Search results for: growth temperature
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 12637

Search results for: growth temperature

11587 The Impact of Economic Growth on Carbon Footprints of High-Income and Non-High-Income Countries: A Comparative Analysis

Authors: Ghunchq Khan

Abstract:

The increase in greenhouse gas (GHGs) emissions is a main environmental problem. Diverse human activities and inappropriate economic growth have stimulated a trade-off between economic growth and environmental deterioration all over the world. The impact of economic growth on the environment has received attention as global warming and environmental problems have become more serious. The focus of this study is on carbon footprints (production and consumption) and analyses the impact of GDP per capita on carbon footprints. A balanced panel of 99 countries from 2000 to 2016 is estimated by employing autoregressive distributed lags (ARDL) model – mean group (MG) and pooled mean group (PMG) estimators. The empirical results indicate that GDP per capita has a significant and positive impact in the short run but a negative effect in the long run on the carbon footprint of production in high-income countries by controlling trade openness, industry share, biological capacity, and population density. At the same time, GDP per capita has a significant and positive impact in both the short and long run on the carbon footprint of the production of non-high-income countries. The results also indicate that GDP per capita negatively impacts the carbon footprint of consumption for high-income countries; on the other hand, the carbon footprint of consumption increases as GDP per capita grows in non-high-income countries.

Keywords: ARDL, carbon footprint, economic growth, industry share, trade openness

Procedia PDF Downloads 90
11586 Growth Performance and Nutrient Digestibility of Cirrhinus mrigala Fingerlings Fed on Sunflower Meal Based Diet Supplemented with Phytase

Authors: Syed Makhdoom Hussain, Muhammad Afzal, Farhat Jabeen, Arshad Javid, Tasneem Hameed

Abstract:

A feeding trial was conducted with Cirrhinus mrigala fingerlings to study the effects of microbial phytase with graded levels (0, 500, 1000, 1500, and 2000 FTUkg-1) by sunflower meal based diet on growth performance and nutrient digestibility. The chromic oxide was added as an indigestible marker in the diets. Three replicate groups of 15 fish (Average wt 5.98 g fish-1) were fed once a day and feces were collected twice daily. The results of present study showed improved growth and feed performance of Cirrhinus mrigala fingerlings in response to phytase supplementation. Maximum growth performance was obtained by the fish fed on test diet-III having 1000 FTU kg-1 phytase level. Similarly, nutrient digestibility was also significantly increased (p<0.05) by phytase supplementation. Digestibility coefficients for sunflower meal based diet increased 15.76%, 17.70%, and 12.70% for crude protein, crude fat and apparent gross energy as compared to the reference diet, respectively at 1000 FTU kg-1 level. Again, maximum response of nutrient digestibility was recorded at the phytase level of 1000 FTU kg-1 diet. It was concluded that the phytase supplementation to sunflower meal based diet at 1000 FTU kg-1 level is optimum to release adequate chelated nutrients for maximum growth performance of C. mrigala fingerlings. Our results also suggested that phytase supplementation to sunflower meal based diet can help in the development of sustainable aquaculture by reducing the feed cost and nutrient discharge through feces in the aquatic ecosystem.

Keywords: sunflower meal, Cirrhinus mrigala, growth, nutrient digestibility, phytase

Procedia PDF Downloads 295
11585 Comparisons Growth Indices of Huso huso Prebroodstock Rearing Environments (Pond and Concrete Tank) for Production of Meat

Authors: Mohamad Ali Yazdani Sadati, Mir Hamed Sayed Hassani, Mahmoud Shakorian, Rezvanollah Kazemi, Bahareh Younes Haghighi

Abstract:

The efficiency of two rearing environments in culture and effect on growth performance of beluga (Huso huso) were investigated. In accordance two group of three years Huso huso ((Average weight of 9.93±0.305 and 10±0.5Kg) density (0.5 and 25 kg/m2)) with 3 replicate were stocked in two culture environment and reared with formulated diet including protein 43% and energy 22 MJ/ kg for 12 month from 2014.6.19 to 2015.9.10 A.D. In the end of rearing period, indices of Final weight, final biomass, daily growth and body percent weight fish reared in cement tank (20.1±0.6, 2016.66±5.77,0.112±0.00239 and 102.35±1.1kg) were significantly higher than fish reared in pond (17.4±0.4, 1746.66±7.2, 0.082±0.118 and 74.15±4.71 kg), respectively P < 0.05). Food efficiency ratio between two group was not significantly different (P > 0.05). The result of this study indicated that except of primary cost of building concrete tank, Huso huso prebroodstocking in cement tank is better than pond for result of increasing growth rate in culture rearing and more effective management.

Keywords: cement tank, earthen pond, Huso huso, prebroodstocking

Procedia PDF Downloads 313
11584 An Empirical Study on Growth, Trade, Foreign Direct Investment and Environment in India

Authors: Shilpi Tripathi

Abstract:

India has adopted the policy of economic reforms (Globalization, Liberalization, and Privatization) in 1991 which has reduced the trade barriers and investment restrictions and further increased the economy’s international trade, foreign direct investment (FDI) inflows and Gross Domestic Product (GDP) growth. The paper empirically studies the relationship between India’s international trades, GDP, FDI and environment during 1978-2012. The first part of the paper focuses on the background and trends of FDI, GDP, trade, and environment (CO2). The second part focuses on the literature regarding the relationship among all the variables. The last part of paper, we examine the results of empirical analysis like co integration and Granger causality between foreign trade, FDI inflows, GDP and CO2 since 1978. The findings of the paper revealed that there is only one uni- directional causality exists between GDP and trade. The direction of causality reveals that international trade is one of the major contributors to the economic growth (GDP). While, there is no causality found between GDP and FDI, FDI, and CO2 and International trade and CO2. The paper concludes with the policy recommendations that will ensure environmental friendly trade, investment and growth in India for future.

Keywords: international trade, foreign direct investment, GDP, CO2, co-integration, granger causality test

Procedia PDF Downloads 436
11583 Growth and Yield Response of Solanum retroflexum to Different Level of Salinity

Authors: Fhatuwani Herman Nndwambi, P. W. Mashela

Abstract:

Salinity is a major constraint limiting crop productivity. It has been predicted that by the year 2050, more than 50% of the arable land will be affected by salinity. Two similar salinity experiments were conducted in two seasons under greenhouse condition. Six levels of salinity plus control (viz; control, 2, 4, 8, 16, 32 and 64 % NaCl and CaCl2 at 3:1 ratio) were applied in a form of irrigation water in a single factor experiment arranged in a complete block design with 20 replications. Plant growth and yield were negatively affected by salinity treatments especially at the high levels of salinity. For example, our results suggest that the 32 and 64% of NaCl and CaCl2 treatment were too much for the plant to withstand as determined by reduced dry shoot mass, stem diameter and plant height in both seasons. On the other hand, stomatal conductance and chlorophyll content increased with an increased level of salinity.

Keywords: growth, salinity, season, yield

Procedia PDF Downloads 156
11582 Socioeconomic Values of Fertility in Islam

Authors: Mohamed Hamed Mohamed Ahmed Alameer

Abstract:

Population studies, essentially deals with the size, growth, and distribution of the population in a given area. Size, growth, and distribution are determined by three major factors, which are fertility mortality, and migration. Of these factors, fertility- as a number of live births a woman has actually had- is a potent socio-demographic force in vital process of population growth. So, fertility is a major component of population growth. It is one of the main determinants of population growth and has crucial role in population dynamic, because it measures the rate at which a population increased. In fact the levels of fertility are vary widely among nations, countries, geographic regions, ethnic, socio- economic groups, and religious groups. Fertility differential by religion have been empirically documented in a large numbers of countries. For instance, many researchers in developing and developed countries investigated the differential of fertility among Muslims and Non- Muslims. Most of them have found that fertility of Muslims is higher than fertility of non Muslims. And Muslims have a tendency for large families comparing to non- Muslims population. On the basis of this; Islam by it itself could play an important role in shaping attitudes and values of fertility, such as: sustainability of human kind, developmental reasons, religious Motivations, socioeconomic Motivations, and Psychological Motivation. Therefore, this paper investigates socio-economic values of fertility in Islam and compare it to Malthusian and neo Malthusian functionalists and conflict perspectives.

Keywords: islam, fertility, socioeconomic values, social sciences

Procedia PDF Downloads 467
11581 A Model of Condensation and Solidification of Metallurgical Vapor in a Supersonic Nozzle

Authors: Thien X. Dinh, Peter Witt

Abstract:

A one-dimensional model for the simulation of condensation and solidification of a metallurgical vapor in the mixture of gas during supersonic expansion is presented. In the model, condensation is based on critical nucleation and drop-growth theory. When the temperature falls below the supercooling point, all the formed liquid droplets in the condensation phase are assumed to solidify at an infinite rate. The model was verified with a Computational Fluid Dynamics simulation of magnesium vapor condensation and solidification. The obtained results are in reasonable agreement with CFD data. Therefore, the model is a promising, efficient tool for use in the design process for supersonic nozzles applied in mineral processes since it is faster than the CFD counterpart by an order of magnitude.

Keywords: condensation, metallurgical flow, solidification, supersonic expansion

Procedia PDF Downloads 55
11580 Microstructural Origin of Morphotropic Phase Boundary and Magnetic Ordering in the Multiferroic BiFeO3-PbTiO3

Authors: Bastola Narayan, Rajeev Ranjan

Abstract:

The morphotropic phase boundary (MPB) in the magnetoelectric (1-x)BiFeO3-(x)PbTiO3 has remained a matter of controversy ever since its discovery in 1964. The nature of the phase stabilized (single phase tetragonal or coexistence of tetragonal and rhombohedral phases) is very sensitive to the slight changes in the synthesis conditions. It thus remained an enigma as to what is the essential physical factor which is controlled by the slight difference in the synthesis conditions that finally determines, whether the phase formed will be single phase or coexistence of phases. In this paper, we demonstrate that the nature of the phase stabilized in this system is uniquely dependent on the crystallite size. The system is shown to exhibit features of abnormal grain growth (AGG) during sintering with abrupt increase in the grain size from ~ 1 micron to ~ 10 microns. The 10 micron grains exhibit pure tetragonal phase while the 1 micron grains exhibit coexistence of rhombohedral and tetragonal ferroelectric phases. The Rietveld analysis of powder neutron diffraction shows a paramagnetic to antiferromagnetic order transition inducing with crystalline size reduction from 10 micron to 1 micron. Since tetragonal phase is known to have paramagnetic order and rhombohedral phase has antiferromagnetic order in room temperature, this further strengthens our argument of size induced structure transition.

Keywords: size driven MPB, size driven magnetic ordering, abnormal grain growth, phase formation in BF-PT system

Procedia PDF Downloads 329
11579 Polymorphism in Myostatin Gene and Its Association with Growth Traits in Kurdi Sheep of Northern Khorasan

Authors: Masoud Alipanah, Sekineh Akbari, Gholamreza Dashab

Abstract:

Myostatin genes or factor 8 affecting on growth and making differentiation works (GDF8) as a moderator in the development of skeletal muscle inhibitor. If mutations occurs in the coding region of myostatin, alter its inhibitory role and the muscle growth is increased. In this study, blood samples were collected randomly from 60 Kurdish sheep in northern Khorasan and DNA extraction was performed using a modified salt. A fragment 337 bp from exon 3 myostatin gene and-specific primers by using a polymerase chain reaction (PCR) were amplified. In order to detect different forms of an allele at this locus HaeΙΙΙ restriction enzymes and PCR-RFLP analysis were used. Band patterns clarification was performed using agarose gel electrophoresis. The frequency of genotypes mm, Mm, and MM, were respectively detected, 0, 0.15 and 0.85. The allele frequency for alleles m and M, were respectively, 0.07 and 0.93. The statistical analyses indicated that m allele was significantly associated with body weight. The results of this study suggest that the Myostatin gene possibly is a candidate gene that affects growth traits in Kurdish sheep.

Keywords: GDF8 gene, Kurdi Sheep of Northern Khorasan, polymorphism, weight traits

Procedia PDF Downloads 336
11578 The Effect of Different Metal Nanoparticles on Growth and Survival of Pseudomonas syringae Bacteria

Authors: Omar Alhamd, Peter A. Thomas, Trevor J. Greenhough, Annette K. Shrive

Abstract:

The Pseudomonas syringae species complex includes many plant pathogenic strains with highly specific interactions with varied host species and cultivars. The rapid spread of these bacteria over the last ten years has become a cause for concern. Nanoparticles have previously shown promise in microbiological action. We have therefore investigated in vitro and in vivo the effects of different types and sizes of nanoparticles in order to provide quantitative information about their effect on the bacteria. The effects of several different nanoparticles against several bacteria strains were investigated. The effect of NP on bacterial growth was studied by measuring the optical density, biochemical and nutritional tests, and transmission electron microscopy (TEM) to determine the shape and size of NP. Our results indicate that their effects varied, with either a negative or a positive impact on both bacterial and plant growth. Additionally, the methods of exposure to nanoparticles have a crucial role in accumulation, translocation, growth response and bacterial growth. The results of our studies on the behaviour and effects of nanoparticles in model plants showed. Cerium oxide (CeO₂) and silver (Ag) NP showed significant antibacterial activity against several pathogenic bacteria. It was found that titanium nanoparticles (TiO₂) can have either a negative or a positive impact, according to concentration and size. It is also thought that environmental conditions can have a major influence on bacterial growth. Studies were therefore also carried out under some environmental stress conditions to test bacterial survival and to assess bacterial virulence. All results will be presented including information about the effects of different nanoparticles on Pseudomonas syringae bacteria.

Keywords: plant microbiome, nanoparticles, 16S rRNA gene sequencing, bacterial survival

Procedia PDF Downloads 199
11577 Modeling and Temperature Control of Water-cooled PEMFC System Using Intelligent Algorithm

Authors: Chen Jun-Hong, He Pu, Tao Wen-Quan

Abstract:

Proton exchange membrane fuel cell (PEMFC) is the most promising future energy source owing to its low operating temperature, high energy efficiency, high power density, and environmental friendliness. In this paper, a comprehensive PEMFC system control-oriented model is developed in the Matlab/Simulink environment, which includes the hydrogen supply subsystem, air supply subsystem, and thermal management subsystem. Besides, Improved Artificial Bee Colony (IABC) is used in the parameter identification of PEMFC semi-empirical equations, making the maximum relative error between simulation data and the experimental data less than 0.4%. Operation temperature is essential for PEMFC, both high and low temperatures are disadvantageous. In the thermal management subsystem, water pump and fan are both controlled with the PID controller to maintain the appreciate operation temperature of PEMFC for the requirements of safe and efficient operation. To improve the control effect further, fuzzy control is introduced to optimize the PID controller of the pump, and the Radial Basis Function (RBF) neural network is introduced to optimize the PID controller of the fan. The results demonstrate that Fuzzy-PID and RBF-PID can achieve a better control effect with 22.66% decrease in Integral Absolute Error Criterion (IAE) of T_st (Temperature of PEMFC) and 77.56% decrease in IAE of T_in (Temperature of inlet cooling water) compared with traditional PID. In the end, a novel thermal management structure is proposed, which uses the cooling air passing through the main radiator to continue cooling the secondary radiator. In this thermal management structure, the parasitic power dissipation can be reduced by 69.94%, and the control effect can be improved with a 52.88% decrease in IAE of T_in under the same controller.

Keywords: PEMFC system, parameter identification, temperature control, Fuzzy-PID, RBF-PID, parasitic power

Procedia PDF Downloads 77
11576 Evaluation of Wheat Varieties on Water Use Efficiency under Staggering Sowing times and Variable Irrigation Regimes under Timely and Late Sown Conditions

Authors: Vaibhav Baliyan, Shweta Mehrotra, S. S. Parihar

Abstract:

The agricultural productivity is challenged by climate change and depletion in natural resources, including water and land, which significantly affects the crop yield. Wheat is a thermo-sensitive crop and is prone to heat stress. High temperature decreases crop duration, yield attributes, and, subsequently, grain yield and biomass production. Terminal heat stress affects grain filling duration, grain yield, and yield attributes, thus causing a reduction in wheat yield. A field experiment was conducted at Indian Agricultural Research Institute, New Delhi, for two consecutive rabi seasons (2017-18 and 2018-19) on six varieties of wheat (early sown - HD 2967, HD 3086, HD 2894 and late sown - WR 544, HD 3059, HD 3117 ) with three moisture regimes (100%, 80%, and 60% ETc, and no irrigation) and six sowing dates in three replications to investigate the effect of different moisture regimes and sowing dates on growth, yield and water use efficiency of wheat for development of best management practices for mitigation of terminal heat stress. HD3086 and HD3059 gave higher grain yield than others under early sown and late sown conditions, respectively. Maximum soil moisture extraction was recorded from 0-30 cm soil depth across the sowing dates, irrigation regimes, and varieties. Delayed sowing resulted in reducing crop growth period and forced maturity, in turn, led to significant deterioration in all the yield attributing characters and, there by, reduction in yield, suggesting that terminal heat stress had greater impact on yield. Early sowing and irrigation at 80% ETc resulted in improved growth and yield attributes and water use efficiency in both the seasons and helped to some extent in reducing the risk of terminal heat stress of wheat grown on sandy loam soils of semi-arid regions of India.

Keywords: sowing, irrigation, yield, heat stress

Procedia PDF Downloads 83
11575 Synthesis and Characterization of Ferromagnetic Ni-Cu Alloys for Thermal Rectification Applications

Authors: Josue Javier Martinez Flores, Jaime Alvarez Quintana

Abstract:

A thermal rectifier consists of a device which can load a different heat flow which depends on the direction of that flow. That device is a thermal diode. It is well known that heat transfer in solids basically depends on the electrical, magnetic and crystalline nature of materials via electrons, magnons and phonons as thermal energy carriers respectively. In the present research, we have synthesized polycrystalline Ni-Cu alloys and identified the Curie temperatures; and we have observed that by way of secondary phase transitions, it is possible manipulate the heat conduction in solid state thermal diodes via transition temperature. In this sense, we have succeeded in developing solid state thermal diodes with a control gate through the Curie temperature via the activation and deactivation of magnons in Ni-Cu ferromagnetic alloys at room temperature. Results show thermal diodes with thermal rectification factors up to 1.5. Besides, the performance of the electrical rectifiers can be controlled by way of alloy Cu content; hence, lower Cu content alloys present enhanced thermal rectifications factors than higher ones.

Keywords: thermal rectification, Curie temperature, ferromagnetic alloys, magnons

Procedia PDF Downloads 239
11574 Ecological Effect on Aphid Population in Safflower Crop

Authors: Jan M. Mari

Abstract:

Safflower is a renowned drought tolerant oil seed crop. Previously its flowers were used for cooking and herbal medicines in China and it was cultivated by small growers for his personal needs of oil. A field study was conducted at experimental field, faculty of crop protection, Sindh Agricultural University Tandojam, during winter, 2012-13, to observe ecological effect on aphid population in safflower crop. Aphid population gradually increased with the growth of safflower. It developed with maximum aphid per leaf on 3rd week of February and it decreased in March as crop matured. A non-significant interaction was found with temperature of aphid, zigzag and hoverfly, respectively and a highly significant interaction with temperature was found with 7-spotted, lacewing, 9-spotted, and Brumus, respectively. The data revealed the overall mean population of zigzag was highest, followed by 9-spotted, 7-spotted, lace wing, hover fly and Brumus, respectively. In initial time the predator and prey ratio indicated that there was not a big difference between predator and prey ratio. After January 1st, the population of aphid increased suddenly until 18th February and it established a significant difference between predator prey ratios. After that aphid population started decreasing and it affected ratio between pest and predators. It is concluded that biotic factors, 7-spotted, zigzag, 9-spotted Brumus and lacewing exhibited a strong and positive correlation with aphid population. It is suggested that aphid pest should be monitored regularly and before reaching economic threshold level augmentation of natural enemies may be managed.

Keywords: aphid, ecology, population, safflower

Procedia PDF Downloads 256
11573 Interactive of Calcium, Potassium, and Dynamic Unequal Salt Distribution on the Growth of Tomato in Hydroponic System

Authors: Mohammad Koushafar, Amir Hossein Khoshgoftarmanesh

Abstract:

Due to water shortage, application of saline water for irrigation is an urgent requirement in agriculture. Thus, this study, the effect of calcium and potassium application as additive in saline root media for reduce salinity adverse effects was investigated on tomato growth in a hydroponic system with unequal distribution of salts in the root media, which was divided into two equal parts containing full Johnson nutrient solution and 40 mM NaCl solution, alone or in combination with KCl (6 mM), CaCl2 (4 mM), K+Ca (3+2 mM) or half-strength Johnson nutrient solution. The root splits were exchanged every 7 days. Results showed that addition of calcium, calcium-potassium and nutrition elements equivalent to half the concentration of Johnson formula to the saline-half of culture media minimized the reduction in plant growth caused by NaCl, although the addition of potassium to culture media was not effective. The greatest concentration of sodium was observed at the shoot of treatments which had the smallest growth. According to the results of this study, in the case of dynamic and non-uniform distribution of salts in the root media, by the addition of additive to the saline solution, it would be possible to use of saline water with no significant growth reduction.

Keywords: calcium, hydroponic, local salinity, potassium, salin water, tomato

Procedia PDF Downloads 438
11572 Time/Temperature-Dependent Finite Element Model of Laminated Glass Beams

Authors: Alena Zemanová, Jan Zeman, Michal Šejnoha

Abstract:

The polymer foil used for manufacturing of laminated glass members behaves in a viscoelastic manner with temperature dependence. This contribution aims at incorporating the time/temperature-dependent behavior of interlayer to our earlier elastic finite element model for laminated glass beams. The model is based on a refined beam theory: each layer behaves according to the finite-strain shear deformable formulation by Reissner and the adjacent layers are connected via the Lagrange multipliers ensuring the inter-layer compatibility of a laminated unit. The time/temperature-dependent behavior of the interlayer is accounted for by the generalized Maxwell model and by the time-temperature superposition principle due to the Williams, Landel, and Ferry. The resulting system is solved by the Newton method with consistent linearization and the viscoelastic response is determined incrementally by the exponential algorithm. By comparing the model predictions against available experimental data, we demonstrate that the proposed formulation is reliable and accurately reproduces the behavior of the laminated glass units.

Keywords: finite element method, finite-strain Reissner model, Lagrange multipliers, generalized Maxwell model, laminated glass, Newton method, Williams-Landel-Ferry equation

Procedia PDF Downloads 423
11571 Historical Tree Height Growth Associated with Climate Change in Western North America

Authors: Yassine Messaoud, Gordon Nigh, Faouzi Messaoud, Han Chen

Abstract:

The effect of climate change on tree growth in boreal and temperate forests has received increased interest in the context of global warming. However, most studies were conducted in small areas and with a limited number of tree species. Here, we examined the height growth responses of seventeen tree species to climate change in Western North America. 37009 stands from forest inventory databases in Canada and USA with varying establishment date were selected. Dominant and co-dominant trees from each stand were sampled to determine top tree height at 50 years breast height age. Height was related to historical mean annual and summer temperatures, annual and summer Palmer Drought Severity Index, tree establishment date, slope, aspect, soil fertility as determined by the rate of carbon organic matter decomposition (carbon/nitrogen), geographic locations (latitude, longitude, and elevation), species range (coastal, interior, and both ranges), shade tolerance and leaf form (needle leaves, deciduous needle leaves, and broadleaves). Climate change had mostly a positive effect on tree height growth. The results explained 62.4% of the height growth variance. Since 1880, height growth increase was greater for coastal, high shade tolerant, and broadleaf species. Height growth increased more on steep slopes and high soil fertility soils. Greater height growth was mostly observed at the leading range and upward. Conversely, some species showed the opposite pattern probably due to the increase of drought (coastal Mediterranean area), precipitation and cloudiness (Alaska and British Columbia) and peculiarity (higher latitudes-lower elevations and vice versa) of western North America topography. This study highlights the role of the species ecological amplitude and traits, and geographic locations as the main factors determining the growth response and its magnitude to the recent global climate change.

Keywords: Height growth, global climate change, species range, species characteristics, species ecological amplitude, geographic locations, western North America

Procedia PDF Downloads 179
11570 Biocontrol of Fusarium Crown and Root Rot and Enhancement of Tomato Solanum lycopersicum L. Growth Using Solanum linnaeanum L. Extracts

Authors: Ahlem Nefzi, Rania Aydi Ben Abdallah, Hayfa Jabnoun-Khiareddine, Nawaim Ammar, Sined Medimagh-Saidana, Mejda Daami-Remadi

Abstract:

In the present study, leaf, stem, and fruit aqueous extracts of native wild Solanum linnaeanum L. were screened for their ability to suppress Fusarium Crown and Root Rot disease and to enhance tomato (Solanum lycopersicum L.) growth under greenhouse conditions. Leaf extract used at 30% w/v was the most effective in reducing leaf and root damage index by 92.3% and the extent of vascular discoloration by 97.56% compared to Fusarium oxyxporum f. sp radicis lycopersici -inoculated and untreated control. A significant promotion of growth parameters (root length, shoot height, root and shoot biomass and stem diameter) was recorded on tomato cv. Rio Grande seedlings by 40.3-94.1% as compared to FORL inoculated control and by 9.6-88.8% over pathogen-free control. All S. linnaeanum aqueous extracts tested significantly stimulated the germination by 10.2 to 80.1% relative to the untreated control. FORL mycelial growth, assessed using the poisoned food technique, varied depending on plant organs, extracts, and concentrations used. Butanolic extracts were the most active, leading to 60.81% decrease in FORL mycelial growth. HPLC analysis of butanolic extract revealed the presence of thirteen phenolic compounds. Thus, S. linnaeanum can be explored as a potential natural source of antifungal and biofertilizing compounds.

Keywords: antifungal activity, HPLC-MS analysis, Fusarium oxysporum f. sp. radicis-lycopersici, tomato growth

Procedia PDF Downloads 154
11569 Moderation in Temperature Dependence on Counter Frictional Coefficient and Prevention of Wear of C/C Composites by Synthesizing SiC around Surface and Internal Vacancies

Authors: Noboru Wakamoto, Kiyotaka Obunai, Kazuya Okubo, Toru Fujii

Abstract:

The aim of this study is to moderate the dependence of counter frictional coefficient on temperature between counter surfaces and to reduce the wear of C/C composites at low temperature. To modify the C/C composites, Silica (SiO2) powders were added into phenolic resin for carbon precursor. The preform plate of the precursor of C/C composites was prepared by conventional filament winding method. The C/C composites plates were obtained by carbonizing preform plate at 2200 °C under an argon atmosphere. At that time, the silicon carbides (SiC) were synthesized around the surfaces and the internal vacancies of the C/C composites. The frictional coefficient on the counter surfaces and specific wear volumes of the C/C composites were measured by our developed frictional test machine like pin-on disk type. The XRD indicated that SiC was synthesized in the body of C/C composite fabricated by current method. The results of friction test showed that coefficient of friction of unmodified C/C composites have temperature dependence when the test condition was changed. In contrast, frictional coefficient of the C/C composite modified with SiO2 powders was almost constant at about 0.27 when the temperature condition was changed from Room Temperature (RT) to 300 °C. The specific wear rate decreased from 25×10-6 mm2/N to 0.1×10-6 mm2/N. The observations of the surfaces after friction tests showed that the frictional surface of the modified C/C composites was covered with a film produced by the friction. This study found that synthesizing SiC around surface and internal vacancies of C/C composites was effective to moderate the dependence on the frictional coefficient and reduce to the abrasion of C/C composites.

Keywords: C/C composites, friction coefficient, wear, SiC

Procedia PDF Downloads 339
11568 Role of Zinc in Catch-Up Growth of Low-Birth Weight Neonates

Authors: M. A. Abdel-Wahed, Nayera Elmorsi Hassan, Safaa Shafik Imam, Ola G. El-Farghali, Khadija M. Alian

Abstract:

Low-birth-weight is a challenging public health problem. Aim: to clarify role of zinc on enhancing catch-up growth of low-birth-weight and find out a proposed relationship between zinc effect on growth and the main growth hormone mediator, IGF-1. Methods: Study is a double-blind-randomized-placebo-controlled trial conducted on low-birth-weight-neonates delivered at Ain Shams University Maternity Hospital. It comprised 200 Low-birth-weight-neonates selected from those admitted to NICU. Neonates were randomly allocated into one of the following two groups: group I: low-birth-weight; AGA or SGA on oral zinc therapy at dose of 10 mg/day; group II: Low-birth-weight; AGA or SGA on placebo. Anthropometric measurements were taken including birth weight, length; head, waist, chest, mid-upper arm circumferences, triceps and sub-scapular skin-fold thicknesses. Results: At 12-month-old follow-up visit, mean weight, length; head (HC), waist, chest, mid-upper arm circumferences and triceps; also, infant’s proportions had values ≥ 10th percentile for weight, length and HC were significantly higher among infants of group I when compared to those of group II. Oral zinc therapy was associated with 24.88%, 25.98% and 19.6% higher proportion of values ≥ 10th percentile regarding weight, length and HC at 12-month-old visit, respectively [NNT = 4, 4 and 5, respectively]. Median IGF-1 levels measured at 6 months were significantly higher in group I compared to group II (median (range): 90 (19 – 130) ng/ml vs. 74 (21 – 130) ng/ml, respectively, p=0.023). Conclusion: Oral zinc therapy in low-birth-weight neonates was associated with significantly more catch-up growth at 12-months-old and significantly higher serum IGF-1 at 6-month-old.

Keywords: low-birth-weight, zinc, catch-up growth, neonates

Procedia PDF Downloads 412
11567 The Role of Waqf Forestry for Sustainable Economic Development: A Panel Logit Analysis

Authors: Patria Yunita

Abstract:

Kuznets’ environmental curve analysis suggests sacrificing economic development to reduce environmental problems. However, we hope to achieve sustainable economic development. In this case, Islamic social finance, especially that of waqf in Indonesia, can be used as a solution to bridge the problem of environmental damage to the sustainability of economic development. The Panel Logit Regression method was used to analyze the probability of increasing economic growth and the role of waqf in the environmental impact of CO₂ emissions. This study uses panel data from 33 Indonesian provinces. The data used were the National Waqf Index, Forest Area, Waqf Land Area, Growth Rate of Regional Gross Domestic Product (YoY), and CO₂ Emissions for 2018-2022. Data were obtained from the Indonesian Waqf Board, Climate World Data, the Ministry of the Environment, and the Bank of Indonesia. The results prove that CO₂ emissions have a negative effect on regional economic growth and that waqf governance in the waqf index has a positive effect on regional economic growth in 33 provinces.

Keywords: waqf, CO₂ emissions, panel logit analysis, sustainable economic development

Procedia PDF Downloads 23
11566 Investigation on the Structure of Temperature-Responsive N-isopropylacrylamide Microgels Containing a New Hydrophobic Crosslinker

Authors: G. Roshan Deen, J. S. Pedersen

Abstract:

Temperature-responsive poly(N-isopropyl acrylamide) PNIPAM microgels crosslinked with a new hydrophobic chemical crosslinker was prepared by surfactant-mediated precipitation emulsion polymerization. The temperature-responsive property of the microgel and the influence of the crosslinker on the swelling behaviour was studied systematically by light scattering and small-angle X-ray scattering (SAXS). The radius of gyration (Rg) and the hydrodynamic radius (Rh) of the microgels decreased with increase in temperature due to the volume phase transition from a swollen to a collapsed state. The ratio of Rg/Rh below the transition temperature was lower than that of hard-spheres due to the lower crosslinking density of the microgels. The SAXS data was analysed by a model in which the microgels were modelled as core-shell particles with a graded interface. The model at intermediate temperatures included a central core and a more diffuse outer layer describing pending polymer chains with a low crosslinking density. In the fully swollen state, the microgels were modelled with a single component with a broad graded surface. In the collapsed state they were modelled as homogeneous and relatively compact particles. The polymer volume fraction inside the microgel was also derived based on the model and was found to increase with increase in temperature as a result of collapse of the microgel to compact particles. The polymer volume fraction in the core of the microgel in the collapsed state was about 60% which is higher than that of similar microgels crosslinked with hydrophilic and flexible cross-linkers.

Keywords: microgels, SAXS, hydrophobic crosslinker, light scattering

Procedia PDF Downloads 421
11565 Nutritional Evaluation of Sea Buckthorn “Hippophae rhamnoides” Berries and the Pharmaceutical Potential of the Fermented Juice

Authors: Sobhy A. El-Sohaimy, Mohamed G. Shehata, Ashwani Mathur, Amira G. Darwish, Nourhan M. Abd El-Aziz, Pammi Gauba, Pooja Upadhyay

Abstract:

Sea buckthorn is a temperate bush plant native to Asian and European countries, explored across the world in traditional medicine to treat various diseases due to the presence of an exceptionally high content of phenolics, flavonoids and antioxidants. In addition to the evaluation of nutrients and active compounds, the focus of the present work was to assess the optimal levels for L. plantarum RM1 growth by applying response surface methodology (RSM), and to determine the impact of juice fermentation on antioxidant, anti-hypertension and anticancer activity, as well as on organoleptic properties. Sea buckthorn berries were shown to contain good fiber content (6.55%, 25 DV%), high quality of protein (3.12%, 6.24 DV%) containing: histidine, valine, threonine, leucine and lysine (with AAS 24.32, 23.66, 23.09, 23.05 and 21.71%, respectively), and 4.45% sugar that pro- vides only 79 calories. Potassium was shown to be the abundant mineral content (793.43%, 22.66 DV), followed by copper and phosphorus (21.81 and 11.07 DV%, respectively). Sea buckthorn juice exhibited a rich phenolic, flavonoid and carotenoid content (283.58, 118.42 and 6.5 mg/g, respec- tively), in addition to a high content of vitamin C (322.33 mg/g). The HPLC profile indicated that benzoic acid is the dominant phenolic compound in sea buckthorn berries (3825.90 mg/kg). Antiox- idant potentials (DPPH and ABTS) of sea buckthorn showed higher inhibition than ascorbic acid. Antimicrobial potentials were most pronounced against Escherichia coli BA12296 (17.46 mm). The probiotic growth was 8.5 log cfu/mL, with juice concentration, inoculum size and temperature as the main contributors to probiotic growth with a 95% confidence level. Fermentation of sea buck- thorn juice with L. plantarum RM1 enhanced the functional phenolic and flavonoid content, as well as antioxidant and antimicrobial activities. The fermentation with L. plantarum RM1 enhanced the anti-hypertension and anticancer properties of the sea buckthorn juice and gained consumers’ sensorial overall acceptance.

Keywords: sea buckthorn juice, L. plantarum RM1, fermentation, antioxidant, antimicrobial, angiotensin converting enzyme inhibition

Procedia PDF Downloads 91
11564 Growth and Laying Performance of Commercial Hens Fed with Varying Levels of Trichanthera gigantea (Nees.) Leaf Meal

Authors: Carmel Khrisna Wong Moreno, Dinah M. Espina

Abstract:

The increasing price of feed ingredients has prompted farmers to seek feasible feed alternatives like the utilization of locally-grown protein-rich feedstuff which is cheaper but gives a positive result in poultry production. Trichanthera gigantea, a fodder tree which is an excellent alternative as feed ingredient in the Philippines has now gained popularity as feed supplement. This study was conducted to determine the growth and laying performance of commercial hens fed with varying levels of Trichanthera gigantea leaf meal. The incorporation of Trichanthera gigantea leaf meal at 5%, 10%, and 15% into the diet of commercial hens did not affect the growth and laying performance. Results of the study revealed that the weight gain of the birds fed with Trichanthera gigantea supplemented diets was not significantly different with the control (100% commercial layer mash). The voluntary feed intake, feed conversion ratio, weekly average egg weight and egg production of the commercial hens fed with T. gigantea leaf meal supplemented diets were not significantly different from the control. Results of the study showed that the supplementation of Trichanthera gigantea leaf meal of up to 15% into the diets of commercial hens is highly acceptable since it does not affect the growth and laying performance of the birds. In addition, it would mean a 15% savings in production cost from commercial feeds.

Keywords: egg production, growth, laying performance, trichanthera gigantea (nees)

Procedia PDF Downloads 413
11563 Performance Evaluation of Thermosiphon Based Solar Water Heater in India

Authors: Dnyandip K. Bhamare, Manish K Rathod, Jyotirmay Banerjee

Abstract:

This paper aims to study performance of a thermosiphon solar water heating system with the help of the proposed analytical model. This proposed model predicts the temperature and mass flow rate in a thermosiphon solar water heating system depending on radiation intensity and ambient temperature. The performance of the thermosiphon solar water heating system is evaluated in the Indian context. For this, eight cities in India are selected considering radiation intensity and geographical positions. Predicted performance at various cities reveals the potential for thermosiphon solar water in India.

Keywords: solar water heater, collector outlet temperature, thermosyphon, India

Procedia PDF Downloads 249
11562 Preparation and Characterization of Supported Metal Nanocrystal Using Simple Heating Method for Renewable Diesel Synthesis from Nyamplung Oil (Calophyllum inophyllum Oil)

Authors: Aida Safiera, Andika Dwi Rubyantoro, Muhammad Bagus Prakasa

Abstract:

Indonesia’s needs of diesel oil each year are increasing and getting urge. However, that problems are not supported by the amount of oil production that still low and also influenced by the fact of oil reserve is reduced. Because of that, the government prefers to import from other countries than fulfill the needs of diesel. To anticipate that problem, development of fuel based on renewable diesel is started. Renewable diesel is renewable alternative fuel that is hydrocarbon derivative from decarbonylation of non-edible oil. Indonesia is rich with natural resources, including nyamplung oil (Calophyllum inophyllum oil) and zeolite. Nyamplung oil (Calophyllum inophyllum oil) has many stearic acids which are useful on renewable diesel synthesis meanwhile zeolite is cheap. Zeolite is many used on high temperature reaction and cracking process on oil industry. Zeolite also has advantages which are a high crystallization, surface area and pores. In this research, the main focus that becomes our attention is on preparation and characterization of metal nanocrystal. Active site that used in this research is Nickel Molybdenum (NiMo). The advantage of nanocrystal with nano scale is having larger surface area. The synthesis of metal nanocrystal will be done with conventional preparation modification method that is called simple heating. Simple heating method is a metal nanocrystal synthesis method using continuous media which is polymer liquid. This method is a simple method and produces a small particles size in a short time. Influence of metal nanocrystal growth on this method is the heating profile. On the synthesis of nanocrystal, the manipulated variables are temperature and calcination time. Results to achieve from this research are diameter size on nano scale (< 100 nm) and uniform size without any agglomeration. Besides that, the conversion of synthesis of renewable diesel is high and has an equal specification with petroleum diesel. Catalyst activities are tested by FT-IR and GC-TCD on decarbonylation process with a pressure 15 bar and temperature 375 °C. The highest conversion from this reaction is 35% with selectivity around 43%.

Keywords: renewable diesel, simple heating, metal nanocrystal, NiMo, zeolite

Procedia PDF Downloads 225
11561 Interannual Variations in Snowfall and Continuous Snow Cover Duration in Pelso, Central Finland, Linked to Teleconnection Patterns, 1944-2010

Authors: M. Irannezhad, E. H. N. Gashti, S. Mohammadighavam, M. Zarrini, B. Kløve

Abstract:

Climate warming would increase rainfall by shifting precipitation falling form from snow to rain, and would accelerate snow cover disappearing by increasing snowpack. Using temperature and precipitation data in the temperature-index snowmelt model, we evaluated variability of snowfall and continuous snow cover duration(CSCD) during 1944-2010 over Pelso, central Finland. MannKendall non-parametric test determined that annual precipitation increased by 2.69 (mm/year, p<0.05) during the study period, but no clear trend in annual temperature. Both annual rainfall and snowfall increased by 1.67 and 0.78 (mm/year, p<0.05), respectively. CSCD was generally about 205 days from 14 October to 6 May. No clear trend was found in CSCD over Pelso. Spearman’s rank correlation showed most significant relationships of annual snowfall with the East Atlantic (EA) pattern, and CSCD with the East Atlantic/West Russia (EA/WR) pattern. Increased precipitation with no warming temperature caused the rainfall and snowfall to increase, while no effects on CSCD.

Keywords: variations, snowfall, snow cover duration, temperature-index snowmelt model, teleconnection patterns

Procedia PDF Downloads 220
11560 Dielectric Properties in Frequency Domain of Main Insulation System of Printed Circuit Board

Authors: Xize Dai, Jian Hao, Claus Leth Bak, Gian Carlo Montanari, Huai Wang

Abstract:

Printed Circuit Board (PCB) is a critical component applicable to power electronics systems, especially for high-voltage applications involving several high-voltage and high-frequency SiC/GaN devices. The insulation system of PCB is facing more challenges from high-voltage and high-frequency stress that can alter the dielectric properties. Dielectric properties of the PCB insulation system also determine the electrical field distribution that correlates with intrinsic and extrinsic aging mechanisms. Hence, investigating the dielectric properties in the frequency domain of the PCB insulation system is a must. The paper presents the frequency-dependent, temperature-dependent, and voltage-dependent dielectric properties, permittivity, conductivity, and dielectric loss tangents of PCB insulation systems. The dielectric properties mechanisms associated with frequency, temperature, and voltage are revealed from the design perspective. It can be concluded that the dielectric properties of PCB in the frequency domain show a strong dependence on voltage, frequency, and temperature. The voltage-, frequency-, and temperature-dependent dielectric properties are associated with intrinsic conduction behavior and polarization patterns from the perspective of dielectric theory. The results may provide some reference for the PCB insulation system design in high voltage, high frequency, and high-temperature power electronics applications.

Keywords: electrical insulation system, dielectric properties, high voltage and frequency, printed circuit board

Procedia PDF Downloads 82
11559 Performance Analysis of Solar Assisted Air Condition Using Carbon Dioxide as Refrigerant

Authors: Olusola Bamisile, Ferdinard Dika, Mustafa Dagbasi, Serkan Abbasoglu

Abstract:

The aim of this study was to model an air conditioning system that brings about effective cooling and reduce fossil fuel consumption with solar energy as an alternative source of energy. The objective of the study is to design a system with high COP, low usage of electricity and to integrate solar energy into AC systems. A hybrid solar assisted air conditioning system is designed to produce 30kW cooling capacity and R744 (CO₂) is used as a refrigerant. The effect of discharge pressure on the performance of the system is studied. The subcool temperature, evaporating temperature (5°C) and suction gas return temperature (12°C) are kept constant for the four different discharge pressures considered. The cooling gas temperature is set at 25°C, and the discharge pressure includes 80, 85, 90 and 95 bars. Copeland Scroll software is used for the simulation. A pressure-enthalpy graph is also used to deduce each enthalpy point while numerical methods were used in making other calculations. From the result of the study, it is observed that a higher COP is achieved with the use of solar assisted systems. As much as 46% of electricity requirements will be save using solar input at compressor stage.

Keywords: air conditioning, solar energy, performance, energy saving

Procedia PDF Downloads 136
11558 Effect of Different Media and Mannitol Concentrations on Growth and Development of Vandopsis lissochiloides (Gaudich.) Pfitz. under Slow Growth Conditions

Authors: J. Linjikao, P. Inthima, A. Kongbangkerd

Abstract:

In vitro conservation of orchid germplasm provides an effective technique for ex situ conservation of orchid diversity. In this study, an efficient protocol for in vitro conservation of Vandopsis lissochiloides (Gaudich.) Pfitz. plantlet under slow growth conditions was investigated. Plantlets were cultured on different strength of Vacin and Went medium (½VW and ¼VW) supplemented with different concentrations of mannitol (0, 2, 4, 6 and 8%), sucrose (0 and 3%) and 50 g/L potato extract, 150 mL/L coconut water. The cultures were incubated at 25±2 °C and maintained under 20 µmol/m2s light intensity for 24 weeks without subculture. At the end of preservation period, the plantlets were subcultured to fresh medium for growth recovery. The results found that the highest leaf number per plantlet could be observed on ¼VW medium without adding sucrose and mannitol while the highest root number per plantlet was found on ½VW added with 3% sucrose without adding mannitol after 24 weeks of in vitro storage. The results showed that the maximum number of leaves (5.8 leaves) and roots (5.0 roots) of preserved plantlets were produced on ¼VW medium without adding sucrose and mannitol. Therefore, ¼VW medium without adding sucrose and mannitol was the best minimum growth conditions for medium-term storage of V. lissochiloides plantlets.

Keywords: preservation, vandopsis, germplasm, in vitro

Procedia PDF Downloads 137