Search results for: LANDSAT images
1446 Monte Carlo and Biophysics Analysis in a Criminal Trial
Authors: Luca Indovina, Carmela Coppola, Carlo Altucci, Riccardo Barberi, Rocco Romano
Abstract:
In this paper a real court case, held in Italy at the Court of Nola, in which a correct physical description, conducted with both a Monte Carlo and biophysical analysis, would have been sufficient to arrive at conclusions confirmed by documentary evidence, is considered. This will be an example of how forensic physics can be useful in confirming documentary evidence in order to reach hardly questionable conclusions. This was a libel trial in which the defendant, Mr. DS (Defendant for Slander), had falsely accused one of his neighbors, Mr. OP (Offended Person), of having caused him some damages. The damages would have been caused by an external plaster piece that would have detached from the neighbor’s property and would have hit Mr DS while he was in his garden, much more than a meter far away from the facade of the building from which the plaster piece would have detached. In the trial, Mr. DS claimed to have suffered a scratch on his forehead, but he never showed the plaster that had hit him, nor was able to tell from where the plaster would have arrived. Furthermore, Mr. DS presented a medical certificate with a diagnosis of contusion of the cerebral cortex. On the contrary, the images of Mr. OP’s security cameras do not show any movement in the garden of Mr. DS in a long interval of time (about 2 hours) around the time of the alleged accident, nor do they show any people entering or coming out from the house of Mr. DS in the same interval of time. Biophysical analysis shows that both the diagnosis of the medical certificate and the wound declared by the defendant, already in conflict with each other, are not compatible with the fall of external plaster pieces too small to be found. The wind was at a level 1 of the Beaufort scale, that is, unable to raise even dust (level 4 of the Beaufort scale). Therefore, the motion of the plaster pieces can be described as a projectile motion, whereas collisions with the building cornice can be treated using Newtons law of coefficients of restitution. Numerous numerical Monte Carlo simulations show that the pieces of plaster would not have been able to reach even the garden of Mr. DS, let alone a distance over 1.30 meters. Results agree with the documentary evidence (images of Mr. OP’s security cameras) that Mr. DS could not have been hit by plaster pieces coming from Mr. OP’s property.Keywords: biophysics analysis, Monte Carlo simulations, Newton’s law of restitution, projectile motion
Procedia PDF Downloads 1301445 Hydrodynamics in Wetlands of Brazilian Savanna: Electrical Tomography and Geoprocessing
Authors: Lucas M. Furlan, Cesar A. Moreira, Jepherson F. Sales, Guilherme T. Bueno, Manuel E. Ferreira, Carla V. S. Coelho, Vania Rosolen
Abstract:
Located in the western part of the State of Minas Gerais, Brazil, the study area consists of a savanna environment, represented by sedimentary plateau and a soil cover composed by lateritic and hydromorphic soils - in the latter, occurring the deferruginization and concentration of high-alumina clays, exploited as refractory material. In the hydromorphic topographic depressions (wetlands) the hydropedogical relationships are little known, but it is observed that in times of rainfall, the depressed region behaves like a natural seasonal reservoir - which suggests that the wetlands on the surface of the plateau are places of recharge of the aquifer. The aquifer recharge areas are extremely important for the sustainable social, economic and environmental development of societies. The understanding of hydrodynamics in relation to the functioning of the ferruginous and hydromorphic lateritic soils system in the savanna environment is a subject rarely explored in the literature, especially its understanding through the joint application of geoprocessing by UAV (Unmanned Aerial Vehicle) and electrical tomography. The objective of this work is to understand the hydrogeological dynamics in a wetland (with an area of 426.064 m²), in the Brazilian savanna,as well as the understanding of the subsurface architecture of hydromorphic depressions in relation to the recharge of aquifers. The wetland was compartmentalized in three different regions, according to the geoprocessing. Hydraulic conductivity studies were performed in each of these three portions. Electrical tomography was performed on 9 lines of 80 meters in length and spaced 10 meters apart (direction N45), and a line with 80 meters perpendicular to all others. With the data, it was possible to generate a 3D cube. The integrated analysis showed that the area behaves like a natural seasonal reservoir in the months of greater precipitation (December – 289mm; January – 277,9mm; February – 213,2mm), because the hydraulic conductivity is very low in all areas. In the aerial images, geotag correction of the images was performed, that is, the correction of the coordinates of the images by means of the corrected coordinates of the Positioning by Precision Point of the Brazilian Institute of Geography and Statistics (IBGE-PPP). Later, the orthomosaic and the digital surface model (DSM) were generated, which with specific geoprocessing generated the volume of water that the wetland can contain - 780,922m³ in total, 265,205m³ in the region with intermediate flooding and 49,140m³ in the central region, where a greater accumulation of water was observed. Through the electrical tomography it was possible to identify that up to the depth of 6 meters the water infiltrates vertically in the central region. From the 8 meters depth, the water encounters a more resistive layer and the infiltration begins to occur horizontally - tending to concentrate the recharge of the aquifer to the northeast and southwest of the wetland. The hydrodynamics of the area is complex and has many challenges in its understanding. The next step is to relate hydrodynamics to the evolution of the landscape, with the enrichment of high-alumina clays, and to propose a management model for the seasonal reservoir.Keywords: electrical tomography, hydropedology, unmanned aerial vehicle, water resources management
Procedia PDF Downloads 1461444 An Automatic Large Classroom Attendance Conceptual Model Using Face Counting
Authors: Sirajdin Olagoke Adeshina, Haidi Ibrahim, Akeem Salawu
Abstract:
large lecture theatres cannot be covered by a single camera but rather by a multicamera setup because of their size, shape, and seating arrangements. Although, classroom capture is achievable through a single camera. Therefore, a design and implementation of a multicamera setup for a large lecture hall were considered. Researchers have shown emphasis on the impact of class attendance taken on the academic performance of students. However, the traditional method of carrying out this exercise is below standard, especially for large lecture theatres, because of the student population, the time required, sophistication, exhaustiveness, and manipulative influence. An automated large classroom attendance system is, therefore, imperative. The common approach in this system is face detection and recognition, where known student faces are captured and stored for recognition purposes. This approach will require constant face database updates due to constant changes in the facial features. Alternatively, face counting can be performed by cropping the localized faces on the video or image into a folder and then count them. This research aims to develop a face localization-based approach to detect student faces in classroom images captured using a multicamera setup. A selected Haar-like feature cascade face detector trained with an asymmetric goal to minimize the False Rejection Rate (FRR) relative to the False Acceptance Rate (FAR) was applied on Raspberry Pi 4B. A relationship between the two factors (FRR and FAR) was established using a constant (λ) as a trade-off between the two factors for automatic adjustment during training. An evaluation of the proposed approach and the conventional AdaBoost on classroom datasets shows an improvement of 8% TPR (output result of low FRR) and 7% minimization of the FRR. The average learning speed of the proposed approach was improved with 1.19s execution time per image compared to 2.38s of the improved AdaBoost. Consequently, the proposed approach achieved 97% TPR with an overhead constraint time of 22.9s compared to 46.7s of the improved Adaboost when evaluated on images obtained from a large lecture hall (DK5) USM.Keywords: automatic attendance, face detection, haar-like cascade, manual attendance
Procedia PDF Downloads 711443 Visual and Verbal Imagination in a Bilingual Context
Authors: Erzsebet Gulyas
Abstract:
Our inner world, our imagination, and our way of thinking are invisible and inaudible to others, but they influence our behavior. To investigate the relationship between thinking and language use, we created a test in Hungarian using ideas from the literature. The test prompts participants to make decisions based on visual images derived from the written information presented. There is a correlation (r=0.5) between the test result and the self-assessment of the visual imagery vividness and the visual and verbal components of internal representations measured by self-report questionnaires, as well as with responses to language-use inquiries in the background questionnaire. 56 university students completed the tests, and SPSS was used to analyze the data.Keywords: imagination, internal representations, verbalization, visualization
Procedia PDF Downloads 541442 Content-Aware Image Augmentation for Medical Imaging Applications
Authors: Filip Rusak, Yulia Arzhaeva, Dadong Wang
Abstract:
Machine learning based Computer-Aided Diagnosis (CAD) is gaining much popularity in medical imaging and diagnostic radiology. However, it requires a large amount of high quality and labeled training image datasets. The training images may come from different sources and be acquired from different radiography machines produced by different manufacturers, digital or digitized copies of film radiographs, with various sizes as well as different pixel intensity distributions. In this paper, a content-aware image augmentation method is presented to deal with these variations. The results of the proposed method have been validated graphically by plotting the removed and added seams of pixels on original images. Two different chest X-ray (CXR) datasets are used in the experiments. The CXRs in the datasets defer in size, some are digital CXRs while the others are digitized from analog CXR films. With the proposed content-aware augmentation method, the Seam Carving algorithm is employed to resize CXRs and the corresponding labels in the form of image masks, followed by histogram matching used to normalize the pixel intensities of digital radiography, based on the pixel intensity values of digitized radiographs. We implemented the algorithms, resized the well-known Montgomery dataset, to the size of the most frequently used Japanese Society of Radiological Technology (JSRT) dataset and normalized our digital CXRs for testing. This work resulted in the unified off-the-shelf CXR dataset composed of radiographs included in both, Montgomery and JSRT datasets. The experimental results show that even though the amount of augmentation is large, our algorithm can preserve the important information in lung fields, local structures, and global visual effect adequately. The proposed method can be used to augment training and testing image data sets so that the trained machine learning model can be used to process CXRs from various sources, and it can be potentially used broadly in any medical imaging applications.Keywords: computer-aided diagnosis, image augmentation, lung segmentation, medical imaging, seam carving
Procedia PDF Downloads 2221441 Assessment of Environmental Quality of an Urban Setting
Authors: Namrata Khatri
Abstract:
The rapid growth of cities is transforming the urban environment and posing significant challenges for environmental quality. This study examines the urban environment of Belagavi in Karnataka, India, using geostatistical methods to assess the spatial pattern and land use distribution of the city and to evaluate the quality of the urban environment. The study is driven by the necessity to assess the environmental impact of urbanisation. Satellite data was utilised to derive information on land use and land cover. The investigation revealed that land use had changed significantly over time, with a drop in plant cover and an increase in built-up areas. High-resolution satellite data was also utilised to map the city's open areas and gardens. GIS-based research was used to assess public green space accessibility and to identify regions with inadequate waste management practises. The findings revealed that garbage collection and disposal techniques in specific areas of the city needed to be improved. Moreover, the study evaluated the city's thermal environment using Landsat 8 land surface temperature (LST) data. The investigation found that built-up regions had higher LST values than green areas, pointing to the city's urban heat island (UHI) impact. The study's conclusions have far-reaching ramifications for urban planners and politicians in Belgaum and other similar cities. The findings may be utilised to create sustainable urban planning strategies that address the environmental effect of urbanisation while also improving the quality of life for city dwellers. Satellite data and high-resolution satellite pictures were gathered for the study, and remote sensing and GIS tools were utilised to process and analyse the data. Ground truthing surveys were also carried out to confirm the accuracy of the remote sensing and GIS-based data. Overall, this study provides a complete assessment of Belgaum's environmental quality and emphasizes the potential of remote sensing and geographic information systems (GIS) approaches in environmental assessment and management.Keywords: environmental quality, UEQ, remote sensing, GIS
Procedia PDF Downloads 801440 Measuring Fragmentation Index of Urban Landscape: A Case Study on Kuala Lumpur City
Authors: Shagufta Tazin Shathy, Mohammad Imam Hasan Reza
Abstract:
Fragmentation due to urbanization and agricultural expansion has become the main reason for destruction of forest area and loss of biodiversity particularly in the developing world. At present, the world is experiencing the largest wave of urban growth in human history, and it is estimated that this influx will be mainly taking place in developing world. Therefore, study on urban fragmentation is vital for a sustainable urban development. Landscape fragmentation is one of the most important conservation issues in the last few decades. Habitat fragmentation due to landscape alteration has caused habitat isolation, destruction in ecosystem pattern and processes. Thus, this research analyses the spatial and temporal extent of urban fragmentation using landscape indices in the Kuala Lumpur (KL) – the capital and most populous city in Malaysia. The objective of this study is to examine the urban fragmentation index in KL city. Fragmentation metrics used in the study are: a) Urban landscape ratio (the ratio of urban landscape area and build up area), b) Infill (development that occurred within urbanized open space), and c) Extension (development of exterior open space). After analyzing all three metrics, these are calculated for the combined urban fragmentation index (UFI). In this combined index, all three metrics are given an equal weight. Land cover/ land use maps of the year 1996 and 2005 have been developed from the Landsat TM 30 m resolution satellite image. The year 1996 is taken as a reference year to analyze the changes. The UFI calculated for the year of 1996 and2005 found that the KL city has undergone rapid landscape changes destructing forest ecosystem adversely. Increasing UFI for the year of 1996 compared to 2005 indicates that the developmental activities have been occupying open spaces and fragmenting natural lands and forest. This index can be implemented in other unplanned and rapidly urbanizing Asian cities for example Dhaka and Delhi to calculate the urban fragmentation rate. The findings from the study will help the stakeholders and urban planners for a sustainable urban management planning in this region.Keywords: GIS, index, sustainable urban management, urbanization
Procedia PDF Downloads 3651439 Normalized Compression Distance Based Scene Alteration Analysis of a Video
Authors: Lakshay Kharbanda, Aabhas Chauhan
Abstract:
In this paper, an application of Normalized Compression Distance (NCD) to detect notable scene alterations occurring in videos is presented. Several research groups have been developing methods to perform image classification using NCD, a computable approximation to Normalized Information Distance (NID) by studying the degree of similarity in images. The timeframes where significant aberrations between the frames of a video have occurred have been identified by obtaining a threshold NCD value, using two compressors: LZMA and BZIP2 and defining scene alterations using Pixel Difference Percentage metrics.Keywords: image compression, Kolmogorov complexity, normalized compression distance, root mean square error
Procedia PDF Downloads 3401438 Application of Multilayer Perceptron and Markov Chain Analysis Based Hybrid-Approach for Predicting and Monitoring the Pattern of LULC Using Random Forest Classification in Jhelum District, Punjab, Pakistan
Authors: Basit Aftab, Zhichao Wang, Feng Zhongke
Abstract:
Land Use and Land Cover Change (LULCC) is a critical environmental issue that has significant effects on biodiversity, ecosystem services, and climate change. This study examines the spatiotemporal dynamics of land use and land cover (LULC) across a three-decade period (1992–2022) in a district area. The goal is to support sustainable land management and urban planning by utilizing the combination of remote sensing, GIS data, and observations from Landsat satellites 5 and 8 to provide precise predictions of the trajectory of urban sprawl. In order to forecast the LULCC patterns, this study suggests a hybrid strategy that combines the Random Forest method with Multilayer Perceptron (MLP) and Markov Chain analysis. To predict the dynamics of LULC change for the year 2035, a hybrid technique based on multilayer Perceptron and Markov Chain Model Analysis (MLP-MCA) was employed. The area of developed land has increased significantly, while the amount of bare land, vegetation, and forest cover have all decreased. This is because the principal land types have changed due to population growth and economic expansion. The study also discovered that between 1998 and 2023, the built-up area increased by 468 km² as a result of the replacement of natural resources. It is estimated that 25.04% of the study area's urbanization will be increased by 2035. The performance of the model was confirmed with an overall accuracy of 90% and a kappa coefficient of around 0.89. It is important to use advanced predictive models to guide sustainable urban development strategies. It provides valuable insights for policymakers, land managers, and researchers to support sustainable land use planning, conservation efforts, and climate change mitigation strategies.Keywords: land use land cover, Markov chain model, multi-layer perceptron, random forest, sustainable land, remote sensing.
Procedia PDF Downloads 331437 Distributed Framework for Pothole Detection and Monitoring Using Federated Learning
Authors: Ezil Sam Leni, Shalen S.
Abstract:
Transport service monitoring and upkeep are essential components of smart city initiatives. The main risks to the relevant departments and authorities are the ever-increasing vehicular traffic and the conditions of the roads. In India, the economy is greatly impacted by the road transport sector. In 2021, the Ministry of Road Transport and Highways Transport, Government of India, produced a report with statistical data on traffic accidents. The data included the number of fatalities, injuries, and other pertinent criteria. This study proposes a distributed infrastructure for the monitoring, detection, and reporting of potholes to the appropriate authorities. In a distributed environment, the nodes are the edge devices, and local edge servers, and global servers. The edge devices receive the initial model to be employed from the global server. The YOLOv8 model for pothole detection is used in the edge devices. The edge devices run the pothole detection model, gather the pothole images on their path, and send the updates to the nearby edge server. The local edge server selects the clients for its aggregation process, aggregates the model updates and sends the updates to the global server. The global server collects the updates from the local edge servers, performs aggregation and derives the updated model. The updated model has the information about the potholes received from the local edge servers and notifies the updates to the local edge servers and concerned authorities for monitoring and maintenance of road conditions. The entire process is implemented in FedCV distributed environment with the implementation using the client-server model and aggregation entities. After choosing the clients for its aggregation process, the local edge server gathers the model updates and transmits them to the global server. After gathering the updates from the regional edge servers, the global server aggregates them and creates the updated model. Performance indicators and the experimentation environment are assessed, discussed, and presented. Accelerometer data may be taken into consideration for improved performance in the future development of this study, in addition to the images captured from the transportation routes.Keywords: federated Learning, pothole detection, distributed framework, federated averaging
Procedia PDF Downloads 1031436 The Meaning in Life and the Content of Mental Images of Temporal Mental Simulations in Poles and Americans
Authors: Katarzyna Pasternak
Abstract:
Experiencing the meaning of life is widely recognised as a vital element of well-being and central human motivation. Studies have shown that a higher meaning of life is associated, among other things, with a higher quality of life, higher levels of happiness and better declared health. The subject of the study is the meaning in life measured with The Meaning in Life Questionnaire and the presence of such emotions as nostalgia, awe and hope, and the content of imaginations measured after temporal mental simulations in Americans and Poles. The respondents had to imagine themselves in future, in 40 years and describe two events that would take place at that time. Next, participants assessed the importance of the events described by them, recognised whether during their journey through time they felt awe, hope and nostalgia, and answered the questionnaire examining the meaning in life. 204 (102 from Poland 102 from the USA ) people aged 21 to 60 participated in the study. The study checked whether there were differences in the content of the imaginations of the respondents from Poland and USA, and whether there were statistically significant difference between the declared sense of meaning in life among participants from both countries. The result of the study hane shown that there were no differences in the overall result obtained by the participants in The Meaning in Life Questionnaire , while there were statistically significant differences among the subscales of the questionnaire. It turned out that Americans have a higher presence of meaning in life than Poles, but they obtained lower results in searching of meaning in life. Studies have also shown that there was a statistically significant difference between Poles and Americans in feeling awe after a mental simulation. Poles felt higher level of awe. Images about the future differed between Poles and Americans. Poles judged that the events they described were very important to them. Interestingly, the content of American participants’ imaginations was dominated by topics related to the future of the world, ecology and world peace. There were also ideas about nice moments spent with friends and family. Among Poles, ideas related to professional career and development as well as family events dominated. Research shows that despite the lack of differences in the general meaning in life, Poles are more focused on searching for meaning in life than Americans. The study shows interesting differences between the two cultures.Keywords: meaning in life, mental simulations, imaginations, temporal mental simulations, future, cultural differences
Procedia PDF Downloads 1051435 Automatic Classification Using Dynamic Fuzzy C Means Algorithm and Mathematical Morphology: Application in 3D MRI Image
Authors: Abdelkhalek Bakkari
Abstract:
Image segmentation is a critical step in image processing and pattern recognition. In this paper, we proposed a new robust automatic image classification based on a dynamic fuzzy c-means algorithm and mathematical morphology. The proposed segmentation algorithm (DFCM_MM) has been applied to MR perfusion images. The obtained results show the validity and robustness of the proposed approach.Keywords: segmentation, classification, dynamic, fuzzy c-means, MR image
Procedia PDF Downloads 4781434 A Survey on Types of Noises and De-Noising Techniques
Authors: Amandeep Kaur
Abstract:
Digital Image processing is a fundamental tool to perform various operations on the digital images for pattern recognition, noise removal and feature extraction. In this paper noise removal technique has been described for various types of noises. This paper comprises discussion about various noises available in the image due to different environmental, accidental factors. In this paper, various de-noising approaches have been discussed that utilize different wavelets and filters for de-noising. By analyzing various papers on image de-noising we extract that wavelet based de-noise approaches are much effective as compared to others.Keywords: de-noising techniques, edges, image, image processing
Procedia PDF Downloads 3361433 ANAC-id - Facial Recognition to Detect Fraud
Authors: Giovanna Borges Bottino, Luis Felipe Freitas do Nascimento Alves Teixeira
Abstract:
This article aims to present a case study of the National Civil Aviation Agency (ANAC) in Brazil, ANAC-id. ANAC-id is the artificial intelligence algorithm developed for image analysis that recognizes standard images of unobstructed and uprighted face without sunglasses, allowing to identify potential inconsistencies. It combines YOLO architecture and 3 libraries in python - face recognition, face comparison, and deep face, providing robust analysis with high level of accuracy.Keywords: artificial intelligence, deepface, face compare, face recognition, YOLO, computer vision
Procedia PDF Downloads 1561432 Brainwave Classification for Brain Balancing Index (BBI) via 3D EEG Model Using k-NN Technique
Authors: N. Fuad, M. N. Taib, R. Jailani, M. E. Marwan
Abstract:
In this paper, the comparison between k-Nearest Neighbor (kNN) algorithms for classifying the 3D EEG model in brain balancing is presented. The EEG signal recording was conducted on 51 healthy subjects. Development of 3D EEG models involves pre-processing of raw EEG signals and construction of spectrogram images. Then, maximum PSD values were extracted as features from the model. There are three indexes for the balanced brain; index 3, index 4 and index 5. There are significant different of the EEG signals due to the brain balancing index (BBI). Alpha-α (8–13 Hz) and beta-β (13–30 Hz) were used as input signals for the classification model. The k-NN classification result is 88.46% accuracy. These results proved that k-NN can be used in order to predict the brain balancing application.Keywords: power spectral density, 3D EEG model, brain balancing, kNN
Procedia PDF Downloads 4861431 Augmented Reality and Its Impact on Education
Authors: Aliakbar Alijarahi, Ali Khaleghi, Azadehe Afrasiyabi
Abstract:
One of the emerging technologies in the field of education that can be effectively profitable, called augmented reality, where the combination of real world and virtual images in real time produces new concepts that can facilitate learning. The paper, providing an introduction to the general concept of augmented reality, aims at surveying its capabitities in different areas, with an emphasis on Education, It seems quite necessary to have comparative study on virtual/e-learning and augmented reality and conclude their differences in education methods. As an review article, the paper is composed, instead of producing new concepts, to sum-up and analayze accomplished works related to the subject.Keywords: augmented reality, education, virtual learning, e-learning
Procedia PDF Downloads 3411430 Spatial Analytics of Ramayan to Geolocate Lanka
Authors: Raj Mukta Sundaram
Abstract:
The location of Ayodhya is distinctly described along river Sarayu in the epic Ramayan. On the contrary, even elaborate descriptions of Lanka and its environs are still proving elusive to human ingenuity to find a direct correlation on the ground. His-torically, there were hardly any attempts to locate Lanka, but some speculations have been made very recently, of which Sri Lanka has gained widespread public ac-ceptance for obvious reasons, such as Sri and Lanka. This belief is almost secured by the impression of Ram Setu on the satellite images, which has led the government to initiate a scientific mission to determine its age. In fact, other viewpoints believe Lanka to be somewhere far-flung along the equator, and another has long proclaimed it to be in central regions of India, but both are diminished by contemporary belief. This study emanates from the fact that Sri Lanka has no correlation to epic, and more importantly, satellite images are deceptive. So the objectives are twofold - firstly, to interpret the text from a holistic approach by analyzing the ecosystem, settlements, geological as-pects, and most importantly, the timeline of key events. Secondly, it explains the pit-falls in the rationale behind contemporary belief. At the outset, it categorically rejects the notion of Ram Setu, which, in geological terms, is merely a part of the continental shelf developed millions of years ago. It also refutes the misconception created by the word “Sri,” which is, in fact, an official name adopted by the country in the seventies with no correlation whatsoever with the events of Ramayana. Likewise, the study ar-gues for the establishment of a prosperous kingdom on a remote island with adverse climatic conditions for any civilization at that time. Eventually, the study demonstrates that travel time for the distances covered by Lord Rama does not corroborate with the description in the epic. It all leads to one conclusion that Lanka cannot be in Sri Lanka. Rather, it needs to be somewhere in the central-eastern parts of India. That region jus-tifies the environs and timelines for the journeys undertaken by Lord Rama, besides the fact that the tribes of the region show strong allegiance to Ravana. The study strongly recommends looking into the central-east region of India for the golden abode of a demon king and rejuvenating tourism of a scenic and culturally rich region hitherto marred by disturbances.Keywords: spatial analysis, Ramayan, heritage, tourism
Procedia PDF Downloads 651429 Study on the Morphology and Dynamic Mechanical and Thermal Properties of HIPS/Graphene Nanocomposites
Authors: Amirhosein Rostampour, Mehdi Sharif
Abstract:
In this article, a series of high impact polystyrene/graphene (HIPS/Gr) nanocomposites were prepared by solution mixing method and their morphology and dynamic mechanical properties were investigated as a function of graphene content. SEM images and X-Ray diffraction data confirm that the graphene platelets are well dispersed in HIPS matrix for the nanocomposites with Gr contents up to 5.0 wt%. Mechanical properties analysis demonstrates that yielding strength and initial modulus of HIPS/Gr nanocomposites are highly improved with the increment of Gr content compared to pure HIPS.Keywords: nanocomposite, graphene, dynamic mechanical properties, morphology
Procedia PDF Downloads 5361428 Artificial Neural Network Approach for Vessel Detection Using Visible Infrared Imaging Radiometer Suite Day/Night Band
Authors: Takashi Yamaguchi, Ichio Asanuma, Jong G. Park, Kenneth J. Mackin, John Mittleman
Abstract:
In this paper, vessel detection using the artificial neural network is proposed in order to automatically construct the vessel detection model from the satellite imagery of day/night band (DNB) in visible infrared in the products of Imaging Radiometer Suite (VIIRS) on Suomi National Polar-orbiting Partnership (Suomi-NPP).The goal of our research is the establishment of vessel detection method using the satellite imagery of DNB in order to monitor the change of vessel activity over the wide region. The temporal vessel monitoring is very important to detect the events and understand the circumstances within the maritime environment. For the vessel locating and detection techniques, Automatic Identification System (AIS) and remote sensing using Synthetic aperture radar (SAR) imagery have been researched. However, each data has some lack of information due to uncertain operation or limitation of continuous observation. Therefore, the fusion of effective data and methods is important to monitor the maritime environment for the future. DNB is one of the effective data to detect the small vessels such as fishery ships that is difficult to observe in AIS. DNB is the satellite sensor data of VIIRS on Suomi-NPP. In contrast to SAR images, DNB images are moderate resolution and gave influence to the cloud but can observe the same regions in each day. DNB sensor can observe the lights produced from various artifact such as vehicles and buildings in the night and can detect the small vessels from the fishing light on the open water. However, the modeling of vessel detection using DNB is very difficult since complex atmosphere and lunar condition should be considered due to the strong influence of lunar reflection from cloud on DNB. Therefore, artificial neural network was applied to learn the vessel detection model. For the feature of vessel detection, Brightness Temperature at the 3.7 μm (BT3.7) was additionally used because BT3.7 can be used for the parameter of atmospheric conditions.Keywords: artificial neural network, day/night band, remote sensing, Suomi National Polar-orbiting Partnership, vessel detection, Visible Infrared Imaging Radiometer Suite
Procedia PDF Downloads 2351427 Neural Rendering Applied to Confocal Microscopy Images
Authors: Daniel Li
Abstract:
We present a novel application of neural rendering methods to confocal microscopy. Neural rendering and implicit neural representations have developed at a remarkable pace, and are prevalent in modern 3D computer vision literature. However, they have not yet been applied to optical microscopy, an important imaging field where 3D volume information may be heavily sought after. In this paper, we employ neural rendering on confocal microscopy focus stack data and share the results. We highlight the benefits and potential of adding neural rendering to the toolkit of microscopy image processing techniques.Keywords: neural rendering, implicit neural representations, confocal microscopy, medical image processing
Procedia PDF Downloads 6581426 Automatic Checkpoint System Using Face and Card Information
Authors: Kriddikorn Kaewwongsri, Nikom Suvonvorn
Abstract:
In the deep south of Thailand, checkpoints for people verification are necessary for the security management of risk zones, such as official buildings in the conflict area. In this paper, we propose an automatic checkpoint system that verifies persons using information from ID cards and facial features. The methods for a person’s information abstraction and verification are introduced based on useful information such as ID number and name, extracted from official cards, and facial images from videos. The proposed system shows promising results and has a real impact on the local society.Keywords: face comparison, card recognition, OCR, checkpoint system, authentication
Procedia PDF Downloads 3211425 A System Functions Set-Up through Near Field Communication of a Smartphone
Authors: Jaemyoung Lee
Abstract:
We present a method to set up system functions through a near filed communication (NFC) of a smartphone. The short communication distance of the NFC which is usually less than 4 cm could prevent any interferences from other devices and establish a secure communication channel between a system and the smartphone. The proposed set-up method for system function values is demonstrated for a blacbox system in a car. In demonstration, system functions of a blackbox which is manipulated through NFC of a smartphone are controls of image quality, sound level, shock sensing level to store images, etc. The proposed set-up method for system function values can be used for any devices with NFC.Keywords: system set-up, near field communication, smartphone, android
Procedia PDF Downloads 3361424 Microstructural Study of Mechanically Alloyed Powders and the Thin Films of Cufe Alloys
Authors: Mechri hanane, Azzaz Mohammed
Abstract:
Polycrystalline CuFe thin film was prepared by thermal evaporation process (Physical vapor deposition), using the nanocrystalline CuFe powder obtained by mechanical alloying After 24 h of milling elemental powders. The microscopic study of nanocrystalline powder and the thin film of Cu70Fe30 binary alloy were examined using transmission electron microscopy (TEM) and scanning electron microscope (SEM). The cross-sectional TEM images showed that the obtained CuFe layer was polycrystalline film of about 20 nm thick and composed of grains of different size ranging from 4 nm to 18 nm.Keywords: nanomaterials, thin films, TEM, SEM
Procedia PDF Downloads 4101423 Convolutional Neural Networks Architecture Analysis for Image Captioning
Authors: Jun Seung Woo, Shin Dong Ho
Abstract:
The Image Captioning models with Attention technology have developed significantly compared to previous models, but it is still unsatisfactory in recognizing images. We perform an extensive search over seven interesting Convolutional Neural Networks(CNN) architectures to analyze the behavior of different models for image captioning. We compared seven different CNN Architectures, according to batch size, using on public benchmarks: MS-COCO datasets. In our experimental results, DenseNet and InceptionV3 got about 14% loss and about 160sec training time per epoch. It was the most satisfactory result among the seven CNN architectures after training 50 epochs on GPU.Keywords: deep learning, image captioning, CNN architectures, densenet, inceptionV3
Procedia PDF Downloads 1311422 Study of Morphological Changes of the River Ganga in Patna District, Bihar Using Remote Sensing and GIS Techniques
Authors: Bhawesh Kumar, A. P. Krishna
Abstract:
There are continuous changes upon earth’s surface by a variety of natural and anthropogenic agents cut, carry away and depositing of minerals from land. Running water has higher capacity of erosion than other geomorphologic agents. This research work has been carried out on Ganga River, whose channel is continuously changing under the influence of geomorphic agents and human activities in the surrounding regions. The main focus is to study morphological characteristics and sand dynamics of Ganga River with particular emphasis on bank lines and width changes using remote sensing and GIS techniques. The advance remote sensing data and topographical data were interpreted for obtaining 52 years of changes. For this, remote sensing data of different years (LANDSAT TM 1975, 1988, 1993, ETM 2005 and ETM 2012) and toposheet of SOI for the year 1960 were used as base maps for this study. Sinuosity ratio, braiding index and migratory activity index were also established. It was found to be 1.16 in 1975 and in 1988, 1993, 2005 and 2005 it was 1.09, 1.11, 1.1, 1.09 respectively. The analysis also shows that the minimum value found in 1960 was in reach 1 and maximum value is 4.8806 in 2012 found in reach 4 which suggests creation of number of islands in reach 4 for the year 2012. Migratory activity index (MAI), which is a standardized function of both length and time, was computed for the 8 representative reaches. MAI shows that maximum migration was in 1975-1988 in reach 6 and 7 and minimum migration was in 1993-2005. From the channel change analysis, it was found that the shifting of bank line was cyclic and the river Ganges showed a trend of southward maximum values. The advanced remote sensing data and topographical data helped in obtaining 52 years changes in the river due to various natural and manmade activities like flood, water velocity and excavation, removal of vegetation cover and fertile soil excavation for the various purposes of surrounding regions.Keywords: braided index, migratory activity index (MAI), Ganga river, river morphology
Procedia PDF Downloads 3461421 Riesz Mixture Model for Brain Tumor Detection
Authors: Mouna Zitouni, Mariem Tounsi
Abstract:
This research introduces an application of the Riesz mixture model for medical image segmentation for accurate diagnosis and treatment of brain tumors. We propose a pixel classification technique based on the Riesz distribution, derived from an extended Bartlett decomposition. To our knowledge, this is the first study addressing this approach. The Expectation-Maximization algorithm is implemented for parameter estimation. A comparative analysis, using both synthetic and real brain images, demonstrates the superiority of the Riesz model over a recent method based on the Wishart distribution.Keywords: EM algorithm, segmentation, Riesz probability distribution, Wishart probability distribution
Procedia PDF Downloads 171420 An Assessment of the Impacts of Agro-Ecological Practices towards the Improvement of Crop Health and Yield Capacity: A Case of Mopani District, Limpopo, South Africa
Authors: Tshilidzi C. Manyanya, Nthaduleni S. Nethengwe, Edmore Kori
Abstract:
The UNFCCC, FAO, GCF, IPCC and other global structures advocate for agro-ecology do address food security and sovereignty. However, most of the expected outcomes concerning agro-ecological were not empirically tested for universal application. Agro-ecology is theorised to increase crop health over ago-ecological farms and decrease over conventional farms. Increased crop health means increased carbon sequestration and thus less CO2 in the atmosphere. This is in line with the view that global warming is anthropogenically enhanced through GHG emissions. Agro-ecology mainly affects crop health, soil carbon content and yield on the cultivated land. Economic sustainability is directly related to yield capacity, which is theorized to increase by 3-10% in a space of 3 - 10 years as a result of agro-ecological implementation. This study aimed to empirically assess the practicality and validity of these assumptions. The study utilized mainly GIS and RS techniques to assess the effectiveness of agro-ecology in crop health improvement from satellite images. The assessment involved a longitudinal study (2013 – 2015) assessing the changes that occur after a farm retrofits from conventional agriculture to agro-ecology. The assumptions guided the objectives of the study. For each objective, an agro-ecological farm was compared with a conventional farm in the same climatic conditional occupying the same general location. Crop health was assessed using satellite images analysed through ArcGIS and Erdas. This entailed the production of NDVI and Re-classified outputs of the farm area. The NDVI ranges of the entire period of study were thus compared in a stacked histogram for each farm to assess for trends. Yield capacity was calculated based on the production records acquired from the farmers and plotted in a stacked bar graph as percentages of a total for each farm. The results of the study showed decreasing crop health trends over 80% of the conventional farms and an increase over 80% of the organic farms. Yield capacity showed similar patterns to those of crop health. The study thus showed that agro-ecology is an effective strategy for crop-health improvement and yield increase.Keywords: agro-ecosystem, conventional farm, dialectical, sustainability
Procedia PDF Downloads 2161419 Diffusion MRI: Clinical Application in Radiotherapy Planning of Intracranial Pathology
Authors: Pomozova Kseniia, Gorlachev Gennadiy, Chernyaev Aleksandr, Golanov Andrey
Abstract:
In clinical practice, and especially in stereotactic radiosurgery planning, the significance of diffusion-weighted imaging (DWI) is growing. This makes the existence of software capable of quickly processing and reliably visualizing diffusion data, as well as equipped with tools for their analysis in terms of different tasks. We are developing the «MRDiffusionImaging» software on the standard C++ language. The subject part has been moved to separate class libraries and can be used on various platforms. The user interface is Windows WPF (Windows Presentation Foundation), which is a technology for managing Windows applications with access to all components of the .NET 5 or .NET Framework platform ecosystem. One of the important features is the use of a declarative markup language, XAML (eXtensible Application Markup Language), with which you can conveniently create, initialize and set properties of objects with hierarchical relationships. Graphics are generated using the DirectX environment. The MRDiffusionImaging software package has been implemented for processing diffusion magnetic resonance imaging (dMRI), which allows loading and viewing images sorted by series. An algorithm for "masking" dMRI series based on T2-weighted images was developed using a deformable surface model to exclude tissues that are not related to the area of interest from the analysis. An algorithm of distortion correction using deformable image registration based on autocorrelation of local structure has been developed. Maximum voxel dimension was 1,03 ± 0,12 mm. In an elementary brain's volume, the diffusion tensor is geometrically interpreted using an ellipsoid, which is an isosurface of the probability density of a molecule's diffusion. For the first time, non-parametric intensity distributions, neighborhood correlations, and inhomogeneities are combined in one segmentation of white matter (WM), grey matter (GM), and cerebrospinal fluid (CSF) algorithm. A tool for calculating the coefficient of average diffusion and fractional anisotropy has been created, on the basis of which it is possible to build quantitative maps for solving various clinical problems. Functionality has been created that allows clustering and segmenting images to individualize the clinical volume of radiation treatment and further assess the response (Median Dice Score = 0.963 ± 0,137). White matter tracts of the brain were visualized using two algorithms: deterministic (fiber assignment by continuous tracking) and probabilistic using the Hough transform. The proposed algorithms test candidate curves in the voxel, assigning to each one a score computed from the diffusion data, and then selects the curves with the highest scores as the potential anatomical connections. White matter fibers were visualized using a Hough transform tractography algorithm. In the context of functional radiosurgery, it is possible to reduce the irradiation volume of the internal capsule receiving 12 Gy from 0,402 cc to 0,254 cc. The «MRDiffusionImaging» will improve the efficiency and accuracy of diagnostics and stereotactic radiotherapy of intracranial pathology. We develop software with integrated, intuitive support for processing, analysis, and inclusion in the process of radiotherapy planning and evaluating its results.Keywords: diffusion-weighted imaging, medical imaging, stereotactic radiosurgery, tractography
Procedia PDF Downloads 851418 Small Scale Mobile Robot Auto-Parking Using Deep Learning, Image Processing, and Kinematics-Based Target Prediction
Authors: Mingxin Li, Liya Ni
Abstract:
Autonomous parking is a valuable feature applicable to many robotics applications such as tour guide robots, UV sanitizing robots, food delivery robots, and warehouse robots. With auto-parking, the robot will be able to park at the charging zone and charge itself without human intervention. As compared to self-driving vehicles, auto-parking is more challenging for a small-scale mobile robot only equipped with a front camera due to the camera view limited by the robot’s height and the narrow Field of View (FOV) of the inexpensive camera. In this research, auto-parking of a small-scale mobile robot with a front camera only was achieved in a four-step process: Firstly, transfer learning was performed on the AlexNet, a popular pre-trained convolutional neural network (CNN). It was trained with 150 pictures of empty parking slots and 150 pictures of occupied parking slots from the view angle of a small-scale robot. The dataset of images was divided into a group of 70% images for training and the remaining 30% images for validation. An average success rate of 95% was achieved. Secondly, the image of detected empty parking space was processed with edge detection followed by the computation of parametric representations of the boundary lines using the Hough Transform algorithm. Thirdly, the positions of the entrance point and center of available parking space were predicted based on the robot kinematic model as the robot was driving closer to the parking space because the boundary lines disappeared partially or completely from its camera view due to the height and FOV limitations. The robot used its wheel speeds to compute the positions of the parking space with respect to its changing local frame as it moved along, based on its kinematic model. Lastly, the predicted entrance point of the parking space was used as the reference for the motion control of the robot until it was replaced by the actual center when it became visible again by the robot. The linear and angular velocities of the robot chassis center were computed based on the error between the current chassis center and the reference point. Then the left and right wheel speeds were obtained using inverse kinematics and sent to the motor driver. The above-mentioned four subtasks were all successfully accomplished, with the transformed learning, image processing, and target prediction performed in MATLAB, while the motion control and image capture conducted on a self-built small scale differential drive mobile robot. The small-scale robot employs a Raspberry Pi board, a Pi camera, an L298N dual H-bridge motor driver, a USB power module, a power bank, four wheels, and a chassis. Future research includes three areas: the integration of all four subsystems into one hardware/software platform with the upgrade to an Nvidia Jetson Nano board that provides superior performance for deep learning and image processing; more testing and validation on the identification of available parking space and its boundary lines; improvement of performance after the hardware/software integration is completed.Keywords: autonomous parking, convolutional neural network, image processing, kinematics-based prediction, transfer learning
Procedia PDF Downloads 1321417 Remote Sensing Reversion of Water Depths and Water Management for Waterbird Habitats: A Case Study on the Stopover Site of Siberian Cranes at Momoge, China
Authors: Chunyue Liu, Hongxing Jiang
Abstract:
Traditional water depth survey of wetland habitats used by waterbirds needs intensive labor, time and money. The optical remote sensing image relies on passive multispectral scanner data has been widely employed to study estimate water depth. This paper presents an innovative method for developing the water depth model based on the characteristics of visible and thermal infrared spectra of Landsat ETM+ image, combing with 441 field water depth data at Etoupao shallow wetland. The wetland is located at Momoge National Nature Reserve of Northeast China, where the largest stopover habitat along the eastern flyway of globally, critically-endangered Siberian Cranes are. The cranes mainly feed on the tubers of emergent aquatic plants such as Scirpus planiculmis and S. nipponicus. The effective water control is a critical step for maintaining the production of tubers and food availability for this crane. The model employing multi-band approach can effectively simulate water depth for this shallow wetland. The model parameters of NDVI and GREEN indicated the vegetation growth and coverage affecting the reflectance from water column change are uneven. Combining with the field-observed water level at the same date of image acquisition, the digital elevation model (DEM) for the underwater terrain was generated. The wetland area and water volume of different water levels were then calculated from the DEM using the function of Area and Volume Statistics under the 3D Analyst of ArcGIS 10.0. The findings provide good references to effectively monitor changes in water level and water demand, develop practical plan for water level regulation and water management, and to create best foraging habitats for the cranes. The methods here can be adopted for the bottom topography simulation and water management in waterbirds’ habitats, especially in the shallow wetlands.Keywords: remote sensing, water depth reversion, shallow wetland habitat management, siberian crane
Procedia PDF Downloads 252