads 3963976 Testing of Infill Walls with Joint Reinforcement Subjected to in Plane Lateral Load
Authors: J. Martin Leal-Graciano, Juan J. Pérez-Gavilán, A. Reyes-Salazar, J. H. Castorena, J. L. Rivera-Salas
Abstract:
The experimental results about the global behavior of twelve 1:2 scaled reinforced concrete frame subject to in-plane lateral load are presented. The main objective was to generate experimental evidence about the use of steel bars within mortar bed-joints as shear reinforcement in infill walls. Similar to the Canadian and New Zealand standards, the Mexican code includes specifications for this type of reinforcement. However, these specifications were obtained through experimental studies of load-bearing walls, mainly confined walls. Little information is found in the existing literature about the effects of joint reinforcement on the seismic behavior of infill masonry walls. Consequently, the Mexican code establishes the same equations to estimate the contribution of joint reinforcement for both confined walls and infill walls. A confined masonry construction and a reinforced concrete frame infilled with masonry walls have similar appearances. However, substantial differences exist between these two construction systems, which are mainly related to the sequence of construction and to how these structures support vertical and lateral loads. To achieve the objective established, ten reinforced concrete frames with masonry infill walls were built and tested in pairs, having both specimens in the pair identical characteristics except that one of them included joint reinforcement. The variables between pairs were the type of units, the size of the columns of the frame and the aspect ratio of the wall. All cases included tie-columns and tie-beams on the perimeter of the wall to anchor the joint reinforcement. Also, two bare frame with identical characteristic to the infilled frames were tested. The purpose was to investigate the effects of the infill wall on the behavior of the system to in-plane lateral load. In addition, the experimental results were compared with the prediction of the Mexican code. All the specimens were tested in cantilever under reversible cyclic lateral load. To simulate gravity load, constant vertical load was applied on the top of the columns. The results indicate that the contribution of the joint reinforcement to lateral strength depends on the size of the columns of the frame. Larger size columns produce a failure mode that is predominantly a sliding mode. Sliding inhibits the production of new inclined cracks, which are necessary to activate (deform) the joint reinforcement. Regarding the effects of joint reinforcement in the performance of confined masonry walls, many facts were confirmed for infill walls: this type of reinforcement increases the lateral strength of the wall, produces a more distributed cracking and reduces the width of the cracks. Moreover, it reduces the ductility demand of the system at maximum strength. The prediction of the lateral strength provided by the Mexican code is property in some cases; however, the effect of the size of the columns on the contribution of joint reinforcement needs to be better understood.Keywords: experimental study, Infill wall, Infilled frame, masonry wall
Procedia PDF Downloads 773975 A Study on Energy Efficiency of Vertical Water Treatment System with DC Power Supply
Authors: Young-Kwan Choi, Gang-Wook Shin, Sung-Taek Hong
Abstract:
Water supply system consumes large amount of power load during water treatment and transportation of purified water. Many energy conserving high efficiency materials such as DC motor and LED light have recently been introduced to water supply system for energy conservation. This paper performed empirical analysis on BLDC, AC motors, and comparatively analyzed the change in power according to DC power supply ratio in order to conserve energy of a next-generation water treatment system called vertical water treatment system. In addition, a DC distribution system linked with photovoltaic generation was simulated to analyze the energy conserving effect of DC load.Keywords: vertical water treatment system, DC power supply, energy efficiency, BLDC
Procedia PDF Downloads 5033974 Impact of Combined Heat and Power (CHP) Generation Technology on Distribution Network Development
Authors: Sreto Boljevic
Abstract:
In the absence of considerable investment in electricity generation, transmission and distribution network (DN) capacity, the demand for electrical energy will quickly strain the capacity of the existing electrical power network. With anticipated growth and proliferation of Electric vehicles (EVs) and Heat pump (HPs) identified the likelihood that the additional load from EV changing and the HPs operation will require capital investment in the DN. While an area-wide implementation of EVs and HPs will contribute to the decarbonization of the energy system, they represent new challenges for the existing low-voltage (LV) network. Distributed energy resources (DER), operating both as part of the DN and in the off-network mode, have been offered as a means to meet growing electricity demand while maintaining and ever-improving DN reliability, resiliency and power quality. DN planning has traditionally been done by forecasting future growth in demand and estimating peak load that the network should meet. However, new problems are arising. These problems are associated with a high degree of proliferation of EVs and HPs as load imposes on DN. In addition to that, the promotion of electricity generation from renewable energy sources (RES). High distributed generation (DG) penetration and a large increase in load proliferation at low-voltage DNs may have numerous impacts on DNs that create issues that include energy losses, voltage control, fault levels, reliability, resiliency and power quality. To mitigate negative impacts and at a same time enhance positive impacts regarding the new operational state of DN, CHP system integration can be seen as best action to postpone/reduce capital investment needed to facilitate promotion and maximize benefits of EVs, HPs and RES integration in low-voltage DN. The aim of this paper is to generate an algorithm by using an analytical approach. Algorithm implementation will provide a way for optimal placement of the CHP system in the DN in order to maximize the integration of RES and increase in proliferation of EVs and HPs.Keywords: combined heat & power (CHP), distribution networks, EVs, HPs, RES
Procedia PDF Downloads 2033973 Static and Dynamic Analysis on a Buddhism Goddess Guanyin in Shuangyashan
Authors: Gong Kangming, Zhao Caiqi
Abstract:
High-rise special-shaped structure, such as main frame structure of the statues, is one of the structure forms in irregular structure widely used. Due to the complex shape of the statue structure, with a large aspect ratio, its wind load value and the overall mechanical properties are very different from the high-rise buildings with the general rules. The paper taking a certain 48 meters high main frame structure of the statue located in Shuangyashan City, Heilongjiang Province, static and dynamic properties are analyzed by the finite element software. Through static and dynamic analysis, it got a number of useful conclusions that have a certain reference value for the analysis and design of the future similar structure.Keywords: a Buddhism goddess Guanyin body, wind load, dynamic analysis, bolster, node design
Procedia PDF Downloads 4673972 Rumen Metabolites and Microbial Load in Fattening Yankasa Rams Fed Urea and Lime Treated Groundnut (Arachis Hypogeae) Shell in a Complete Diet
Authors: Bello Muhammad Dogon Kade
Abstract:
The study was conducted to determine the effect of a treated groundnut (Arachis hypogaea) shell in a complete diet on blood metabolites and microbial load in fattening Yankasa rams. The study was conducted at the Teaching and Research Farm (Small Ruminants Unit of Animal Science Department, Faculty of Agriculture, Ahmadu Bello University, Zaria. Each kilogram of groundnut shell was treated with 5% urea and 5% lime for treatments 2 (UTGNS) and 3 (LTGNS), respectively. For treatment 4 (ULTGNS), 1 kg of groundnut shell was treated with 2.5% urea and 2.5% lime, but the shell in treatment 1 was not treated (UNTGNS). Sixteen Yankasa rams were used and randomly assigned to the four treatment diets with four animals per treatment in a completely randomized design (CRD). The diet was formulated to have 14% crude protein (CP) content. Rumen fluid was collected from each ram at the end of the experiment at 0 and 4 hours post-feeding. The samples were then put in a 30 ml bottle and acidified with 5 drops of concentrated sulphuric (0.1N H₂SO4) acid to trap ammonia. The results of the blood metabolites showed that the mean values of NH₃-N differed significantly (P<0.05) among the treatment groups, with rams in the ULTGNS diet having the highest significant value (31.96 mg/L). TVFs were significantly (P<0.05) higher in rams fed UNTGNS diet and higher in total nitrogen; the effect of sampling periods revealed that NH3N, TVFs and TP were significantly (P<0.05) higher in rumen fluid collected 4hrs post feeding among the rams across the treatment groups, but rumen fluid pH was significantly (p<0.05) higher in 0-hour post-feeding in all the rams in the treatment diets. In the treatment and sampling period’s interaction effects, animals on the ULTGNS diet had the highest mean values of NH3N in both 0 and 4 hours post-feeding and were significantly (P<0.5) higher compared to rams on the other treatment diets. Rams on the UTGNS diet had the highest bacteria load of 4.96X105/ml, which was significantly (P<0.05) higher than a microbial load of animals fed UNTGNS, LTGNS and ULTGNS diets. However, protozoa counts were significantly (P<0.05) higher in rams fed the UTGNS diet than those followed by the ULTGNS diet. The results showed that there was no significant difference (P>0.05) in the bacteria count of the animals at both 0 and 4 hours post-feeding. But rumen fungi and protozoa load at 0 hours were significantly (P<0.05) higher than at 4 hours post-feeding. The use of untreated ground groundnut shells in the diet of fattening Yankasa ram is therefore recommended.Keywords: blood metabolites, microbial load, volatile fatty acid, ammonia, total protein
Procedia PDF Downloads 683971 Spectroscopic (Ir, Raman, Uv-Vis) and Biological Study of Copper and Zinc Complexes and Sodium Salt with Cichoric Acid
Authors: Renata Swislocka, Grzegorz Swiderski, Agata Jablonska-Trypuc, Wlodzimierz Lewandowski
Abstract:
Forming a complex of a phenolic compound with a metal not only alters the physicochemical properties of the ligand (including increase in stability or changes in lipophilicity), but also its biological activity, including antioxidant, antimicrobial and many others. As part of our previous projects, we examined the physicochemical and antimicrobial properties of phenolic acids and their complexes with metals naturally occurring in foods. Previously we studied the complexes of manganese(II), copper(II), cadmium(II) and alkali metals with ferulic, caffeic and p-coumaric acids. In the framework of this study, the physicochemical and biological properties of cicoric acid, its sodium salt, and complexes with copper and zinc were investigated. Cichoric acid is a derivative of both caffeic acid and tartaric acid. It has first been isolated from Cichorium intybus (chicory) but also it occurs in significant amounts in Echinacea, particularly E. purpurea, dandelion leaves, basil, lemon balm and in aquatic plants, including algae and sea grasses. For the study of spectroscopic and biological properties of cicoric acid, its sodium salt, and complexes with zinc and copper a variety of methods were used. Studies of antioxidant properties were carried out in relation to selected stable radicals (method of reduction of DPPH and reduction of FRAP). As a result, the structure and spectroscopic properties of cicoric acid and its complexes with selected metals in the solid state and in the solutions were defined. The IR and Raman spectra of cicoric acid displayed a number of bands that were derived from vibrations of caffeic and tartaric acids moieties. At 1746 and 1716 cm-1 the bands assigned to the vibrations of the carbonyl group of tartaric acid occurred. In the spectra of metal complexes with cichoric these bands disappeared what indicated that metal ion was coordinated by the carboxylic groups of tartaric acid. In the spectra of the sodium salt, a characteristic wide-band vibrations of carboxylate anion occurred. In the spectra of cicoric acid and its salt and complexes, a number of bands derived from the vibrations of the aromatic ring (caffeic acid) were assigned. Upon metal-ligand attachment, the changes in the values of the wavenumbers of these bands occurred. The impact of metals on the antioxidant properties of cicoric acid was also examined. Cichoric acid has a high antioxidant potential. Complexation by metals (zinc, copper) did not significantly affect its antioxidant capacity. The work was supported by the National Science Centre, Poland (grant no. 2015/17/B/NZ9/03581).Keywords: chicoric acid, metal complexes, natural antioxidant, phenolic acids
Procedia PDF Downloads 3393970 Heavy Metal Reduction in Plant Using Soil Amendment
Authors: C. Chaiyaraksa, T. Khamko
Abstract:
This study investigated the influence of limestone and sepiolite on heavy metals accumulation in the soil and soybean. The soil was synthesized to contaminate with zinc 150 mg/kg, copper 100 mg/kg, and cadmium 1 mg/kg. The contaminated soil was mixed with limestone and sepiolite at the ratio of 1:0, 0:1, 1:1, and 2:1. The amount of soil modifier added to soil was 0.2%, 0.4%, and 0.8%. The metals determination was performed on soil both before and after soybean planting and in the root, shoot, and seed of soybean after harvesting. The study was also on metal translocate from root to seed and on bioaccumulation factor. Using of limestone and sepiolite resulted in a reduction of metals accumulated in soybean. For soil containing a high concentration of copper, cadmium, and zinc, a mixture of limestone and sepiolite (1:1) was recommended to mix with soil with the amount of 0.2%. Zinc could translocate from root to seed more than copper, and cadmium. From studying the movement of metals from soil to accumulate in soybean, the result was that soybean could absorb the highest amount of cadmium, followed by zinc, and copper, respectively.Keywords: heavy metals, limestone, sepiolite, soil, soybean
Procedia PDF Downloads 1553969 Analysis of Drilling Parameters for Al-Mg2-Si Metal Matrix Composite
Authors: S. Jahangir, S. H. I. Jaffery, M. Khan, Z. Zareef, A. Yar, A. Mubashir, S. Butt, L. Ali
Abstract:
In this work, drilling responses and behavior of MMC was investigated in Al-Mg2Si composites. For the purpose Al-15% wt. Mg2Si, was selected from the hypereutectic region of Al- Mg2Si phase diagram. Based on hardness and tensile strength, drill bit of appropriate material and morphology was selected. The performance of different drill bits of different morphology and material was studied and analysed using experimental data. For theoretical calculations of axial thrust force and required power calculation, material factor “K” was obtained from different data charts and at the same time cutting forces (drilling forces) were practically obtained using a Peizo electric force dynamometer. These results show the role of reinforcement particles on the machinability of MMCs and provide a useful guide for a better control and optimized drilling parameters for the drilling process. Furthermore, in this work, comparison of MMC with non -reinforced Aluminum Alloy regarding drilling operation was also studied.Keywords: drilling, metal matrix composite (MMC), cutting forces, thrust force
Procedia PDF Downloads 4323968 Assessment of Air Pollutant Dispersion and Soil Contamination: The Critical Role of MATLAB Modeling in Evaluating Emissions from the Covanta Municipal Solid Waste Incineration Facility
Authors: Jadon Matthiasa, Cindy Donga, Ali Al Jibouria, Hsin Kuo
Abstract:
The environmental impact of emissions from the Covanta Waste-to-Energy facility in Burnaby, BC, was comprehensively evaluated, focusing on the dispersion of air pollutants and the subsequent assessment of heavy metal contamination in surrounding soils. A Gaussian Plume Model, implemented in MATLAB, was utilized to simulate the dispersion of key pollutants to understand their atmospheric behaviour and potential deposition patterns. The MATLAB code developed for this study enhanced the accuracy of pollutant concentration predictions and provided capabilities for visualizing pollutant dispersion in 3D plots. Furthermore, the code could predict the maximum concentration of pollutants at ground level, eliminating the need to use the Ranchoux model for predictions. Complementing the modelling approach, empirical soil sampling and analysis were conducted to evaluate heavy metal concentrations in the vicinity of the facility. This integrated methodology underscored the importance of computational modelling in air pollution assessment and highlighted the necessity of soil analysis to obtain a holistic understanding of environmental impacts. The findings emphasized the effectiveness of current emissions controls while advocating for ongoing monitoring to safeguard public health and environmental integrity.Keywords: air emissions, Gaussian Plume Model, MATLAB, soil contamination, air pollution monitoring, waste-to-energy, pollutant dispersion visualization, heavy metal analysis, environmental impact assessment, emission control effectiveness
Procedia PDF Downloads 203967 Removal of Heavy Metal from Wastewater using Bio-Adsorbent
Authors: Rakesh Namdeti
Abstract:
The liquid waste-wastewater- is essentially the water supply of the community after it has been used in a variety of applications. In recent years, heavy metal concentrations, besides other pollutants, have increased to reach dangerous levels for the living environment in many regions. Among the heavy metals, Lead has the most damaging effects on human health. It can enter the human body through the uptake of food (65%), water (20%), and air (15%). In this background, certain low-cost and easily available biosorbent was used and reported in this study. The scope of the present study is to remove Lead from its aqueous solution using Olea EuropaeaResin as biosorbent. The results showed that the biosorption capacity of Olea EuropaeaResin biosorbent was more for Lead removal. The Langmuir, Freundlich, Tempkin, and Dubinin-Radushkevich (D-R) models were used to describe the biosorption equilibrium of Lead Olea EuropaeaResin biosorbent, and the biosorption followed the Langmuir isotherm. The kinetic models showed that the pseudo-second-order rate expression was found to represent well the biosorption data for the biosorbent.Keywords: novel biosorbent, central composite design, Lead, isotherms, kinetics
Procedia PDF Downloads 783966 Porous Alumina-Carbon Nanotubes Nanocomposite Membranes Processed via Spark Plasma Sintering for Heavy Metal Removal from Contaminated Water
Authors: H. K. Shahzad, M. A. Hussein, F. Patel, N. Al-Aqeeli, T. Laoui
Abstract:
The purpose of the present study was to use the adsorption mechanism with microfiltration synergistically for efficient heavy metal removal from contaminated water. Alumina (Al2O3) is commonly used for ceramic membranes development while recently carbon nanotubes (CNTs) have been considered among the best adsorbent materials for heavy metals. In this work, we combined both of these materials to prepare porous Al2O3-CNTs nanocomposite membranes via Spark Plasma Sintering (SPS) technique. Alumina was used as a base matrix while CNTs were added as filler. The SPS process parameters i.e. applied pressure, temperature, heating rate, and holding time were varied to obtain the best combination of porosity (64%, measured according to ASTM c373-14a) and strength (3.2 MPa, measured by diametrical compression test) of the developed membranes. The prepared membranes were characterized using X-ray diffraction (XRD), field emission secondary electron microscopy (FE-SEM), contact angle and porosity measurements. The results showed that properties of the synthesized membranes were highly influenced by the SPS process parameters. FE-SEM images revealed that CNTs were reasonably dispersed in the alumina matrix. The porous membranes were evaluated for their water flux transport as well as their capacity to adsorb heavy metals ions. Selected membranes were able to remove about 97% cadmium from contaminated water. Further work is underway to enhance the removal efficiency of the developed membranes as well as to remove other heavy metals such as arsenic and mercury.Keywords: heavy metal removal, inorganic membrane, nanocomposite, spark plasma sintering
Procedia PDF Downloads 2623965 Synthesis of Uio-66 Metal Organic Framework Impregnated Thin-Film Nanocomposite Membrane for the Desalination via Pressure Assisted Osmosis
Authors: Rajesha Kumar Alambi, Mansour Ahmed, Garudachari Bhadrachari, Safiyah Al-Muqahwi, Mansour Al-Rughaib, Jibu P. Thomas
Abstract:
Membrane-based pressure assisted osmosis (PAO) for seawater desalination has the potential to overcome the challenges of forward osmosis technology. PAO technology is gaining interest among the research community to ensure the sustainability of freshwater with a significant reduction in energy. The requirements of PAO membranes differ from the FO membrane; as it needs a slightly higher porous with sufficient mechanical strength to overcome the applied hydraulic pressure. The porous metal-organic framework (MOF) as a filler for the membrane synthesis has demonstrated a great potential to generate new channels for water transport, high selectivity, and reduced fouling propensity. Accordingly, this study is aimed at fabricating the UiO-66 MOF-based thin film nanocomposite membranes with specific characteristics for water desalination by PAO. A PAO test unit manufactured by Trevi System, USA, was used to determine the performance of the synthesized membranes. Further, the synthesized membranes were characterized in terms of morphological features, hydrophilicity, surface roughness, and mechanical properties. The 0.05 UiO-66 loaded membrane produced highest flux of 38L/m2h and with low reverse salt leakage of 2.1g/m²h for the DI water as feed solution and 2.0 M NaCl as draw solutions at the inlet feed pressure of 0.6 MPa. The new membranes showed a good tolerance toward the applied hydraulic pressure attributed to the fabric support used during the membrane synthesis.Keywords: metal organic framework, composite membrane, desalination, salt rejection, flux
Procedia PDF Downloads 1363964 Turbine Engine Performance Experimental Tests of Subscale UAV
Authors: Haluk Altay, Bilal Yücel, Berkcan Ulcay, Yücel Aydın
Abstract:
In this study, the design, integration, and testing of measurement systems required for performance tests of jet engines used in small-scale unmanned aerial vehicles are described. Performance tests are carried out as thrust and fuel consumption. For thrust tests, measurements are made using a load cell. Amplifier and filter designs have been made for the load cell to measure accurately to meet the desired sensitivity. It was calibrated by making multiple measurements at different thrust levels. As a result of these processes, the cycle thrust graph was obtained. For fuel consumption tests, tests are carried out using a flow meter. Performance graphics were obtained by finding the fuel consumption for different RPM levels of the engine.Keywords: jet engine, UAV, experimental test, loadcell, thrust, fuel consumption
Procedia PDF Downloads 813963 Analysis of Simply Supported Beams Using Elastic Beam Theory
Authors: M. K. Dce
Abstract:
The aim of this paper is to investigate the behavior of simply supported beams having rectangular section and subjected to uniformly distributed load (UDL). In this study five beams of span 5m, 6m, 7m and 8m have been considered. The width of all the beams is 400 mm and span to depth ratio has been taken as 12. The superimposed live load has been increased from 10 kN/m to 25 kN/m at the interval of 5 kN/m. The analysis of the beams has been carried out using the elastic beam theory. On the basis of present study it has been concluded that the maximum bending moment as well as deflection occurs at the mid-span of simply supported beam and its magnitude increases in proportion to magnitude of UDL. Moreover, the study suggests that the maximum moment is proportional to square of span and maximum deflection is proportional to fourth power of span.Keywords: beam, UDL, bending moment, deflection, elastic beam theory
Procedia PDF Downloads 3913962 Direct Design of Steel Bridge Using Nonlinear Inelastic Analysis
Authors: Boo-Sung Koh, Seung-Eock Kim
Abstract:
In this paper, a direct design using a nonlinear inelastic analysis is suggested. Also, this paper compares the load carrying capacity obtained by a nonlinear inelastic analysis with experiment results to verify the accuracy of the results. The allowable stress design results of a railroad through a plate girder bridge and the safety factor of the nonlinear inelastic analysis were compared to examine the safety performance. As a result, the load safety factor for the nonlinear inelastic analysis was twice as high as the required safety factor under the allowable stress design standard specified in the civil engineering structure design standards for urban magnetic levitation railways, which further verified the advantages of the proposed direct design method.Keywords: direct design, nonlinear inelastic analysis, residual stress, initial geometric imperfection
Procedia PDF Downloads 5313961 The Influence of Brazing Method on Corrosion Behavior of Brazed Aluminum Joints
Authors: F. Ghasim-akbari, A. M. Hadian, A. M. Aminazad
Abstract:
Fluid transmission pipes made of aluminum are widely use in petrochemical industries. For many applications they have to be brazed to each other. The brazed joints, in many cases, are encountered with corrosive medias. This paper reports a part of a work to investigate the corrosion behavior of brazed Al6061 using Al4047 as filler metal with and without the use of flux to discover the effect of different brazing atmospheres. The samples brazed under air, vacuum, argon, and hydrogen atmospheres. The interfacial area of the joints was examined to ensure being free of any defects. The sides of each test piece were covered with insulator and the surface of the joint was encountered to polarization test. The results revealed a significant difference of corrosion resistance. The samples that brazed under argon and hydrogen atmospheres had better corrosion resistance than other samples. Microstructure of the corroded joints revealed that the amount of the filler metal is a critical parameter on corrosion resistance of the joints.Keywords: brazing, corrosion behavior, Al6061, polarization
Procedia PDF Downloads 498