Search results for: deep soil mixing column
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6334

Search results for: deep soil mixing column

5284 Employing Remotely Sensed Soil and Vegetation Indices and Predicting ‎by Long ‎Short-Term Memory to Irrigation Scheduling Analysis

Authors: Elham Koohikerade, Silvio Jose Gumiere

Abstract:

In this research, irrigation is highlighted as crucial for improving both the yield and quality of ‎potatoes due to their high sensitivity to soil moisture changes. The study presents a hybrid Long ‎Short-Term Memory (LSTM) model aimed at optimizing irrigation scheduling in potato fields in ‎Quebec City, Canada. This model integrates model-based and satellite-derived datasets to simulate ‎soil moisture content, addressing the limitations of field data. Developed under the guidance of the ‎Food and Agriculture Organization (FAO), the simulation approach compensates for the lack of direct ‎soil sensor data, enhancing the LSTM model's predictions. The model was calibrated using indices ‎like Surface Soil Moisture (SSM), Normalized Vegetation Difference Index (NDVI), Enhanced ‎Vegetation Index (EVI), and Normalized Multi-band Drought Index (NMDI) to effectively forecast ‎soil moisture reductions. Understanding soil moisture and plant development is crucial for assessing ‎drought conditions and determining irrigation needs. This study validated the spectral characteristics ‎of vegetation and soil using ECMWF Reanalysis v5 (ERA5) and Moderate Resolution Imaging ‎Spectrometer (MODIS) data from 2019 to 2023, collected from agricultural areas in Dolbeau and ‎Peribonka, Quebec. Parameters such as surface volumetric soil moisture (0-7 cm), NDVI, EVI, and ‎NMDI were extracted from these images. A regional four-year dataset of soil and vegetation moisture ‎was developed using a machine learning approach combining model-based and satellite-based ‎datasets. The LSTM model predicts soil moisture dynamics hourly across different locations and ‎times, with its accuracy verified through cross-validation and comparison with existing soil moisture ‎datasets. The model effectively captures temporal dynamics, making it valuable for applications ‎requiring soil moisture monitoring over time, such as anomaly detection and memory analysis. By ‎identifying typical peak soil moisture values and observing distribution shapes, irrigation can be ‎scheduled to maintain soil moisture within Volumetric Soil Moisture (VSM) values of 0.25 to 0.30 ‎m²/m², avoiding under and over-watering. The strong correlations between parcels suggest that a ‎uniform irrigation strategy might be effective across multiple parcels, with adjustments based on ‎specific parcel characteristics and historical data trends. The application of the LSTM model to ‎predict soil moisture and vegetation indices yielded mixed results. While the model effectively ‎captures the central tendency and temporal dynamics of soil moisture, it struggles with accurately ‎predicting EVI, NDVI, and NMDI.‎

Keywords: irrigation scheduling, LSTM neural network, remotely sensed indices, soil and vegetation ‎monitoring

Procedia PDF Downloads 43
5283 Effect of Social Stress on Behavioural and Physiological Responses and its Assessment by non-Invasive Method in Zebu Cattle

Authors: Baishali Deb, Hari Om Pandey, Shrilla Elangbam, Mukesh Singh, Ayon Tarafdar, A. K. S. Tomar, A. K. Pandey, Triveni Dutt

Abstract:

The goal of the present investigation was to determine the impact of social stress on behavioural characteristics, physiological responses, and haemato-biochemical indicators under various social environments in Tharparkar cattle. Serum cortisol and faecal cortisol metabolites analysis were used to determine the stress level of Tharparkar cattle. Social isolation and social mixing were the two different social circumstances used to evaluate the animals. In both the experiments i.e., social isolation and social mixing, the lying period of animals decreased significantly (p<0.05) while standing period significantly (p<0.05) increased. Frequency and duration of activities like idling, walking, exploration, oral manipulation, and elimination increased significantly (p<0.05) in Tharparkar cattle after being subjected to social isolation and social mixing. Time spent in grooming (self-grooming and allo-grooming) in respect to social isolation significantly increased during isolation and post-reunion, whereas there was a significant (p<0.05) decline in the grooming behaviour especially allo-grooming during mixing of the animals. Feeding and rumination time also decreased significantly (p<0.05) in animals during both the experiments. Physiological parameters such as respiration rate, heart rate and pulse rate increased during the treatment periods. There was no significant difference in the haematological parameters for both the experiments. There was significant (p<0.05) increase in serum cortisol and faecal cortisol metabolites (FCM) concentration in animals subjected to social stress. Therefore, it can be concluded that social stress strongly impacts the behaviour and physiological parameters of the animals, causing stress and nervousness, proving that social stress is a valid psychological stress in animals. The higher concentration of FCM in Tharparkar cattle subjected to social stress, further supported by higher serum cortisol and behaviour manifestations, suggest that FCM could be used to assess stress response as a non-invasive method.

Keywords: social stress, fecal cortisol metabolites, non-invasive, animal welfare, behaviour

Procedia PDF Downloads 114
5282 Storage of Organic Carbon in Chemical Fractions in Acid Soil as Influenced by Different Liming

Authors: Ieva Jokubauskaite, Alvyra Slepetiene, Danute Karcauskiene, Inga Liaudanskiene, Kristina Amaleviciute

Abstract:

Soil organic carbon (SOC) is the key soil quality and ecological stability indicator, therefore, carbon accumulation in stable forms not only supports and increases the organic matter content in the soil, but also has a positive effect on the quality of soil and the whole ecosystem. Soil liming is one of the most common ways to improve the carbon sequestration in the soil. Determination of the optimum intensity and combinations of liming in order to ensure the optimal carbon quantitative and qualitative parameters is one of the most important tasks of this work. The field experiments were carried out at the Vezaiciai Branch of Lithuanian Research Centre for Agriculture and Forestry (LRCAF) during the 2011–2013 period. The effect of liming with different intensity (at a rate 0.5 every 7 years and 2.0 every 3-4 years) was investigated in the topsoil of acid moraine loam Bathygleyic Dystric Glossic Retisol. Chemical analyses were carried out at the Chemical Research Laboratory of Institute of Agriculture, LRCAF. Soil samples for chemical analyses were taken from the topsoil after harvesting. SOC was determined by the Tyurin method modified by Nikitin, measuring with spectrometer Cary 50 (VARIAN) at 590 nm wavelength using glucose standards. SOC fractional composition was determined by Ponomareva and Plotnikova version of classical Tyurin method. Dissolved organic carbon (DOC) was analyzed using an ion chromatograph SKALAR in water extract at soil-water ratio 1:5. Spectral properties (E4/E6 ratio) of humic acids were determined by measuring the absorbance of humic and fulvic acids solutions at 465 and 665 nm. Our study showed a negative statistically significant effect of periodical liming (at 0.5 and 2.0 liming rates) on SOC content in the soil. The content of SOC was 1.45% in the unlimed treatment, while in periodically limed at 2.0 liming rate every 3–4 years it was approximately by 0.18 percentage points lower. It was revealed that liming significantly decreased the DOC concentration in the soil. The lowest concentration of DOC (0.156 g kg-1) was established in the most intensively limed (2.0 liming rate every 3–4 years) treatment. Soil liming exerted an increase of all humic acids and fulvic acid bounded with calcium fractions content in the topsoil. Soil liming resulted in the accumulation of valuable humic acids. Due to the applied liming, the HR/FR ratio, indicating the quality of humus increased to 1.08 compared with that in unlimed soil (0.81). Intensive soil liming promoted the formation of humic acids in which groups of carboxylic and phenolic compounds predominated. These humic acids are characterized by a higher degree of condensation of aromatic compounds and in this way determine the intensive organic matter humification processes in the soil. The results of this research provide us with the clear information on the characteristics of SOC change, which could be very useful to guide the climate policy and sustainable soil management.

Keywords: acid soil, carbon sequestration, long–term liming, soil organic carbon

Procedia PDF Downloads 230
5281 Automatic Number Plate Recognition System Based on Deep Learning

Authors: T. Damak, O. Kriaa, A. Baccar, M. A. Ben Ayed, N. Masmoudi

Abstract:

In the last few years, Automatic Number Plate Recognition (ANPR) systems have become widely used in the safety, the security, and the commercial aspects. Forethought, several methods and techniques are computing to achieve the better levels in terms of accuracy and real time execution. This paper proposed a computer vision algorithm of Number Plate Localization (NPL) and Characters Segmentation (CS). In addition, it proposed an improved method in Optical Character Recognition (OCR) based on Deep Learning (DL) techniques. In order to identify the number of detected plate after NPL and CS steps, the Convolutional Neural Network (CNN) algorithm is proposed. A DL model is developed using four convolution layers, two layers of Maxpooling, and six layers of fully connected. The model was trained by number image database on the Jetson TX2 NVIDIA target. The accuracy result has achieved 95.84%.

Keywords: ANPR, CS, CNN, deep learning, NPL

Procedia PDF Downloads 307
5280 Numerical Analysis for Soil Compaction and Plastic Points Extension in Pile Drivability

Authors: Omid Tavasoli, Mahmoud Ghazavi

Abstract:

A numerical analysis of drivability of piles in different geometry is presented. In this paper, a three-dimensional finite difference analysis for plastic point extension and soil compaction in the effect of pile driving is analyzed. Four pile configurations such as cylindrical pile, fully tapered pile, T-C pile consists of a top tapered segment and a lower cylindrical segment and C-T pile has a top cylindrical part followed by a tapered part are investigated. All piles which driven up to a total penetration depth of 16 m have the same length with equivalent surface area and approximately with identical material volumes. An idealization for pile-soil system in pile driving is considered for this approach. A linear elastic material is assumed to model the vertical pile behaviors and the soil obeys the elasto-plastic constitutive low and its failure is controlled by the Mohr-Coulomb failure criterion. A slip which occurred at the pile-soil contact surfaces along the shaft and the toe in pile driving procedures is simulated with interface elements. All initial and boundary conditions are the same in all analyses. Quiet boundaries are used to prevent wave reflection in the lateral and vertical directions for the soil. The results obtained from numerical analyses were compared with available other numerical data and laboratory tests, indicating a satisfactory agreement. It will be shown that with increasing the angle of taper, the permanent piles toe settlement increase and therefore, the extension of plastic points increase. These are interesting phenomena in pile driving and are on the safe side for driven piles.

Keywords: pile driving, finite difference method, non-uniform piles, pile geometry, pile set, plastic points, soil compaction

Procedia PDF Downloads 484
5279 Seismic Hazard Assessment of Offshore Platforms

Authors: F. D. Konstandakopoulou, G. A. Papagiannopoulos, N. G. Pnevmatikos, G. D. Hatzigeorgiou

Abstract:

This paper examines the effects of pile-soil-structure interaction on the dynamic response of offshore platforms under the action of near-fault earthquakes. Two offshore platforms models are investigated, one with completely fixed supports and one with piles which are clamped into deformable layered soil. The soil deformability for the second model is simulated using non-linear springs. These platform models are subjected to near-fault seismic ground motions. The role of fault mechanism on platforms’ response is additionally investigated, while the study also examines the effects of different angles of incidence of seismic records on the maximum response of each platform.

Keywords: hazard analysis, offshore platforms, earthquakes, safety

Procedia PDF Downloads 150
5278 Multi-Spectral Deep Learning Models for Forest Fire Detection

Authors: Smitha Haridasan, Zelalem Demissie, Atri Dutta, Ajita Rattani

Abstract:

Aided by the wind, all it takes is one ember and a few minutes to create a wildfire. Wildfires are growing in frequency and size due to climate change. Wildfires and its consequences are one of the major environmental concerns. Every year, millions of hectares of forests are destroyed over the world, causing mass destruction and human casualties. Thus early detection of wildfire becomes a critical component to mitigate this threat. Many computer vision-based techniques have been proposed for the early detection of forest fire using video surveillance. Several computer vision-based methods have been proposed to predict and detect forest fires at various spectrums, namely, RGB, HSV, and YCbCr. The aim of this paper is to propose a multi-spectral deep learning model that combines information from different spectrums at intermediate layers for accurate fire detection. A heterogeneous dataset assembled from publicly available datasets is used for model training and evaluation in this study. The experimental results show that multi-spectral deep learning models could obtain an improvement of about 4.68 % over those based on a single spectrum for fire detection.

Keywords: deep learning, forest fire detection, multi-spectral learning, natural hazard detection

Procedia PDF Downloads 241
5277 Behavior of Reinforced Soil by Polypropylene Fibers

Authors: M. Kamal Elbokl

Abstract:

The beneficial effects of reinforcing the subgrade soil in pavement system with randomly distributed polypropylene fibers were investigated. For this issue, two types of soils and one type of fiber were selected. Proctor, CBR and unconfined compression tests were conducted on unreinforced samples as well as reinforced ones at different concentrations and aspect ratio of fibers. OMC, CBR and modulus of elasticity were investigated and thereby, the optimum value of aspect ratio and fiber content were determined. The static and repeated triaxial tests were also conducted to study the behaviour of fiber reinforced soils under both static and repeated loading. The results indicated that CBR values of reinforced sand and clay were 3.1 and 4.2 times of their unreinforced values respectively. The modulus of elasticity of fiber reinforced soils has increased by 100% for silty sandy soil and 60.20% for silty clay soil due to fiber reinforcement. The reinforced soils exhibited higher failure stresses in the static triaxial tests than the unreinforced ones due to the apparent bond developed between soil particle and the fiber. Fiber reinforcement of subgrade soils can play an important role in control the rut formation in the pavement system.

Keywords: polypropylene fibers, CBR, static triaxial, cyclic triaxial, resilient strain, permanent strain

Procedia PDF Downloads 625
5276 Effective Slab Width for Beam-End Flexural Strength of Composite Frames with Circular-Section Columns

Authors: Jizhi Zhao, Qiliang Zhou, Muxuan Tao

Abstract:

The calculation of the ultimate loading capacity of composite frame beams is an important step in the design of composite frame structural systems. Currently, the plastic limit theory is mainly used for this calculation in the codes adopted by many countries; however, the effective slab width recommended in most codes is based on the elastic theory, which does not accurately reflect the complex stress mechanism at the beam-column joints in the ultimate loading state. Therefore, the authors’ research group put forward the Compression-on-Column-Face mechanism and Tension-on-Transverse-Beam mechanism to explain the mechanism in the ultimate loading state. Formulae are derived for calculating the effective slab width in composite frames with rectangular/square-section columns under ultimate lateral loading. Moreover, this paper discusses the calculation method of the effective slab width for the beam-end flexural strength of composite frames with circular-section columns. The proposed design formula is suitable for exterior and interior joints. Finally, this paper compares the proposed formulae with available formulae in other literature, current design codes, and experimental results, providing the most accurate results to predict the effective slab width and ultimate loading capacity.

Keywords: composite frame structure, effective slab width, circular-section column, design formulae, ultimate loading capacity

Procedia PDF Downloads 128
5275 The Dynamic of Nₘᵢₙ in Clay Loam Cambisol in Alternative Farming

Authors: Danute Jablonskyte-Rasce, Laura Masilionyte

Abstract:

The field experiments of different farming systems were conducted at Joniškėlis Experimental Station of the Lithuanian Research Centre for Agriculture and Forestry in 2006–2016. The soil of the experimental site was Endocalcari-Endohypogleyic Cambisol (CMg-n-w-can). The research was designed to identify the effects of dry matter and nitrogen accumulated in the above-ground biomass of various catch crops grown after winter wheat on soil mineral nitrogen variation during the autumn and spring period in the presence of intensive leaching complex. Research was done in the soil differing in humus status in the organic and sustainable cropping systems by growing various plant mixtures as catch crops: narrow-leafed lupine (Lupinus angustifolius L.) and oil radish (Raphanus sativus var. Oleifera L.), white mustard (Sinapis alba L.) and buckwheat (Fagopyrum exculentum Moench.) and white mustard as a sole crop. All crop and soil management practices have shown optimal efficiency in late autumn – stubble breaking, catch crops and straw used during the post-harvest period of the main crops, reduced Nmin migration into deeper (40–80 cm) soil layer. The greatest Nmin reduction in the 0–40 cm soil layer during the period from late autumn to early spring was identified in the sustainable cropping system having applied N30 for the promotion of straw mineralization and with no catch crops cultivation. The sustainable cropping system, having applied N30 for straw mineralization and growing white mustard in combination with buckwheat as catch crops, Nmin difference in the spring compared with its status in the autumn in the soil low and moderate in humus was lower by 70.1% and 34.2%, respectively.

Keywords: soil nitrogen, catch crops, ecological and sustainable farming systems, Cambisol

Procedia PDF Downloads 260
5274 Axial Load Capacity of Drilled Shafts from In-Situ Test Data at Semani Site, in Albania

Authors: Neritan Shkodrani, Klearta Rrushi, Anxhela Shaha

Abstract:

Generally, the design of axial load capacity of deep foundations is based on the data provided from field tests, such as SPT (Standard Penetration Test) and CPT (Cone Penetration Test) tests. This paper reports the results of axial load capacity analysis of drilled shafts at a construction site at Semani, in Fier county, Fier prefecture in Albania. In this case, the axial load capacity analyses are based on the data of 416 SPT tests and 12 CPTU tests, which are carried out in this site construction using 12 boreholes (10 borings of a depth 30.0 m and 2 borings of a depth of 80.0m). The considered foundation widths range from 0.5m to 2.5 m and foundation embedment lengths is fixed at a value of 25m. SPT – based analytical methods from the Japanese practice of design (Building Standard Law of Japan) and CPT – based analytical Eslami and Fellenius methods are used for obtaining axial ultimate load capacity of drilled shafts. The considered drilled shaft (25m long and 0.5m - 2.5m in diameter) is analyzed for the soil conditions of each borehole. The values obtained from sets of calculations are shown in different charts. Then the reported axial load capacity values acquired from SPT and CPTU data are compared and some conclusions are found related to the mentioned methods of calculations.

Keywords: deep foundations, drilled shafts, axial load capacity, ultimate load capacity, allowable load capacity, SPT test, CPTU test

Procedia PDF Downloads 104
5273 Risk Assessment of Contamination by Heavy Metals in Sarcheshmeh Copper Complex of Iran Using Topsis Method

Authors: Hossein Hassani, Ali Rezaei

Abstract:

In recent years, the study of soil contamination problems surrounding mines and smelting plants has attracted some serious attention of the environmental experts. These elements due to the non- chemical disintegration and nature are counted as environmental stable and durable contaminants. Variability of these contaminants in the soil and the time and financial limitation for the favorable environmental application, in order to reduce the risk of their irreparable negative consequences on environment, caused to apply the favorable grading of these contaminant for the further success of the risk management processes. In this study, we use the contaminants factor risk indices, average concentration, enrichment factor and geoaccumulation indices for evaluating the metal contaminant of including Pb, Ni, Se, Mo and Zn in the soil of Sarcheshmeh copper mine area. For this purpose, 120 surface soil samples up to the depth of 30 cm have been provided from the study area. And the metals have been analyzed using ICP-MS method. Comparison of the heavy and potentially toxic elements concentration in the soil samples with the world average value of the uncontaminated soil and shale average indicates that the value of Zn, Pb, Ni, Se and Mo is higher than the world average value and only the Ni element shows the lower value than the shale average. Expert opinions on the relative importance of each indicators were used to assign a final weighting of the metals and the heavy metals were ranked using the TOPSIS approach. This allows us to carry out efficient environmental proceedings, leading to the reduction of environmental ricks form the contaminants. According to the results, Ni, Pb, Mo, Zn, and Se have the highest rate of risk contamination in the soil samples of the study area.

Keywords: contamination coefficient, geoaccumulation factor, TOPSIS techniques, Sarcheshmeh copper complex

Procedia PDF Downloads 275
5272 Application of Deep Learning in Top Pair and Single Top Quark Production at the Large Hadron Collider

Authors: Ijaz Ahmed, Anwar Zada, Muhammad Waqas, M. U. Ashraf

Abstract:

We demonstrate the performance of a very efficient tagger applies on hadronically decaying top quark pairs as signal based on deep neural network algorithms and compares with the QCD multi-jet background events. A significant enhancement of performance in boosted top quark events is observed with our limited computing resources. We also compare modern machine learning approaches and perform a multivariate analysis of boosted top-pair as well as single top quark production through weak interaction at √s = 14 TeV proton-proton Collider. The most relevant known background processes are incorporated. Through the techniques of Boosted Decision Tree (BDT), likelihood and Multlayer Perceptron (MLP) the analysis is trained to observe the performance in comparison with the conventional cut based and count approach

Keywords: top tagger, multivariate, deep learning, LHC, single top

Procedia PDF Downloads 111
5271 DNpro: A Deep Learning Network Approach to Predicting Protein Stability Changes Induced by Single-Site Mutations

Authors: Xiao Zhou, Jianlin Cheng

Abstract:

A single amino acid mutation can have a significant impact on the stability of protein structure. Thus, the prediction of protein stability change induced by single site mutations is critical and useful for studying protein function and structure. Here, we presented a deep learning network with the dropout technique for predicting protein stability changes upon single amino acid substitution. While using only protein sequence as input, the overall prediction accuracy of the method on a standard benchmark is >85%, which is higher than existing sequence-based methods and is comparable to the methods that use not only protein sequence but also tertiary structure, pH value and temperature. The results demonstrate that deep learning is a promising technique for protein stability prediction. The good performance of this sequence-based method makes it a valuable tool for predicting the impact of mutations on most proteins whose experimental structures are not available. Both the downloadable software package and the user-friendly web server (DNpro) that implement the method for predicting protein stability changes induced by amino acid mutations are freely available for the community to use.

Keywords: bioinformatics, deep learning, protein stability prediction, biological data mining

Procedia PDF Downloads 471
5270 Morphological Properties of Soil Profile of Vineyard of Bangalore North (GKVK Farm), Karnataka, India

Authors: Harsha B. R., K. S. Anil Kumar

Abstract:

A profile was dug at the University of Agricultural Sciences, Bangalore, where grapes were intensively cultivated for 25 years on the dimension of 1.5 × 1.5 × 1.5 m. Demarcation was done on the basis of texture, structure, colour, and the details like depth, texture, colour, consistency, rock fragments, presence of mottles, and structure were recorded and studied according to standard performa of soil profile description. Horizons noticed were Ap, Bt1, Bt2, Bt3, Bt4C, Bt5C and BC with respective depths of 0-13, 13-37, 37-60, 60-78, 78-104, 104-130 and 130-151+ cm. The reddish-brown colour was noticed in Ap, Bt1, and Bt2 horizons. The sub-angular blocky structure was observed in all the layers with slightly acid in reaction. Clear and abrupt smooth boundaries were present between two respective layers with clayey texture in all the horizons except the Ap horizon, which was clay loam in texture. Variegated soil colours and iron concretions were observed in Bt4, Bt5, and BC horizons. Clay skins were observed in Bt and BC horizons. Soils were of highly friable consistency for grapes cultivation.

Keywords: soil morphology, horizons, clay skins, consistency, vineyards

Procedia PDF Downloads 135
5269 Study on the Enhancement of Soil Fertility and Tomato Quality by Applying Concentrated Biogas Slurry

Authors: Fang Bo Yu, Li Bo Guan

Abstract:

Biogas slurry is a low-cost source of crop nutrients and can offer extra benefits to soil fertility and fruit quality. However, its current utilization mode and low content of active ingredients limit its application scale. In this report, one growing season field research was conducted to assess the effects of concentrated biogas slurry on soil property, tomato fruit quality, and composition of the microflora in both non-rhizosphere and rhizosphere soils. The results showed that application of concentrated slurry could cause significant changes to tomato cultivation, including increases in organic matter, available N, P, and K, total N, and P, electrical conductivity, and fruit contents of amino acids, protein, soluble sugar, β-carotene, tannins, and vitamin C, together with the R/S ratios and the culturable counts of bacteria, actinomycetes, and fungi in soils. It could be concluded as the application is a practicable means in tomato production and might better service the sustainable agriculture in the near future.

Keywords: concentrated slurry, fruit quality, soil fertility, sustainable agriculture

Procedia PDF Downloads 459
5268 Deep Excavations with Embedded Retaining Walls - Diaphragm Walls

Authors: Sowmiyaa V. S., Tiruvengala Padma, Dhanasekaran B.

Abstract:

Due to urbanization, traffic congestion, air pollution and fuel consumption underground metros are constructed in urban cities nowadays. These metros reduce the commutation time and makes the daily transportation in urban cities hassle free. To construct the underground metros deep excavations are to be carried out. These excavations should be supported by an appropriate earth retaining structures to provide stability and to prevent deformation failures. The failure of deep excavations is catastrophic and hence appropriate caution need to be carried out during design and construction stages. This paper covers the construction aspects, equipment, quality control, design aspects of one of the earth retaining systems the Diaphragm Walls.

Keywords: underground metros, diaphragm wall, quality control of diaphragm wall, design aspects of diaphragm wall

Procedia PDF Downloads 103
5267 Development of Under Water Autonomous Vertical Profiler: Unique Solution to Oceanographic Studies

Authors: I. K. Sharma

Abstract:

Over the years world over system are being developed by research labs continuously monitor under water parameters in the coastal waters of sea such as conductivity, salinity, pressure, temperature, chlorophyll and biological blooms at different levels of water column. The research institutions have developed profilers which are launched by ship connected through cable, glider type profilers following underwater trajectory, buoy any driven profilers, wire guided profilers etc. In all these years, the effect was to design autonomous profilers with no cable quality connection, simple operation and on line date transfer in terms accuracy, repeatability, reliability and consistency. Hence for the Ministry of Communication and Information Technology, India sponsored research project to National Institute of Oceanography, GOA, India to design and develop autonomous vertical profilers, it has taken system and AVP has been successfully developed and tested.

Keywords: oceanography, water column, autonomous profiler, buoyancy

Procedia PDF Downloads 399
5266 Enhancing Single Channel Minimum Quantity Lubrication through Bypass Controlled Design for Deep Hole Drilling with Small Diameter Tool

Authors: Yongrong Li, Ralf Domroes

Abstract:

Due to significant energy savings, enablement of higher machining speed as well as environmentally friendly features, Minimum Quantity Lubrication (MQL) has been used for many machining processes efficiently. However, in the deep hole drilling field (small tool diameter D < 5 mm) and long tool (length L > 25xD) it is always a bottle neck for a single channel MQL system. The single channel MQL, based on the Venturi principle, faces a lack of enough oil quantity caused by dropped pressure difference during the deep hole drilling process. In this paper, a system concept based on a bypass design has explored its possibility to dynamically reach the required pressure difference between the air inlet and the inside of aerosol generator, so that the deep hole drilling demanded volume of oil can be generated and delivered to tool tips. The system concept has been investigated in static and dynamic laboratory testing. In the static test, the oil volume with and without bypass control were measured. This shows an oil quantity increasing potential up to 1000%. A spray pattern test has demonstrated the differences of aerosol particle size, aerosol distribution and reaction time between single channel and bypass controlled single channel MQL systems. A dynamic trial machining test of deep hole drilling (drill tool D=4.5mm, L= 40xD) has been carried out with the proposed system on a difficult machining material AlSi7Mg. The tool wear along a 100 meter drilling was tracked and analyzed. The result shows that the single channel MQL with a bypass control can overcome the limitation and enhance deep hole drilling with a small tool. The optimized combination of inlet air pressure and bypass control results in a high quality oil delivery to tool tips with a uniform and continuous aerosol flow.

Keywords: deep hole drilling, green production, Minimum Quantity Lubrication (MQL), near dry machining

Procedia PDF Downloads 206
5265 The Use of Haar Wavelet Mother Signal Tool for Performance Analysis Response of Distillation Column (Application to Moroccan Case Study)

Authors: Mahacine Amrani

Abstract:

This paper aims at reviewing some Moroccan industrial applications of wavelet especially in the dynamic identification of a process model using Haar wavelet mother response. Two recent Moroccan study cases are described using dynamic data originated by a distillation column and an industrial polyethylene process plant. The purpose of the wavelet scheme is to build on-line dynamic models. In both case studies, a comparison is carried out between the Haar wavelet mother response model and a linear difference equation model. Finally it concludes, on the base of the comparison of the process performances and the best responses, which may be useful to create an estimated on-line internal model control and its application towards model-predictive controllers (MPC). All calculations were implemented using AutoSignal Software.

Keywords: process performance, model, wavelets, Haar, Moroccan

Procedia PDF Downloads 318
5264 Evaluation of Soil Stiffness and Strength for Quality Control of Compacted Earthwork

Authors: A. Sawangsuriya, T. B. Edil

Abstract:

Microstructure and fabric of soils play an important role on structural properties e.g. stiffness and strength of compacted earthwork. Traditional quality control monitoring based on moisture-density tests neither reflects the variability of soil microstructure nor provides a direct assessment of structural property, which is the ultimate objective of the earthwork quality control. Since stiffness and strength are sensitive to soil microstructure and fabric, any independent test methods that provide simple, rapid, and direct measurement of stiffness and strength are anticipated to provide an effective assessment of compacted earthen materials’ uniformity. In this study, the soil stiffness gauge (SSG) and the dynamic cone penetrometer (DCP) were respectively utilized to measure and monitor the stiffness and strength in companion with traditional moisture-density measurements of various earthen materials used in Thailand road construction projects. The practical earthwork quality control criteria are presented herein in order to assure proper earthwork quality control and uniform structural property of compacted earthworks.

Keywords: dynamic cone penetrometer, moisture content, quality control, relative compaction, soil stiffness gauge, structural properties

Procedia PDF Downloads 361
5263 An Accurate Brain Tumor Segmentation for High Graded Glioma Using Deep Learning

Authors: Sajeeha Ansar, Asad Ali Safi, Sheikh Ziauddin, Ahmad R. Shahid, Faraz Ahsan

Abstract:

Gliomas are most challenging and aggressive type of tumors which appear in different sizes, locations, and scattered boundaries. CNN is most efficient deep learning approach with outstanding capability of solving image analysis problems. A fully automatic deep learning based 2D-CNN model for brain tumor segmentation is presented in this paper. We used small convolution filters (3 x 3) to make architecture deeper. We increased convolutional layers for efficient learning of complex features from large dataset. We achieved better results by pushing convolutional layers up to 16 layers for HGG model. We achieved reliable and accurate results through fine-tuning among dataset and hyper-parameters. Pre-processing of this model includes generation of brain pipeline, intensity normalization, bias correction and data augmentation. We used the BRATS-2015, and Dice Similarity Coefficient (DSC) is used as performance measure for the evaluation of the proposed method. Our method achieved DSC score of 0.81 for complete, 0.79 for core, 0.80 for enhanced tumor regions. However, these results are comparable with methods already implemented 2D CNN architecture.

Keywords: brain tumor segmentation, convolutional neural networks, deep learning, HGG

Procedia PDF Downloads 258
5262 The Effect of Parameter Controls for Manure Composting in Waste Recycling Process

Authors: Junyoung Kim, Shangwha Cha, Soomee Kang, Jake S. Byun

Abstract:

This study shows the effect of parameter controls for livestock manure composting in waste recycling process for the development of a new design of a microorganism-oriented- composting system. Based on the preliminary studies, only the temperature control by changing mechanical mixing can reduce microorganisms’ biodegradability from 3 to 6 months to 15 days, saving the consumption of energy and manual labor. The final degree of fermentation in just 5 days of composting increased to ‘3’ comparing the compost standard level ‘4’ in Korea, others standards were all satisfied. This result shows that the controlling the optimum microorganism parameter using an ICT device connected to mixing condition can increase the effectiveness of fermentation system and reduce odor to nearly zero, and lead to upgrade the composting method than the conventional

Keywords: manure composting, odor removal, parameter control, waste recycling

Procedia PDF Downloads 310
5261 Sunflower Irrigation with Two Different Types of Soil Moisture Sensors

Authors: C. D. Papanikolaou, V. A. Giouvanis, E. A. Karatasiou, D. S. Dimakas, M. A. Sakellariou-Makrantonaki

Abstract:

Irrigation is one of the most important cultivation practices for each crop, especially in areas where rainfall is enough to cover the crop water needs. In such areas, the farmers must irrigate in order to achieve high economical results. The precise irrigation scheduling contributes to irrigation water saving and thus a valuable natural resource is protected. Under this point of view, in the experimental field of the Laboratory of Agricultural Hydraulics of the University of Thessaly, a research was conducted during the growing season of 2012 in order to evaluate the growth, seed and oil production of sunflower as well as the water saving, by applying different methods of irrigation scheduling. Three treatments in four replications were organized. These were: a) surface drip irrigation where the irrigation scheduling based on the Penman-Monteith (PM) method (control); b) surface drip irrigation where the irrigation scheduling based on a soil moisture sensor (SMS); and c) surface drip irrigation, where the irrigation scheduling based on a soil potential sensor (WM).

Keywords: irrigation, energy production, soil moisture sensor, sunflower, water saving

Procedia PDF Downloads 181
5260 Effect of Scattered Vachellia Tortilis (Umbrella Torn) and Vachellia nilotica (Gum Arabic) Trees on Selected Physio-Chemical Properties of the Soil and Yield of Sorghum (Sorghum bicolor (L.) Moench) in Ethiopia

Authors: Sisay Negash, Zebene Asfaw, Kibreselassie Daniel, Michael Zech

Abstract:

A significant portion of the Ethiopian landscape features scattered trees that are deliberately managed in crop fields to enhance soil fertility and crop yield in which the compatibility of crops with these trees varies depending on location, tree species, and annual crop type. This study aimed to examine the effects of scattered Vachellia tortilis and Vachellia nilotica trees on selected physico-chemical properties of the soil, as well as the yield and yield components of sorghum in Ethiopia. Vachellia tortilis and Vachellia nilotica were selected on abundance occurrence and managed in crop fields. A randomized complete block design was used, with a distance from the tree canopy (middle, edge, and outside) as a treatment, and five trees of each species served as replications. Sorghum was planted up to 15 meters in the east, west, south, and north directions from the tree trunk to assess growth and yield. Soil samples were collected from the two tree species, three distance factors, three soil depths(0-20cm, 20-40cm, and 40-60cm), and five replications, totaling 45 samples for each tree species. These samples were analyzed for physical and chemical properties. The results indicated that both V. tortilis and V. nilotica significantly affected soil physico-chemical properties and sorghum yield. Specifically, soil moisture content, EC, total nitrogen, organic carbon, available phosphorus and potassium, CEC, sorghum plant height, panicle length, biomass, and yield decreased with increasing distance from the canopy. Conversely, bulk density and pH increased. Under the canopy, sorghum yield increased by 66.4% and 53.5% for V. tortilis and V. nilotica, respectively, due to higher soil moisture and nutrient availability. The study recommends promoting trees in crop fields, management options for new saplings, and further research on root decomposition and nutrient supply.

Keywords: canopy, crop yield, soil nutrient, soil organic matter, yield components

Procedia PDF Downloads 28
5259 Automated Feature Extraction and Object-Based Detection from High-Resolution Aerial Photos Based on Machine Learning and Artificial Intelligence

Authors: Mohammed Al Sulaimani, Hamad Al Manhi

Abstract:

With the development of Remote Sensing technology, the resolution of optical Remote Sensing images has greatly improved, and images have become largely available. Numerous detectors have been developed for detecting different types of objects. In the past few years, Remote Sensing has benefited a lot from deep learning, particularly Deep Convolution Neural Networks (CNNs). Deep learning holds great promise to fulfill the challenging needs of Remote Sensing and solving various problems within different fields and applications. The use of Unmanned Aerial Systems in acquiring Aerial Photos has become highly used and preferred by most organizations to support their activities because of their high resolution and accuracy, which make the identification and detection of very small features much easier than Satellite Images. And this has opened an extreme era of Deep Learning in different applications not only in feature extraction and prediction but also in analysis. This work addresses the capacity of Machine Learning and Deep Learning in detecting and extracting Oil Leaks from Flowlines (Onshore) using High-Resolution Aerial Photos which have been acquired by UAS fixed with RGB Sensor to support early detection of these leaks and prevent the company from the leak’s losses and the most important thing environmental damage. Here, there are two different approaches and different methods of DL have been demonstrated. The first approach focuses on detecting the Oil Leaks from the RAW Aerial Photos (not processed) using a Deep Learning called Single Shoot Detector (SSD). The model draws bounding boxes around the leaks, and the results were extremely good. The second approach focuses on detecting the Oil Leaks from the Ortho-mosaiced Images (Georeferenced Images) by developing three Deep Learning Models using (MaskRCNN, U-Net and PSP-Net Classifier). Then, post-processing is performed to combine the results of these three Deep Learning Models to achieve a better detection result and improved accuracy. Although there is a relatively small amount of datasets available for training purposes, the Trained DL Models have shown good results in extracting the extent of the Oil Leaks and obtaining excellent and accurate detection.

Keywords: GIS, remote sensing, oil leak detection, machine learning, aerial photos, unmanned aerial systems

Procedia PDF Downloads 34
5258 Geostatistical Simulation of Carcinogenic Industrial Effluent on the Irrigated Soil and Groundwater, District Sheikhupura, Pakistan

Authors: Asma Shaheen, Javed Iqbal

Abstract:

The water resources are depleting due to an intrusion of industrial pollution. There are clusters of industries including leather tanning, textiles, batteries, and chemical causing contamination. These industries use bulk quantity of water and discharge it with toxic effluents. The penetration of heavy metals through irrigation from industrial effluent has toxic effect on soil and groundwater. There was strong positive significant correlation between all the heavy metals in three media of industrial effluent, soil and groundwater (P < 0.001). The metal to the metal association was supported by dendrograms using cluster analysis. The geospatial variability was assessed by using geographically weighted regression (GWR) and pollution model to identify the simulation of carcinogenic elements in soil and groundwater. The principal component analysis identified the metals source, 48.8% variation in factor 1 have significant loading for sodium (Na), calcium (Ca), magnesium (Mg), iron (Fe), chromium (Cr), nickel (Ni), lead (Pb) and zinc (Zn) of tannery effluent-based process. In soil and groundwater, the metals have significant loading in factor 1 representing more than half of the total variation with 51.3 % and 53.6 % respectively which showed that pollutants in soil and water were driven by industrial effluent. The cumulative eigen values for the three media were also found to be greater than 1 representing significant clustering of related heavy metals. The results showed that heavy metals from industrial processes are seeping up toxic trace metals in the soil and groundwater. The poisonous pollutants from heavy metals turned the fresh resources of groundwater into unusable water. The availability of fresh water for irrigation and domestic use is being alarming.

Keywords: groundwater, geostatistical, heavy metals, industrial effluent

Procedia PDF Downloads 229
5257 Effect of Compaction and Degree of Saturation on the Unconsolidated Undrained Shear Strength of Sandy Clay

Authors: Fatima Mehmood, Khalid Farooq, Rabeea Bakhtawer

Abstract:

For geotechnical engineers, one of the most important properties of soil to consider in various stability analyses is its shear strength which is governed by a number of factors. The objective of this research is to ascertain the effect of compaction and degree of saturation on the shear strength of fine-grained soil. For this purpose, three different dry densities such as in-situ, maximum standard proctor, and maximum modified proctor, were determined for the sandy clay soil. The soil samples were then prepared to keep dry density constant and varying degrees of saturation. These samples were tested for (UU) unconsolidated undrained shear strength in triaxial compression tests. The decrease in shear strength was observed with the decrease in density and increase in the saturation. The values of the angle of internal friction followed the same trend. However, the change in cohesion with the increase in saturation showed a different behavior, analogous to the compaction curve.

Keywords: compaction, degree of saturation, dry density, geotechnical investigation, laboratory testing, shear strength

Procedia PDF Downloads 138
5256 In situ Biodegradation of Endosulfan, Imidacloprid, and Carbendazim Using Indigenous Bacterial Cultures of Agriculture Fields of Uttarakhand, India

Authors: Geeta Negi, Pankaj, Anjana Srivastava, Anita Sharma

Abstract:

In the present study, the presence of endosulfan, imidacloprid, carbendazim, in the soil /vegetables/cereals and water samples was observed in agriculture fields of Uttarakhand. In view of biodegradation of these pesticides, nine bacterial isolates were recovered from the soil samples of the fields which tolerated endosulfan, imidacloprid, carbendazim from 100 to 200 µg/ml. Three bacterial consortia used for in vitro bioremediation experiments were three bacterial isolates for carbendazim, imidacloprid and endosulfan, respectively. Maximum degradation (87 and 83%) of α and β endosulfan respectively was observed in soil slurry by consortium. Degradation of Imidacloprid and carbendazim under similar conditions was 88.4 and 77.5% respectively. FT-IR analysis of biodegraded samples of pesticides in liquid media showed stretching of various bonds. GC-MS of biodegraded endosulfan sample in soil slurry showed the presence of non-toxic intermediates. A pot trial with Bacterial treatments lowered down the uptake of pesticides in onion plants.

Keywords: biodegradation, carbendazim, consortium, endosulfan

Procedia PDF Downloads 375
5255 Phytoadaptation in Desert Soil Prediction Using Fuzzy Logic Modeling

Authors: S. Bouharati, F. Allag, M. Belmahdi, M. Bounechada

Abstract:

In terms of ecology forecast effects of desertification, the purpose of this study is to develop a predictive model of growth and adaptation of species in arid environment and bioclimatic conditions. The impact of climate change and the desertification phenomena is the result of combined effects in magnitude and frequency of these phenomena. Like the data involved in the phytopathogenic process and bacteria growth in arid soil occur in an uncertain environment because of their complexity, it becomes necessary to have a suitable methodology for the analysis of these variables. The basic principles of fuzzy logic those are perfectly suited to this process. As input variables, we consider the physical parameters, soil type, bacteria nature, and plant species concerned. The result output variable is the adaptability of the species expressed by the growth rate or extinction. As a conclusion, we prevent the possible strategies for adaptation, with or without shifting areas of plantation and nature adequate vegetation.

Keywords: climate changes, dry soil, phytopathogenicity, predictive model, fuzzy logic

Procedia PDF Downloads 324