Search results for: background noise statistical modeling
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 12746

Search results for: background noise statistical modeling

11696 The Role of Uncertainty in the Integration of Environmental Parameters in Energy System Modeling

Authors: Alexander de Tomás, Miquel Sierra, Stefan Pfenninger, Francesco Lombardi, Ines Campos, Cristina Madrid

Abstract:

Environmental parameters are key in the definition of sustainable energy systems yet excluded from most energy system optimization models. Still, decision-making may be misleading without considering them. Environmental analyses of the energy transition are a key part of industrial ecology but often are performed without any input from the users of the information. This work assesses the systemic impacts of energy transition pathways in Portugal. Using the Calliope energy modeling framework, 250+ optimized energy system pathways are generated. A Delphi study helps to identify the relevant criteria for the stakeholders as regards the environmental assessment, which is performed with ENBIOS, a python package that integrates life cycle assessment (LCA) with a metabolic analysis based on complex relations. Furthermore, this study focuses on how the uncertainty propagates through the model’s consortium. With the aim of doing so, a soft link between the Calliope/ENBIOS cascade and Brightway’s data capabilities is built to perform Monte Carlo simulations. These findings highlight the relevance of including uncertainty analysis as a range of values rather than informing energy transition results with a single value.

Keywords: energy transition, energy modeling, uncertainty, sustainability

Procedia PDF Downloads 83
11695 Power System Modeling for Calculations in Frequency and Steady State Domain

Authors: G. Levacic, A. Zupan

Abstract:

Application of new technological solutions and installation of new elements into the network requires special attention when investigating its interaction with the existing power system. Special attention needs to be devoted to the occurrence of harmonic resonance. Sources of increasing harmonic penetration could be wind power plants, Flexible Alternating Current Transmission System (FACTS) devices, underground and submarine cable installations etc. Calculation in frequency domain with various software, for example, the software for power systems transients EMTP-RV presents one of the most common ways to obtain the harmonic impedance of the system. Along calculations in frequency domain, such software allows performing of different type of calculations as well as steady-state domain. This paper describes a power system modeling with software EMTP-RV based on data from SCADA/EMS system. The power flow results on 220 kV and 400 kV voltage levels retrieved from EMTP-RV are verified by comparing with power flow results from power transmissions system planning software PSS/E. The determination of the harmonic impedance for the case of remote power plant connection with cable up to 2500 Hz is presented as an example of calculations in frequency domain.

Keywords: power system modeling, frequency domain, steady state, EMTP-RV, PSS/E

Procedia PDF Downloads 323
11694 Cultural Background as Moderator of the Association Between Personal Bonding Social Capital and Well-Being: An Association Study in a Sample of Dutch and Turkish Older Adults in the Netherlands

Authors: Marianne Simons, Sinan Kurt, Marjolein Stefens, Kai Karos, Johan Lataster

Abstract:

As cultural diversity within older populations in European countries increases, the role of cultural background should be taken account of in aging studies. Bonding social capital (BSC), containing someone’s socio-emotional resources, is recognised as an important ingredient for wellbeing in old age and found to be associated with someone’s cultural background. The current study examined the association between BSC, loneliness and wellbeing in a sample including older Turkish migrants with a collectivistic cultural background and native Dutch older adults, both living in the Netherlands, characterised by an individualistic culture. A sample of 119 Turkish migrants (64.7% male; age 65-87, M(SD)=71.13(5.04) and 124 native Dutch adults (32.3% male, age 65-94, M(SD)= 71.9(5.32) filled out either an online or printed questionnaire measuring BSC, psychological, social and emotional well-being, loneliness and relevant demographic covariates. Regression analysis - including confounders age, gender, level of education, physical health and relationship - showed positive associations between BSC and respectively emotional, social and psychological well-being and a negative association with loneliness in both samples. Moderation analyses showed that these associations were significantly stronger for the Turkish older migrants than for their native peers. Measurement invariance analysis indicated partial metric invariance for the measurement of BSC and loneliness and non-invariance for wellbeing, calling for caution comparing means between samples. The results stress the importance of BSC for wellbeing of older migrants from collectivistic cultures living in individualistic countries. Previous research, shows a trend of older migrants displaying lower levels of BSC as well as associated variables, such as education, physical health, and financial income. This calls for more research of the interplay between demographic and psychosocial factors restraining mental wellbeing of older migrant populations. Measurement invariance analyses further emphasize the importance of taking cultural background into account in positive aging studies.

Keywords: positive aging, cultural background, wellbeing, social capital, loneliness

Procedia PDF Downloads 91
11693 Empirical Modeling and Optimization of Laser Welding of AISI 304 Stainless Steel

Authors: Nikhil Kumar, Asish Bandyopadhyay

Abstract:

Laser welding process is a capable technology for forming the automobile, microelectronics, marine and aerospace parts etc. In the present work, a mathematical and statistical approach is adopted to study the laser welding of AISI 304 stainless steel. A robotic control 500 W pulsed Nd:YAG laser source with 1064 nm wavelength has been used for welding purpose. Butt joints are made. The effects of welding parameters, namely; laser power, scanning speed and pulse width on the seam width and depth of penetration has been investigated using the empirical models developed by response surface methodology (RSM). Weld quality is directly correlated with the weld geometry. Twenty sets of experiments have been conducted as per central composite design (CCD) design matrix. The second order mathematical model has been developed for predicting the desired responses. The results of ANOVA indicate that the laser power has the most significant effect on responses. Microstructural analysis as well as hardness of the selected weld specimens has been carried out to understand the metallurgical and mechanical behaviour of the weld. Average micro-hardness of the weld is observed to be higher than the base metal. Higher hardness of the weld is the resultant of grain refinement and δ-ferrite formation in the weld structure. The result suggests that the lower line energy generally produce fine grain structure and improved mechanical properties than the high line energy. The combined effects of input parameters on responses have been analyzed with the help of developed 3-D response surface and contour plots. Finally, multi-objective optimization has been conducted for producing weld joint with complete penetration, minimum seam width and acceptable welding profile. Confirmatory tests have been conducted at optimum parametric conditions to validate the applied optimization technique.

Keywords: ANOVA, laser welding, modeling and optimization, response surface methodology

Procedia PDF Downloads 295
11692 Quantum Statistical Machine Learning and Quantum Time Series

Authors: Omar Alzeley, Sergey Utev

Abstract:

Minimizing a constrained multivariate function is the fundamental of Machine learning, and these algorithms are at the core of data mining and data visualization techniques. The decision function that maps input points to output points is based on the result of optimization. This optimization is the central of learning theory. One approach to complex systems where the dynamics of the system is inferred by a statistical analysis of the fluctuations in time of some associated observable is time series analysis. The purpose of this paper is a mathematical transition from the autoregressive model of classical time series to the matrix formalization of quantum theory. Firstly, we have proposed a quantum time series model (QTS). Although Hamiltonian technique becomes an established tool to detect a deterministic chaos, other approaches emerge. The quantum probabilistic technique is used to motivate the construction of our QTS model. The QTS model resembles the quantum dynamic model which was applied to financial data. Secondly, various statistical methods, including machine learning algorithms such as the Kalman filter algorithm, are applied to estimate and analyses the unknown parameters of the model. Finally, simulation techniques such as Markov chain Monte Carlo have been used to support our investigations. The proposed model has been examined by using real and simulated data. We establish the relation between quantum statistical machine and quantum time series via random matrix theory. It is interesting to note that the primary focus of the application of QTS in the field of quantum chaos was to find a model that explain chaotic behaviour. Maybe this model will reveal another insight into quantum chaos.

Keywords: machine learning, simulation techniques, quantum probability, tensor product, time series

Procedia PDF Downloads 469
11691 Prediction Modeling of Compression Properties of a Knitted Sportswear Fabric Using Response Surface Method

Authors: Jawairia Umar, Tanveer Hussain, Zulfiqar Ali, Muhammad Maqsood

Abstract:

Different knitted structures and knitted parameters play a vital role in the stretch and recovery management of compression sportswear in addition to the materials use to generate this stretch and recovery behavior of the fabric. The present work was planned to predict the different performance indicators of a compression sportswear fabric with some ground parameters i.e. base yarn stitch length (polyester as base yarn and spandex as plating yarn involve to make a compression fabric) and linear density of the spandex which is a key material of any sportswear fabric. The prediction models were generated by response surface method for performance indicators such as stretch & recovery percentage, compression generated by the garment on body, total elongation on application of high power force and load generated on certain percentage extension in fabric. Certain physical properties of the fabric were also modeled using these two parameters.

Keywords: Compression, sportswear, stretch and recovery, statistical model, kikuhime

Procedia PDF Downloads 379
11690 High-Resolution ECG Automated Analysis and Diagnosis

Authors: Ayad Dalloo, Sulaf Dalloo

Abstract:

Electrocardiogram (ECG) recording is prone to complications, on analysis by physicians, due to noise and artifacts, thus creating ambiguity leading to possible error of diagnosis. Such drawbacks may be overcome with the advent of high resolution Methods, such as Discrete Wavelet Analysis and Digital Signal Processing (DSP) techniques. This ECG signal analysis is implemented in three stages: ECG preprocessing, features extraction and classification with the aim of realizing high resolution ECG diagnosis and improved detection of abnormal conditions in the heart. The preprocessing stage involves removing spurious artifacts (noise), due to such factors as muscle contraction, motion, respiration, etc. ECG features are extracted by applying DSP and suggested sloping method techniques. These measured features represent peak amplitude values and intervals of P, Q, R, S, R’, and T waves on ECG, and other features such as ST elevation, QRS width, heart rate, electrical axis, QR and QT intervals. The classification is preformed using these extracted features and the criteria for cardiovascular diseases. The ECG diagnostic system is successfully applied to 12-lead ECG recordings for 12 cases. The system is provided with information to enable it diagnoses 15 different diseases. Physician’s and computer’s diagnoses are compared with 90% agreement, with respect to physician diagnosis, and the time taken for diagnosis is 2 seconds. All of these operations are programmed in Matlab environment.

Keywords: ECG diagnostic system, QRS detection, ECG baseline removal, cardiovascular diseases

Procedia PDF Downloads 297
11689 One Dimensional Reactor Modeling for Methanol Steam Reforming to Hydrogen

Authors: Hongfang Ma, Mingchuan Zhou, Haitao Zhang, Weiyong Ying

Abstract:

One dimensional pseudo-homogenous modeling has been performed for methanol steam reforming reactor. The results show that the models can well predict the industrial data. The reactor had minimum temperature along axial because of endothermic reaction. Hydrogen productions and temperature profiles along axial were investigated regarding operation conditions such as inlet mass flow rate and mass fraction of methanol, inlet temperature of external thermal oil. Low inlet mass flow rate of methanol, low inlet temperature, and high mass fraction of methanol decreased minimum temperature along axial. Low inlet mass flow rate of methanol, high mass fraction of methanol, and high inlet temperature of thermal oil made cold point forward. Low mass fraction, high mass flow rate, and high inlet temperature of thermal oil increased hydrogen production. One dimensional models can be a guide for industrial operation.

Keywords: reactor, modeling, methanol, steam reforming

Procedia PDF Downloads 299
11688 A609 Modeling of AC Servomotor Using Genetic Algorithm and Tests for Control of a Robotic Joint

Authors: J. G. Batista, T. S. Santiago, E. A. Ribeiro, G. A. P. Thé

Abstract:

This work deals with parameter identification of permanent magnet motors, a class of ac motor which is particularly important in industrial automation due to characteristics like applications high performance, are very attractive for applications with limited space and reducing the need to eliminate because they have reduced size and volume and can operate in a wide speed range, without independent ventilation. By using experimental data and genetic algorithm we have been able to extract values for both the motor inductance and the electromechanical coupling constant, which are then compared to measure and/or expected values.

Keywords: modeling, AC servomotor, permanent magnet synchronous motor-PMSM, genetic algorithm, vector control, robotic manipulator, control

Procedia PDF Downloads 521
11687 The BNCT Project Using the Cf-252 Source: Monte Carlo Simulations

Authors: Marta Błażkiewicz-Mazurek, Adam Konefał

Abstract:

The project can be divided into three main parts: i. modeling the Cf-252 neutron source and conducting an experiment to verify the correctness of the obtained results, ii. design of the BNCT system infrastructure, iii. analysis of the results from the logical detector. Modeling of the Cf-252 source included designing the shape and size of the source as well as the energy and spatial distribution of emitted neutrons. Two options were considered: a point source and a cylindrical spatial source. The energy distribution corresponded to various spectra taken from specialized literature. Directionally isotropic neutron emission was simulated. The simulation results were compared with experimental values determined using the activation detector method using indium foils and cadmium shields. The relative fluence rate of thermal and resonance neutrons was compared in the chosen places in the vicinity of the source. The second part of the project related to the modeling of the BNCT infrastructure consisted of developing a simulation program taking into account all the essential components of this system. Materials with moderating, absorbing, and backscattering properties of neutrons were adopted into the project. Additionally, a gamma radiation filter was introduced into the beam output system. The analysis of the simulation results obtained using a logical detector located at the beam exit from the BNCT infrastructure included neutron energy and their spatial distribution. Optimization of the system involved changing the size and materials of the system to obtain a suitable collimated beam of thermal neutrons.

Keywords: BNCT, Monte Carlo, neutrons, simulation, modeling

Procedia PDF Downloads 34
11686 A Brief Study about Nonparametric Adherence Tests

Authors: Vinicius R. Domingues, Luan C. S. M. Ozelim

Abstract:

The statistical study has become indispensable for various fields of knowledge. Not any different, in Geotechnics the study of probabilistic and statistical methods has gained power considering its use in characterizing the uncertainties inherent in soil properties. One of the situations where engineers are constantly faced is the definition of a probability distribution that represents significantly the sampled data. To be able to discard bad distributions, goodness-of-fit tests are necessary. In this paper, three non-parametric goodness-of-fit tests are applied to a data set computationally generated to test the goodness-of-fit of them to a series of known distributions. It is shown that the use of normal distribution does not always provide satisfactory results regarding physical and behavioral representation of the modeled parameters.

Keywords: Kolmogorov-Smirnov test, Anderson-Darling test, Cramer-Von-Mises test, nonparametric adherence tests

Procedia PDF Downloads 446
11685 In silico Model of Transamination Reaction Mechanism

Authors: Sang-Woo Han, Jong-Shik Shin

Abstract:

w-Transaminase (w-TA) is broadly used for synthesizing chiral amines with a high enantiopurity. However, the reaction mechanism of w-TA has been not well studied, contrary to a-transaminase (a-TA) such as AspTA. Here, we propose in silico model on the reaction mechanism of w-TA. Based on the modeling results which showed large free energy gaps between external aldimine and quinonoid on deamination (or ketimine and quinonoid on amination), withdrawal of Ca-H seemed as a critical step which determines the reaction rate on both amination and deamination reactions, which is consistent with previous researches. Hyperconjugation was also observed in both external aldimine and ketimine which weakens Ca-H bond to elevate Ca-H abstraction.

Keywords: computational modeling, reaction intermediates, w-transaminase, in silico model

Procedia PDF Downloads 547
11684 Mentoring Writing Skills: A Classroom Friendly Approach

Authors: Pradeep Kumar Sahoo

Abstract:

Facilitating writing skill among the young techies seems a bit challenging. Various factors may owe to this difficulty. Inappropriate syllabus, inadequate infrastructure, to some extent, untrained faculty members and above all the background of learners may be treated as the components that make the process challenging. In order to convert/create/prepare writing skill friendly, the focused items will have to be different from the classroom the present day traditional classroom situation. This paper focuses on the multiple contemporary strategies for approaching a wide range of typical problems that the writers face in a specific technical university of Odisha.

Keywords: background of learners, classroom friendly approach, inappropriate syllabus, traditional classroom situation

Procedia PDF Downloads 337
11683 An Enhanced SAR-Based Tsunami Detection System

Authors: Jean-Pierre Dubois, Jihad S. Daba, H. Karam, J. Abdallah

Abstract:

Tsunami early detection and warning systems have proved to be of ultimate importance, especially after the destructive tsunami that hit Japan in March 2012. Such systems are crucial to inform the authorities of any risk of a tsunami and of the degree of its danger in order to make the right decision and notify the public of the actions they need to take to save their lives. The purpose of this research is to enhance existing tsunami detection and warning systems. We first propose an automated and miniaturized model of an early tsunami detection and warning system. The model for the operation of a tsunami warning system is simulated using the data acquisition toolbox of Matlab and measurements acquired from specified internet pages due to the lack of the required real-life sensors, both seismic and hydrologic, and building a graphical user interface for the system. In the second phase of this work, we implement various satellite image filtering schemes to enhance the acquired synthetic aperture radar images of the tsunami affected region that are masked by speckle noise. This enables us to conduct a post-tsunami damage extent study and calculate the percentage damage. We conclude by proposing improvements to the existing telecommunication infrastructure of existing warning tsunami systems using a migration to IP-based networks and fiber optics links.

Keywords: detection, GIS, GSN, GTS, GPS, speckle noise, synthetic aperture radar, tsunami, wiener filter

Procedia PDF Downloads 393
11682 Wavelet-Based Classification of Myocardial Ischemia, Arrhythmia, Congestive Heart Failure and Sleep Apnea

Authors: Santanu Chattopadhyay, Gautam Sarkar, Arabinda Das

Abstract:

This paper presents wavelet based classification of various heart diseases. Electrocardiogram signals of different heart patients have been studied. Statistical natures of electrocardiogram signals for different heart diseases have been compared with the statistical nature of electrocardiograms for normal persons. Under this study four different heart diseases have been considered as follows: Myocardial Ischemia (MI), Congestive Heart Failure (CHF), Arrhythmia and Sleep Apnea. Statistical nature of electrocardiograms for each case has been considered in terms of kurtosis values of two types of wavelet coefficients: approximate and detail. Nine wavelet decomposition levels have been considered in each case. Kurtosis corresponding to both approximate and detail coefficients has been considered for decomposition level one to decomposition level nine. Based on significant difference, few decomposition levels have been chosen and then used for classification.

Keywords: arrhythmia, congestive heart failure, discrete wavelet transform, electrocardiogram, myocardial ischemia, sleep apnea

Procedia PDF Downloads 136
11681 Second Order Statistics of Dynamic Response of Structures Using Gamma Distributed Damping Parameters

Authors: Badreddine Chemali, Boualem Tiliouine

Abstract:

This article presents the main results of a numerical investigation on the uncertainty of dynamic response of structures with statistically correlated random damping Gamma distributed. A computational method based on a Linear Statistical Model (LSM) is implemented to predict second order statistics for the response of a typical industrial building structure. The significance of random damping with correlated parameters and its implications on the sensitivity of structural peak response in the neighborhood of a resonant frequency are discussed in light of considerable ranges of damping uncertainties and correlation coefficients. The results are compared to those generated using Monte Carlo simulation techniques. The numerical results obtained show the importance of damping uncertainty and statistical correlation of damping coefficients when obtaining accurate probabilistic estimates of dynamic response of structures. Furthermore, the effectiveness of the LSM model to efficiently predict uncertainty propagation for structural dynamic problems with correlated damping parameters is demonstrated.

Keywords: correlated random damping, linear statistical model, Monte Carlo simulation, uncertainty of dynamic response

Procedia PDF Downloads 281
11680 Status and Results from EXO-200

Authors: Ryan Maclellan

Abstract:

EXO-200 has provided one of the most sensitive searches for neutrinoless double-beta decay utilizing 175 kg of enriched liquid xenon in an ultra-low background time projection chamber. This detector has demonstrated excellent energy resolution and background rejection capabilities. Using the first two years of data, EXO-200 has set a limit of 1.1x10^25 years at 90% C.L. on the neutrinoless double-beta decay half-life of Xe-136. The experiment has experienced a brief hiatus in data taking during a temporary shutdown of its host facility: the Waste Isolation Pilot Plant. EXO-200 expects to resume data taking in earnest this fall with upgraded detector electronics. Results from the analysis of EXO-200 data and an update on the current status of EXO-200 will be presented.

Keywords: double-beta, Majorana, neutrino, neutrinoless

Procedia PDF Downloads 414
11679 Theoretical Study of Carbonic Anhydrase-Ii Inhibitors for Treatment of Glaucoma

Authors: F. Boukli Hacene, W. Soufi, S. Ghalem

Abstract:

Glaucoma disease is a progressive degenerative optic neuropathy, with irreversible visual field deficits and high eye pressure being one of the risk factors. Sulfonamides are carbonic anhydrase-II inhibitors that aim to decrease the secretion of aqueous humor by direct inhibition of this enzyme at the level of the ciliary processes. These drugs present undesirable effects that are difficult to accept by the patient. In our study, we are interested in the inhibition of carbonic anhydrase-II by different natural ligands (curcumin analogues) using molecular modeling methods using molecular operating environment (MOE) software to predict their interaction with this enzyme.

Keywords: carbonic anhydrase-II, curcumin analogues, drug research, molecular modeling

Procedia PDF Downloads 89
11678 Modeling of Coupled Mechanical State and Diffusion in Composites with Impermeable Fibers

Authors: D. Gueribiz, F. Jacquemin, S. Fréour

Abstract:

During their service life, composite materials are submitted to humid environments. The moisture absorbed by their matrix polymer induced internal stresses which can lead to multi-scale damage and may reduce the lifetime of composite structures. The estimation of internal stresses is based at a first on realistic evaluation of the diffusive behavior of composite materials. Generally, the modeling and simulation of the diffusive behavior of composite materials are extensively investigated through decoupled models based on the assumption of Fickien behavior. For these approaches, the concentration and the deformation (or stresses), the two state variables of the problem considered are governed by independent equations which are solved separately. In this study, a model coupling diffusive behavior with stresses state for a polymer matrix composite reinforced with impermeable fibers is proposed, the investigation of diffusive behavior is based on a more general thermodynamic approach which introduces a dependence of diffusive behavior on internal stresses state. The coupled diffusive behavior modeling was established in first for homogeneous and isotropic matrix and it is, thereafter, extended to impermeable unidirectional composites.

Keywords: composites materials, moisture diffusion, effective moisture diffusivity, coupled moisture diffusion

Procedia PDF Downloads 309
11677 Experimental Correlation for Erythrocyte Aggregation Rate in Population Balance Modeling

Authors: Erfan Niazi, Marianne Fenech

Abstract:

Red Blood Cells (RBCs) or erythrocytes tend to form chain-like aggregates under low shear rate called rouleaux. This is a reversible process and rouleaux disaggregate in high shear rates. Therefore, RBCs aggregation occurs in the microcirculation where low shear rates are present but does not occur under normal physiological conditions in large arteries. Numerical modeling of RBCs interactions is fundamental in analytical models of a blood flow in microcirculation. Population Balance Modeling (PBM) is particularly useful for studying problems where particles agglomerate and break in a two phase flow systems to find flow characteristics. In this method, the elementary particles lose their individual identity due to continuous destructions and recreations by break-up and agglomeration. The aim of this study is to find RBCs aggregation in a dynamic situation. Simplified PBM was used previously to find the aggregation rate on a static observation of the RBCs aggregation in a drop of blood under the microscope. To find aggregation rate in a dynamic situation we propose an experimental set up testing RBCs sedimentation. In this test, RBCs interact and aggregate to form rouleaux. In this configuration, disaggregation can be neglected due to low shear stress. A high-speed camera is used to acquire video-microscopic pictures of the process. The sizes of the aggregates and velocity of sedimentation are extracted using an image processing techniques. Based on the data collection from 5 healthy human blood samples, the aggregation rate was estimated as 2.7x103(±0.3 x103) 1/s.

Keywords: red blood cell, rouleaux, microfluidics, image processing, population balance modeling

Procedia PDF Downloads 355
11676 Forecasting Cancers Cases in Algeria Using Double Exponential Smoothing Method

Authors: Messis A., Adjebli A., Ayeche R., Talbi M., Tighilet K., Louardiane M.

Abstract:

Cancers are the second cause of death worldwide. Prevalence and incidence of cancers is getting increased by aging and population growth. This study aims to predict and modeling the evolution of breast, Colorectal, Lung, Bladder and Prostate cancers over the period of 2014-2019. In this study, data were analyzed using time series analysis with double exponential smoothing method to forecast the future pattern. To describe and fit the appropriate models, Minitab statistical software version 17 was used. Between 2014 and 2019, the overall trend in the raw number of new cancer cases registered has been increasing over time; the change in observations over time has been increasing. Our forecast model is validated since we have good prediction for the period 2020 and data not available for 2021 and 2022. Time series analysis showed that the double exponential smoothing is an efficient tool to model the future data on the raw number of new cancer cases.

Keywords: cancer, time series, prediction, double exponential smoothing

Procedia PDF Downloads 89
11675 The Influence of Language and Background Culture on Speakers from the Viewpoint of Gender and Identity

Authors: Yuko Tomoto

Abstract:

The purpose of this research is to examine the assumption that female bilingual speakers more often change the way they talk or think depending on the language they use compared with male bilingual speakers. The author collected data through questionnaires on 241 bilingual speakers. Also, in-depth interview surveys were conducted with 13 Japanese/English bilingual speakers whose native language is Japanese and 16 English/Japanese bilingual speakers whose native language is English. The results indicate that both male and female bilingual speakers are more or less influenced consciously and unconsciously by the language they use, as well as by the background cultural values of each language. At the same time, it was found that female speakers are much more highly affected by the language they use, its background culture and also by the interlocutors they were talking to. This was probably due to the larger cultural expectations on women. Through conversations, speakers are not only conveying a message but also attempting to express who they are, and what they want to be like. In other words, they are constantly building up and updating their own identities by choosing the most appropriate language and descriptions to express themselves in the dialogues. It has been claimed that the images of ideal L2 self could strongly motivate learners. The author hopes to make the best use of the fact that bilingual speakers change their presence depending on the language they use, in order to motivate Japanese learners of English, especially female learners from the viewpoint of finding their new selves in English.

Keywords: cultural influence, gender expectation, language learning, L2 self

Procedia PDF Downloads 423
11674 Irrigation Water Quality Evaluation Based on Multivariate Statistical Analysis: A Case Study of Jiaokou Irrigation District

Authors: Panpan Xu, Qiying Zhang, Hui Qian

Abstract:

Groundwater is main source of water supply in the Guanzhong Basin, China. To investigate the quality of groundwater for agricultural purposes in Jiaokou Irrigation District located in the east of the Guanzhong Basin, 141 groundwater samples were collected for analysis of major ions (K+, Na+, Mg2+, Ca2+, SO42-, Cl-, HCO3-, and CO32-), pH, and total dissolved solids (TDS). Sodium percentage (Na%), residual sodium carbonate (RSC), magnesium hazard (MH), and potential salinity (PS) were applied for irrigation water quality assessment. In addition, multivariate statistical techniques were used to identify the underlying hydrogeochemical processes. Results show that the content of TDS mainly depends on Cl-, Na+, Mg2+, and SO42-, and the HCO3- content is generally high except for the eastern sand area. These are responsible for complex hydrogeochemical processes, such as dissolution of carbonate minerals (dolomite and calcite), gypsum, halite, and silicate minerals, the cation exchange, as well as evaporation and concentration. The average evaluation levels of Na%, RSC, MH, and PS for irrigation water quality are doubtful, good, unsuitable, and injurious to unsatisfactory, respectively. Therefore, it is necessary for decision makers to comprehensively consider the indicators and thus reasonably evaluate the irrigation water quality.

Keywords: irrigation water quality, multivariate statistical analysis, groundwater, hydrogeochemical process

Procedia PDF Downloads 141
11673 Effects of Different Meteorological Variables on Reference Evapotranspiration Modeling: Application of Principal Component Analysis

Authors: Akinola Ikudayisi, Josiah Adeyemo

Abstract:

The correct estimation of reference evapotranspiration (ETₒ) is required for effective irrigation water resources planning and management. However, there are some variables that must be considered while estimating and modeling ETₒ. This study therefore determines the multivariate analysis of correlated variables involved in the estimation and modeling of ETₒ at Vaalharts irrigation scheme (VIS) in South Africa using Principal Component Analysis (PCA) technique. Weather and meteorological data between 1994 and 2014 were obtained both from South African Weather Service (SAWS) and Agricultural Research Council (ARC) in South Africa for this study. Average monthly data of minimum and maximum temperature (°C), rainfall (mm), relative humidity (%), and wind speed (m/s) were the inputs to the PCA-based model, while ETₒ is the output. PCA technique was adopted to extract the most important information from the dataset and also to analyze the relationship between the five variables and ETₒ. This is to determine the most significant variables affecting ETₒ estimation at VIS. From the model performances, two principal components with a variance of 82.7% were retained after the eigenvector extraction. The results of the two principal components were compared and the model output shows that minimum temperature, maximum temperature and windspeed are the most important variables in ETₒ estimation and modeling at VIS. In order words, ETₒ increases with temperature and windspeed. Other variables such as rainfall and relative humidity are less important and cannot be used to provide enough information about ETₒ estimation at VIS. The outcome of this study has helped to reduce input variable dimensionality from five to the three most significant variables in ETₒ modelling at VIS, South Africa.

Keywords: irrigation, principal component analysis, reference evapotranspiration, Vaalharts

Procedia PDF Downloads 259
11672 The Profit Trend of Cosmetics Products Using Bootstrap Edgeworth Approximation

Authors: Edlira Donefski, Lorenc Ekonomi, Tina Donefski

Abstract:

Edgeworth approximation is one of the most important statistical methods that has a considered contribution in the reduction of the sum of standard deviation of the independent variables’ coefficients in a Quantile Regression Model. This model estimates the conditional median or other quantiles. In this paper, we have applied approximating statistical methods in an economical problem. We have created and generated a quantile regression model to see how the profit gained is connected with the realized sales of the cosmetic products in a real data, taken from a local business. The Linear Regression of the generated profit and the realized sales was not free of autocorrelation and heteroscedasticity, so this is the reason that we have used this model instead of Linear Regression. Our aim is to analyze in more details the relation between the variables taken into study: the profit and the finalized sales and how to minimize the standard errors of the independent variable involved in this study, the level of realized sales. The statistical methods that we have applied in our work are Edgeworth Approximation for Independent and Identical distributed (IID) cases, Bootstrap version of the Model and the Edgeworth approximation for Bootstrap Quantile Regression Model. The graphics and the results that we have presented here identify the best approximating model of our study.

Keywords: bootstrap, edgeworth approximation, IID, quantile

Procedia PDF Downloads 159
11671 Modeling User Departure Time Choice for Trips in Urban Streets

Authors: Saeed Sayyad Hagh Shomar

Abstract:

Modeling users’ decisions on departure time choice is the main motivation for this research. In particular, it examines the impact of social-demographic features, household, job characteristics and trip qualities on individuals’ departure time choice. Departure time alternatives are presented as adjacent discrete time periods. The choice between these alternatives is done using a discrete choice model. Since a great deal of early morning trips and traffic congestion at that time of the day comprise work trips, the focus of this study is on the work trip over the entire day. Therefore, this study by using questionnaire of stated preference models users’ departure time choice affected by congestion pricing plan in downtown Tehran. Experimental results demonstrate efficient social-demographic impact on work trips’ departure time. These findings have substantial outcomes for the analysis of transportation planning. Particularly, the analysis shows that ignoring the effects of these variables could result in erroneous information and consequently decisions in the field of transportation planning and air quality would fail and cause financial resources loss.

Keywords: modeling, departure time, travel timing, time of the day, congestion pricing, transportation planning

Procedia PDF Downloads 434
11670 Introduction of Robust Multivariate Process Capability Indices

Authors: Behrooz Khalilloo, Hamid Shahriari, Emad Roghanian

Abstract:

Process capability indices (PCIs) are important concepts of statistical quality control and measure the capability of processes and how much processes are meeting certain specifications. An important issue in statistical quality control is parameter estimation. Under the assumption of multivariate normality, the distribution parameters, mean vector and variance-covariance matrix must be estimated, when they are unknown. Classic estimation methods like method of moment estimation (MME) or maximum likelihood estimation (MLE) makes good estimation of the population parameters when data are not contaminated. But when outliers exist in the data, MME and MLE make weak estimators of the population parameters. So we need some estimators which have good estimation in the presence of outliers. In this work robust M-estimators for estimating these parameters are used and based on robust parameter estimators, robust process capability indices are introduced. The performances of these robust estimators in the presence of outliers and their effects on process capability indices are evaluated by real and simulated multivariate data. The results indicate that the proposed robust capability indices perform much better than the existing process capability indices.

Keywords: multivariate process capability indices, robust M-estimator, outlier, multivariate quality control, statistical quality control

Procedia PDF Downloads 284
11669 Strategic Investment in Infrastructure Development to Facilitate Economic Growth in the United States

Authors: Arkaprabha Bhattacharyya, Makarand Hastak

Abstract:

The COVID-19 pandemic is unprecedented in terms of its global reach and economic impacts. Historically, investment in infrastructure development projects has been touted to boost the economic growth of a nation. The State and Local governments responsible for delivering infrastructure assets work under tight budgets. Therefore, it is important to understand which infrastructure projects have the highest potential of boosting economic growth in the post-pandemic era. This paper presents relationships between infrastructure projects and economic growth. Statistical relationships between investment in different types of infrastructure projects (transit, water and wastewater, highways, power, manufacturing etc.) and indicators of economic growth are presented using historic data between 2002 and 2020 from the U.S. Census Bureau and U.S. Bureau of Economic Analysis (BEA). The outcome of the paper is the comparison of statistical correlations between investment in different types of infrastructure projects and indicators of economic growth. The comparison of the statistical correlations is useful in ranking the types of infrastructure projects based on their ability to influence economic prosperity. Therefore, investment in the infrastructures with the higher rank will have a better chance of boosting the economic growth. Once, the ranks are derived, they can be used by the decision-makers in infrastructure investment related decision-making process.

Keywords: economic growth, infrastructure development, infrastructure projects, strategic investment

Procedia PDF Downloads 172
11668 Statistical Assessment of Models for Determination of Soil–Water Characteristic Curves of Sand Soils

Authors: S. J. Matlan, M. Mukhlisin, M. R. Taha

Abstract:

Characterization of the engineering behavior of unsaturated soil is dependent on the soil-water characteristic curve (SWCC), a graphical representation of the relationship between water content or degree of saturation and soil suction. A reasonable description of the SWCC is thus important for the accurate prediction of unsaturated soil parameters. The measurement procedures for determining the SWCC, however, are difficult, expensive, and time-consuming. During the past few decades, researchers have laid a major focus on developing empirical equations for predicting the SWCC, with a large number of empirical models suggested. One of the most crucial questions is how precisely existing equations can represent the SWCC. As different models have different ranges of capability, it is essential to evaluate the precision of the SWCC models used for each particular soil type for better SWCC estimation. It is expected that better estimation of SWCC would be achieved via a thorough statistical analysis of its distribution within a particular soil class. With this in view, a statistical analysis was conducted in order to evaluate the reliability of the SWCC prediction models against laboratory measurement. Optimization techniques were used to obtain the best-fit of the model parameters in four forms of SWCC equation, using laboratory data for relatively coarse-textured (i.e., sandy) soil. The four most prominent SWCCs were evaluated and computed for each sample. The result shows that the Brooks and Corey model is the most consistent in describing the SWCC for sand soil type. The Brooks and Corey model prediction also exhibit compatibility with samples ranging from low to high soil water content in which subjected to the samples that evaluated in this study.

Keywords: soil-water characteristic curve (SWCC), statistical analysis, unsaturated soil, geotechnical engineering

Procedia PDF Downloads 338
11667 Ship Detection Requirements Analysis for Different Sea States: Validation on Real SAR Data

Authors: Jaime Martín-de-Nicolás, David Mata-Moya, Nerea del-Rey-Maestre, Pedro Gómez-del-Hoyo, María-Pilar Jarabo-Amores

Abstract:

Ship detection is nowadays quite an important issue in tasks related to sea traffic control, fishery management and ship search and rescue. Although it has traditionally been carried out by patrol ships or aircrafts, coverage and weather conditions and sea state can become a problem. Synthetic aperture radars can surpass these coverage limitations and work under any climatological condition. A fast CFAR ship detector based on a robust statistical modeling of sea clutter with respect to sea states in SAR images is used. In this paper, the minimum SNR required to obtain a given detection probability with a given false alarm rate for any sea state is determined. A Gaussian target model using real SAR data is considered. Results show that SNR does not depend heavily on the class considered. Provided there is some variation in the backscattering of targets in SAR imagery, the detection probability is limited and a post-processing stage based on morphology would be suitable.

Keywords: SAR, generalized gamma distribution, detection curves, radar detection

Procedia PDF Downloads 453