Search results for: land surface temperature
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 13705

Search results for: land surface temperature

2995 Changes in Heavy Metals Bioavailability in Manure-Derived Digestates and Subsequent Hydrochars to Be Used as Soil Amendments

Authors: Hellen L. De Castro e Silva, Ana A. Robles Aguilar, Erik Meers

Abstract:

Digestates are residual by-products, rich in nutrients and trace elements, which can be used as organic fertilisers on soils. However, due to the non-digestibility of these elements and reduced dry matter during the anaerobic digestion process, metal concentrations are higher in digestates than in feedstocks, which might hamper their use as fertilisers according to the threshold values of some country policies. Furthermore, there is uncertainty regarding the required assimilated amount of these elements by some crops, which might result in their bioaccumulation. Therefore, further processing of the digestate to obtain safe fertilizing products has been recommended. This research aims to analyze the effect of applying the hydrothermal carbonization process to manure-derived digestates as a thermal treatment to reduce the bioavailability of heavy metals in mono and co-digestates derived from pig manure and maize from contaminated land in France. This study examined pig manure collected from a novel stable system (VeDoWs, province of East Flanders, Belgium) that separates the collection of pig urine and feces, resulting in a solid fraction of manure with high up-concentration of heavy metals and nutrients. Mono-digestion and co-digestion processes were conducted in semi-continuous reactors for 45 days at mesophilic conditions, in which the digestates were dried at 105 °C for 24 hours. Then, hydrothermal carbonization was applied to a 1:10 solid/water ratio to guarantee controlled experimental conditions in different temperatures (180, 200, and 220 °C) and residence times (2 h and 4 h). During the process, the pressure was generated autogenously, and the reactor was cooled down after completing the treatments. The solid and liquid phases were separated through vacuum filtration, in which the solid phase of each treatment -hydrochar- was dried and ground for chemical characterization. Different fractions (exchangeable / adsorbed fraction - F1, carbonates-bound fraction - F2, organic matter-bound fraction - F3, and residual fraction – F4) of some heavy metals (Cd, Cr, Ni, and Cr) have been determined in digestates and derived hydrochars using the modified Community Bureau of Reference (BCR) sequential extraction procedure. The main results indicated a difference in the heavy metals fractionation between digestates and their derived hydrochars; however, the hydrothermal carbonization operating conditions didn’t have remarkable effects on heavy metals partitioning between the hydrochars of the proposed treatments. Based on the estimated potential ecological risk assessment, there was one level decrease (considerate to moderate) when comparing the HMs partitioning in digestates and derived hydrochars.

Keywords: heavy metals, bioavailability, hydrothermal treatment, bio-based fertilisers, agriculture

Procedia PDF Downloads 89
2994 Effect of White Roofing on Refrigerated Buildings

Authors: Samuel Matylewicz, K. W. Goossen

Abstract:

The deployment of white or cool (high albedo) roofing is a common energy savings recommendation for a variety of buildings all over the world. Here, the effect of a white roof on the energy savings of an ice rink facility in the northeastern US is determined by measuring the effect of solar irradiance on the consumption of the rink's ice refrigeration system. The consumption of the refrigeration system was logged over a year, along with multiple weather vectors, and a statistical model was applied. The experimental model indicates that the expected savings of replacing the existing grey roof with a white roof on the consumption of the refrigeration system is only 4.7 %. This overall result of the statistical model is confirmed with isolated instances of otherwise similar weather days, but cloudy vs. sunny, where there was no measurable difference in refrigeration consumption up to the noise in the local data, which was a few percent. This compares with a simple theoretical calculation that indicates 30% savings. The difference is attributed to a lack of convective cooling of the roof in the theoretical model. The best experimental model shows a relative effect of the weather vectors dry bulb temperature, solar irradiance, wind speed, and relative humidity on refrigeration consumption of 1, 0.026, 0.163, and -0.056, respectively. This result can have an impact on decisions to apply white roofing to refrigerated buildings in general.

Keywords: cool roofs, solar cooling load, refrigerated buildings, energy-efficient building envelopes

Procedia PDF Downloads 111
2993 Quantification of Dowel-Concrete Interaction in Jointed Plain Concrete Pavements Using 3D Numerical Simulation

Authors: Lakshmana Ravi Raj Gali, K. Sridhar Reddy, M. Amaranatha Reddy

Abstract:

Load transfer between adjacent slabs of the jointed plain concrete pavement (JPCP) system is inevitable for long-lasting performance. Dowel bars are generally used to ensure sufficient degree of load transfer, in addition to the load transferred by aggregate interlock mechanism at the joints. Joint efficiency is the measure of joint quality, a major concern and therefore the dowel bar system should be designed and constructed well. The interaction between dowel bars and concrete that includes various parameters of dowel bar and concrete will explain the degree of joint efficiency. The present study focuses on the methodology of selecting contact stiffness, which quantifies dowel-concrete interaction. In addition, a parametric study which focuses on the effect of dowel diameter, dowel shape, the spacing between dowel bars, joint opening, the thickness of the slab, the elastic modulus of concrete, and concrete cover on contact stiffness was also performed. The results indicated that the thickness of the slab is most critical among various parameters to explain the joint efficiency. Further displacement equivalency method was proposed to find out the contact stiffness. The proposed methodology was validated with the available field surface deflection data collected by falling weight deflectometer (FWD).

Keywords: contact stiffness, displacement equivalency method, Dowel-concrete interaction, joint behavior, 3D numerical simulation

Procedia PDF Downloads 131
2992 Investigating the Potential for Introduction of Warm Mix Asphalt in Kuwait Using the Volcanic Ash

Authors: H. Al-Baghli, F. Al-Asfour

Abstract:

The current applied asphalt technology for Kuwait roads pavement infrastructure is the hot mix asphalt (HMA) pavement, including both pen grade and polymer modified bitumen (PMBs), that is produced and compacted at high temperature levels ranging from 150 to 180 °C. There are no current specifications for warm and cold mix asphalts in Kuwait’s Ministry of Public Works (MPW) asphalt standard and specifications. The process of the conventional HMA is energy intensive and directly responsible for the emission of greenhouse gases and other environmental hazards into the atmosphere leading to significant environmental impacts and raising health risk to labors at site. Warm mix asphalt (WMA) technology, a sustainable alternative preferred in multiple countries, has many environmental advantages because it requires lower production temperatures than HMA by 20 to 40 °C. The reduction of temperatures achieved by WMA originates from multiple technologies including foaming and chemical or organic additives that aim to reduce bitumen and improve mix workability. This paper presents a literature review of WMA technologies and techniques followed by an experimental study aiming to compare the results of produced WMA samples, using a water containing additive (foaming process), at different compaction temperatures with the HMA control volumetric properties mix designed in accordance to the new MPW’s specifications and guidelines.

Keywords: warm-mix asphalt, water-bearing additives, foaming-based process, chemical additives, organic additives

Procedia PDF Downloads 111
2991 The Hydro-Geology and Drinking Water Quality of Ikogosi Warm Spring in South West Nigeria

Authors: Ikudayisi Akinola, Adeyemo Folasade, Adeyemo Josiah

Abstract:

This study focuses on the hydro-geology and chemistry of Ikogosi Warm Spring in South West Nigeria. Ikogosi warm spring is a global tourist attraction because it has both warm and cold spring sources. Water samples from the cold spring, warm spring and the meeting point were collected, analyzed and the result shows close similarity in temperature, hydrogen iron concentration (pH), alkalinity, hardness, Calcium, Magnesium, Sodium, Iron, total dissolved solid and heavy metals. The measured parameters in the water samples are within World Health Organisation standards for fresh water. The study of the geology of the warm spring reveals that the study area is underlain by a group of slightly migmatised to non-migmatised paraschists and meta-igneous rocks. The concentration levels of selected heavy metals, (Copper, Cadmium, Zinc, Arsenic and Cromium) were determined in the water (ppm) samples. Chromium had the highest concentration value of 1.52ppm (an average of 49.67%) and Cadmium had the lowest concentration with value of 0.15ppm (an average of 4.89%). Comparison of these results showed that, their mean levels are within the standard values obtained in Nigeria. It can be concluded that both warm and spring water are safe for drinking.

Keywords: cold spring, Ikogosi, melting point, warm spring, water samples

Procedia PDF Downloads 526
2990 Establishing Econometric Modeling Equations for Lumpy Skin Disease Outbreaks in the Nile Delta of Egypt under Current Climate Conditions

Authors: Abdelgawad, Salah El-Tahawy

Abstract:

This paper aimed to establish econometrical equation models for the Nile delta region in Egypt, which will represent a basement for future predictions of Lumpy skin disease outbreaks and its pathway in relation to climate change. Data of lumpy skin disease (LSD) outbreaks were collected from the cattle farms located in the provinces representing the Nile delta region during 1 January, 2015 to December, 2015. The obtained results indicated that there was a significant association between the degree of the LSD outbreaks and the investigated climate factors (temperature, wind speed, and humidity) and the outbreaks peaked during the months of June, July, and August and gradually decreased to the lowest rate in January, February, and December. The model obtained depicted that the increment of these climate factors were associated with evidently increment on LSD outbreaks on the Nile Delta of Egypt. The model validation process was done by the root mean square error (RMSE) and means bias (MB) which compared the number of LSD outbreaks expected with the number of observed outbreaks and estimated the confidence level of the model. The value of RMSE was 1.38% and MB was 99.50% confirming that this established model described the current association between the LSD outbreaks and the change on climate factors and also can be used as a base for predicting the of LSD outbreaks depending on the climatic change on the future.

Keywords: LSD, climate factors, Nile delta, modeling

Procedia PDF Downloads 274
2989 Wind Energy Loss Phenomenon Over Volumized Building Envelope with Porous Air Portals

Authors: Ying-chang Yu, Yuan-lung Lo

Abstract:

More and more building envelopes consist of the construction of balconies, canopies, handrails, sun-shading, vertical planters or gardens, maintenance platforms, display devices, lightings, ornaments, and also the most commonly seen double skin system. These components form a uniform but three-dimensional disturbance structure and create a complex surface wind field in front of the actual watertight building interface. The distorted wind behavior would affect the façade performance and building ventilation. Comparing with sole windscreen walls, these three-dimensional structures perform like distributed air portal assembly, and each portal generates air turbulence and consume wind pressure and energy simultaneously. In this study, we attempted to compare the behavior of 2D porous windscreens without internal construction, porous tubular portal windscreens, porous tapered portal windscreens, and porous coned portal windscreens. The wind energy reduction phenomenon is then compared to the different distributed air portals. The experiments are conducted in a physical wind tunnel with 1:25 in scale to simulate the three-dimensional structure of a real building envelope. The experimental airflow was set up to smooth flow. The specimen is designed as a plane with a distributed tubular structure behind, and the control group uses different tubular shapes but the same fluid volume to observe the wind damping phenomenon of various geometries.

Keywords: volumized building envelope, porous air portal, wind damping, wind tunnel test, wind energy loss

Procedia PDF Downloads 122
2988 Inulinase Immobilization on Functionalized Magnetic Nanoparticles Prepared with Soy Protein Isolate Conjugated Bovine Serum Albumin for High Fructose Syrup Production

Authors: Homa Torabizadeh, Mohaddeseh Mikani

Abstract:

Inulinase from Aspergillus niger was covalently immobilized on magnetic nanoparticles (MNPs/Fe3O4) covered with soy protein isolate (SPI/Fe3O4) functionalized by bovine serum albumin (BSA) nanoparticles. MNPs are promising enzyme carriers because they separate easily under external magnetic fields and have enhanced immobilized enzyme reusability. As MNPs aggregate simply, surface coating strategy was employed. SPI functionalized by BSA was a suitable candidate for nanomagnetite coating due to its superior biocompatibility and hydrophilicity. Fe3O4@SPI-BSA nanoparticles were synthesized as a novel carrier with narrow particle size distribution. Step by step fabrication monitoring of Fe3O4@SPI-BSA nanoparticles was performed using field emission scanning electron microscopy and dynamic light scattering. The results illustrated that nanomagnetite with the spherical morphology was well monodispersed with the diameter of about 35 nm. The average size of the SPI-BSA nanoparticles was 80 to 90 nm, and their zeta potential was around −34 mV. Finally, the mean diameter of fabricated Fe3O4@SPI-BSA NPs was less than 120 nm. Inulinase enzyme from Aspergillus niger was covalently immobilized through gluteraldehyde on Fe3O4@SPI-BSA nanoparticles successfully. Fourier transform infrared spectra and field emission scanning electron microscopy images provided sufficient proof for the enzyme immobilization on the nanoparticles with 80% enzyme loading.

Keywords: high fructose syrup, inulinase immobilization, functionalized magnetic nanoparticles, soy protein isolate

Procedia PDF Downloads 279
2987 The Influence of Climatic Conditions on the Religion of the Medieval Balkan States

Authors: Rastislav Stojsavljevic

Abstract:

During most of the Middle Ages, warmer-than-average weather prevailed in the Balkan Peninsula in Southeast Europe. This period is also called Medieval Climate Optimum. It had its most noticeable phases during the 12th and 13th centuries. Due to climatic conditions, the appearance of unstable weather was observed. Strong storms and hail were a frequent occurrence. From the 9th to the 15th century, the Christian religion dominated the Balkan Peninsula. From East-West Schism (1054 A.D.), most of the people in Balkan states belonged to Eastern Orthodox churches: Byzantium, Bulgaria, Serbia and Bosnia. Medieval Croatia and the coastal part (the Adriatic Sea) of Zeta belonged to the Roman Catholic church. In addition to the dominant Christian religion, a lot of pagan Slavic cults remained in the Balkans during the Middle Ages. Various superstitions were a regular occurrence. They were dominant during severe storms, floods, great droughts, the appearance of comets, etc. In this paper, the appearance of warm and cold temperature spells will be investigated. In the second half of the 14th century, the Little Ice Age began and lasted for several centuries. The period of the first half of the 15th century is characterized by cold and snowy winters. Hunger was a regular occurrence. This has given rise to many beliefs which will be researched and mentioned in the paper.

Keywords: the Balkans, religion, medieval climate optimum, little ice age

Procedia PDF Downloads 54
2986 Spatial Variation of Groundwater Potential at Erusu-Arigidi in Ondo State

Authors: Onifade Yemi Sikiru, Vwoke Eruya

Abstract:

An investigation has been made of the groundwater potentials of Erusu-Arigidi, Ondo State, Nigeria and using an electrical resistivity survey. This study was motivated to determine the electrical resistivity parameters of the area. This work aims to use the electrical resistivity method to explore the groundwater potentials of the study area. A total of ten vertical electrical soundings (VES) were conducted with a maximum electrode spacing of 150 m. The data was acquired using ABEM SAS 1000 Terrameter and processed using WINRESIST. The interpreted and analyzed results reveal four to six geoelectric layers. The VES curves obtained were QH, H, AAA, HKH, and HA. Findings from the study revealed that the geoelectric layer ranges from 3 to 5 layers. From the result, the Dar Zarrouk parameters longitudinal conductance (S) and transverse resistance (Tr), average longitudinal resistance (), transverse resistivity (), coefficient of anisotropy (λ), and reflection coefficient ranges from 0.22 to 1.45mhos, 67.12 to 4262.91 Ω/m², 8.81 to 76.12 Ω-m, 12.0 to 243.5 Ωm², 1.01 to 1.78, and 0.72 to 0.99 respectively. Deduction from S suggested that groundwater tends to be slightly vulnerable to surface contamination. Further findings from Dar Zarrouk parameters revealed that southwest parts of the study area tend to have high groundwater potential when compared to other parts of the study area. While hydraulic conductivity and transmissivity range from 0.003 to 0.051m/day, and 11.16 to 158.30m²/day, results obtained from H and T revealed northwest parts of the study area are considered to be aquiferous when compared to other parts of the research area.

Keywords: variation, isoresistivity, hydraulic conductivity, groundwater

Procedia PDF Downloads 63
2985 Intercropping Sugarcane and Soybean in Lowland and Upland to Support Self Sufficiency of Soybean in Indonesia

Authors: Mohammad Saeri, Zainal Arifin

Abstract:

The purpose of this study is to obtain information on technical and social-economic feasibility of sugarcane-soybean. To achieve these objectives, soybeans intercropping study was conducted in sugar cane crops. This assessment was conducted in two locations with different agroecosystem,ie lowland of low plain in Mojokerto, East Java, with altitude of 50m above sea level and upland of medium plain in Malang, East Javawithaltitude of 500 m above the sea level. The design used was Split plot, with the main plots, is the soybean varieties, consisting of: (a) Anjasmoro, (b) Argomulyo, and (c) Dena-1, while the subplot is bio-fertilizer, consisting of : (1) Agrimeth, (2) Agrisoy, and (3) Biovarm. The variables observed were growth, yield and yield components and economic analysis. The yield of soybean in lowland reached 0.74 t/ha of seeds with farm profit of Indonesian Rupiah 359.200. This result is relatively low due to the delay of soybean cultivation from sugar cane soup time so that sugar cane cover soybean cultivation, while in upland obtained 0.92t/ha seeds with farm profit of Indonesian Rupiah 2,015,000. Therefore, it is suggested that soybeans are planted immediately after ratoon cane so that soybean growth can be optimal before the growth of sugarcane cover the soil surface. The yield of sugar cane in the lowland reached 124.5 tons with a profit of Indonesian Rupiah. 21,200,000,- while in upland obtained by sugarcane yield equal to 78,5 ton with profit equal to Indonesian Rupiah 8,900,000,-.

Keywords: intercropping, sugar cane, soybean, profit, farming

Procedia PDF Downloads 133
2984 Research on the Evolution of Public Space in Tourism-Oriented Traditional Rural Settlements

Authors: Yu Zhang, Mingxue Lang, Li Dong

Abstract:

The hundreds of years of slow succession of living environment in rural area is a crucial carrier of China’s long history of culture and national wisdom. In recent years, the space evolution of traditional rural settlements has been promoted by the intervention of tourism development, among which the public architecture and outdoor activity areas together served as the major places for villagers, and tourists’ social activities are an important characterization for settlement spatial evolution. Traditional public space upgrade and layout study of new public space can effectively promote the tourism industry development of traditional rural settlements. This article takes Qi County, one China Traditional Culture Village as the exemplification and uses the technology of Remote Sensing (RS), Geographic Information System (GIS) and Space Syntax, studies the evolution features of public space of tourism-oriented traditional rural settlements in four steps. First, acquire the 2003 and 2016 image data of Qi County, using the remote sensing application EDRAS8.6. Second, vectorize the basic maps of Qi County including its land use map with the application of ArcGIS 9.3 meanwhile, associating with architectural and site information concluded from field research. Third, analyze the accessibility and connectivity of the inner space of settlements using space syntax; run cross-correlation with the public space data of 2003 and 2016. Finally, summarize the evolution law of the public space of settlements; study the upgrade pattern of traditional public space and location plan for new public space. Major findings of this paper including: first, location layout of traditional public space has a larger association with the calculation results of space syntax and further confirmed the objective value of space syntax in expressing the space and social relations. Second, the intervention of tourism development generates remarkable impact on public space location of tradition rural settlements. Third, traditional public space produces the symbols of both strengthening and decline and forms a diversified upgrade pattern for the purpose of meeting the different tourism functional needs. Finally, space syntax provides an objective basis for location plan of new public space that meets the needs of tourism service. Tourism development has a significant impact on the evolution of public space of traditional rural settlements. Two types of public space, architecture, and site are both with changes seen from the perspective of quantity, location, dimension and function after the intervention of tourism development. Function upgrade of traditional public space and scientific layout of new public space are two important ways in achieving the goal of sustainable development of tourism-oriented traditional rural settlements.

Keywords: public space evolution, Qi county, space syntax, tourism oriented, traditional rural settlements

Procedia PDF Downloads 324
2983 Characterization of Biosurfactants Produced by Bacteria Degrading Gasoline

Authors: Ikram Kamal, Mohamed Blaghen

Abstract:

Biosurfactants are amphiphilic biological compounds consisting of hydrophobic and hydrophilic domains produced extracellularly or as part of the cell membrane by a variety of yeast, bacteria and filamentous fungi. Biosurfactant applications in the environmental industries are promising due to their biodegradability, low toxicity, and effectiveness in enhancing biodegradation and solubilization of low solubility compounds. Currently, the main application is for enhancement of oil recovery and hydrocarbon bioremediation due to their biodegradability and low critical micelle concentration (CMC). The use of biosurfactants has also been proposed for various industrial applications, such as in food additives, cosmetics, detergent formulations and in combinations with enzymes for wastewater treatment. In this study, we have investigated the potential of bacterial strains: Mannheimia haemolytica, Burkholderia cepacia and Serratia ficaria were collected aseptically from the lagoon Marchika (water and soil) in Nador, Morocco; for the production of biosurfactants. This study also aimed to optimize the biosurfactant production process by changing the variables that influence the type and amount of biosurfactant produced by these microorganisms such as: carbon sources and also other physical and chemical parameters such as temperature and pH. Emulsification index, methylene blue test, and thin layer chromatography (TLC) revealed the ability of strains used in this study to produce compounds that could emulsify gasoline. In addition, a GC/MS was used to separate and identify different biosurfactants purified.

Keywords: biosurfactants, Mannheimia haemolytica, biodegradability, Burkholderia cepacia, Serratia ficaria

Procedia PDF Downloads 244
2982 A Perspective of Digital Formation in the Solar Community as a Prototype for Finding Sustainable Algorithmic Conditions on Earth

Authors: Kunihisa Kakumoto

Abstract:

“Purpose”: Global environmental issues are now being raised in a global dimension. By predicting sprawl phenomena beyond the limits of nature with algorithms, we can expect to protect our social life within the limits of nature. It turns out that the sustainable state of the planet now consists in maintaining a balance between the capabilities of nature and the possibilities of our social life. The amount of water on earth is finite. Sustainability is therefore highly dependent on water capacity. A certain amount of water is stored in the forest by planting and green space, and the amount of water can be considered in relation to the green space. CO2 is also absorbed by green plants. "Possible measurements and methods": The concept of the solar community has been introduced in technical papers on the occasion of many international conferences. The solar community concept is based on data collected from one solar model house. This algorithmic study simulates the amount of water stored by lush green vegetation. In addition, we calculated and compared the amount of CO2 emissions from the Taiyo Community and the amount of CO2 reduction from greening. Based on the trial calculation results of these solar communities, we are simulating the sustainable state of the earth as an algorithm trial calculation result. We believe that we should also consider the composition of this solar community group using digital technology as control technology. "Conclusion": We consider the solar community as a prototype for finding sustainable conditions for the planet. The role of water is very important as the supply capacity of water is limited. However, the circulation of social life is not constructed according to the mechanism of nature. This simulation trial calculation is explained using the total water supply volume as an example. According to this process, algorithmic calculations consider the total capacity of the water supply and the population and habitable numbers of the area. Green vegetated land is very important to keep enough water. Green vegetation is also very important to maintain CO2 balance. A simulation trial calculation is possible from the relationship between the CO2 emissions of the solar community and the amount of CO2 reduction due to greening. In order to find this total balance and sustainable conditions, the algorithmic simulation calculation takes into account lush vegetation and total water supply. Research to find sustainable conditions is done by simulating an algorithmic model of the solar community as a prototype. In this one prototype example, it's balanced. The activities of our social life must take place within the permissive limits of natural mechanisms. Of course, we aim for a more ideal balance by utilizing auxiliary digital control technology such as AI.

Keywords: solar community, sustainability, prototype, algorithmic simulation

Procedia PDF Downloads 44
2981 Potassium Acetate - Coconut Shell Activated Carbon for Adsorption of Benzene and Toluene: Equilibrium and Kinetic Studies

Authors: Jibril Mohammed, Usman Dadum Hamza, Abdulsalam Surajudeen, Baba Yahya Danjuma

Abstract:

Considerable concerns have been raised over the presence of volatile organic compounds (VOCs) in water. In this study, coconut shell based activated carbon was produced through chemical activation with potassium acetate (PAAC) for adsorption of benzene and toluene. The porous carbons were characterized using Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), proximate analysis, and ultimate analysis and nitrogen adsorption tests. Adsorption of benzene and toluene on the porous carbons were conducted at varying concentrations (50-250 mg/l). The high BET surface area of 622 m2/g and highly heteroporous adsorbent prepared gave good removal efficiencies of 79 and 82% for benzene and toluene respectively, with 32% yield. Equilibrium data were fitted to Langmuir, Freundlich and Temkin isotherms with all the models having R2 > 0.94. The equilibrium data were best represented by the Langmuir isotherm, with maximum adsorption capacity of 192 mg/g and 227 mg/g for benzene and toluene respectively. The Webber and Chakkravorti equilibrium parameter (RL) values are between 0 and 1 confirming the favourability of the Langmuir model. The adsorption kinetics was found to follow the pseudo-second-order kinetic model. The PAAC produced can be used effectively to salvage environmental pollution problems posed by VOCs through a sustainable process.

Keywords: adsorption, equilibrium and kinetics studies, potassium acetate, water treatment

Procedia PDF Downloads 200
2980 Evaluation of Quality of Rhumel Wadi Waters by Physico-Chemical and Biological Parameters

Authors: Djeddi Hamssa, Kherief Necereddine Saliha, Mehennaoui Fatima Zohra

Abstract:

The objectives of this study are to use different parameters to assess the current pollution status of sediments in Rhumel wadi located in the North-East of Algeria (Constantine), two stations were selected in strategic points and sampled at three occasions on Sptember 2014, Junary 2015 and April 2015. Parameters used in this study were a physico-chimical analysis of water (pH, CE, Dissolved O2), sediments (pH, CE, CaCo3, MO) and contamination level of sediments by cadmium, completed by biological testing and analysis of existing benthic community. The results of the physico-chemical parameters show that the water temperature is average and seasonal, the pH value is acidic, does not exceed 6.64. The amplitude variation may be important from upstream to downstream. The generally high electrical conductivity, for the carbonate nature of the watershed increases from upstream to downstream. The waters of the Rhumel wadi are excessively mineralized, dissolved oxygen, a vital factor for benthic community wildlife downstream decreases with increasing organic loading; oxygen is consumed by the microorganisms to its degradation. Analysis of the benthic fauna and calculating the biotic index show a clear excessive pollution for both upstream and downstream stations.

Keywords: biological analysis, benthic fauna, sediments contamination, cadmium

Procedia PDF Downloads 228
2979 A Discrete Element Method-Based Simulation of Toppling Failure Considering Block Interaction

Authors: Hooman Dabirmanesh, Attila M. Zsaki

Abstract:

The toppling failure mode in a rock mass is considerably different from the most common sliding failure type along an existing or an induced slip plane. Block toppling is observed in a rock mass which consists of both a widely-spaced basal cross-joint set and a closely-spaced discontinuity set dipping into the slope. For this case, failure occurs when the structure cannot bear the tensile portion of bending stress, and the columns or blocks overturn by their own weight. This paper presents a particle-based discrete element model of rock blocks subjected to a toppling failure where geometric conditions and interaction among blocks are investigated. A series of parametric studies have been conducted on particles’ size, arrangement and bond contact among of particles which are made the blocks. Firstly, a numerical investigation on a one-block system was verified. Afterward, a slope consisting of multi-blocks was developed to study toppling failure and interaction forces between blocks. The results show that the formation of blocks, especially between the block and basal plane surface, can change the process of failure. The results also demonstrate that the initial configuration of particles used to form the blocks has a significant role in achieving accurate simulation results. The size of particles and bond contacts have a considerable influence to change the progress of toppling failure.

Keywords: block toppling failure, contact interaction, discrete element, particle size, random generation

Procedia PDF Downloads 178
2978 Composite Electrodes Containing Ni-Fe-Cr as an Activatable Oxygen Evolution Catalyst

Authors: Olga A. Krysiak, Grzegorz Cichowicz, Wojciech Hyk, Michal Cyranski, Jan Augustynski

Abstract:

Metal oxides are known electrocatalyst in water oxidation reaction. Due to the fact that it is desirable for efficient oxygen evolution catalyst to contain numerous redox-active metal ions to guard four electron water oxidation reaction, mixed metal oxides exhibit enhanced catalytic activity towards oxygen evolution reaction compared to single metal oxide systems. On the surface of fluorine doped tin oxide coated glass slide (FTO) deposited (doctor blade technique) mixed metal oxide layer composed of nickel, iron, and chromium. Oxide coating was acquired by heat treatment of the aqueous precursors' solutions of the corresponding salts. As-prepared electrodes were photosensitive and acted as an efficient oxygen evolution catalyst. Our results showed that obtained by this method electrodes can be activated which leads to achieving of higher current densities. The recorded current and photocurrent associated with oxygen evolution process were at least two orders of magnitude higher in the presence of oxide layer compared to bare FTO electrode. The overpotential of the process is low (ca. 0,2 V). We have also checked the activity of the catalyst at different known photoanodes used in sun-driven water splitting. Herein, we demonstrate that we were able to achieve efficient oxygen evolution catalysts using relatively cheap precursor consisting of earth abundant metals and simple method of preparation.

Keywords: chromium, electrocatalysis, iron, metal oxides, nickel, oxygen evolution

Procedia PDF Downloads 193
2977 Microstructure and Corrosion Properties of Pulsed Current Gas Metal Arc Welded Narrow Groove and Ultra-Narrow Groove of 304 LN Austenitic Stainless Steel

Authors: Nikki A. Barla, P. K. Ghosh, Sourav Das

Abstract:

Two different groove sizes 13.6 mm (narrow groove) and 7.5 mm (ultra-narrow groove) of 304 LN austenitic stainless steel (ASS) plate was welded using pulse gas metal arc welding (P-GMAW). These grooves were welded using multi-pass single seam per layer (MSPPL) deposition technique with full assurance of groove wall fusion. During bead on plate deposition process, the thermal cycle was recorded using strain buster (temperature measuring device). Both the groove has heat affected Zone (HAZ) width of 1-2 mm. After welding, the microstructure studies was done which revealed that there was higher sensitization (Chromium carbide formation in grain boundary) in the HAZ of 13.6 mm groove weldment as compared to the HAZ of 7.5 mm weldment. Electrochemical potentiokinetic reactivation test (EPR) was done in 0.5 N H₂SO₄ + 1 M KSCN solution to study the degree of sensitization (DOS) and it was observed that 7.5 mm groove HAZ has lower DOS. Mass deposition in the 13.6 mm weld is higher than 7.5mm groove weld, which naturally induces higher residual stress in 13.6 mm weld. Comparison between microstructural studies and corrosion test summarized that the residual stress affects the sensitization property of welded ASS.

Keywords: austenitic stainless steel (ASS), electrochemical potentiokinetic reactivation test (EPR), microstructure, pulse gas metal arc welding (P-GMAW), sensitization

Procedia PDF Downloads 148
2976 Improvement of Energy Consumption toward Sustainable Ceramic Industry in Indonesia

Authors: Sawarni Hasibuan, Rudi Effendi Listyanto

Abstract:

The industrial sector is the largest consumer of energy consumption in Indonesia. The ceramics industry includes one of seven industries categorized as an energy-intensive industry. Energy costs on the ceramic floor production process reached 40 percent of the total production cost. The kiln is one of the machines in the ceramic industry that consumes the most gas energy reach 51 percent of gas consumption in ceramic production. The purpose of this research is to make improvement of energy consumption in kiln machine part with the innovation of burner tube to support the sustainability of Indonesian ceramics industry. The tube burner is technically designed to be able to raise the temperature and stabilize the air pressure in the burner so as to facilitate the combustion process in the kiln machine which implies the efficiency of gas consumption required. The innovation of the burner tube also has an impact on the decrease of the combustion chamber pressure in the kiln and managed to keep the pressure of the combustion chamber according to the operational standard of the kiln; consequently, the smoke fan motor power can be lowered and the kiln electric energy consumption is also more efficient. The innovation of burner tube succeeded in saving consume of gas and electricity respectively by 0.0654 GJ and 1,693 x 10-3 GJ for every ton of ceramics produced. Improvement of this energy consumption not only implies the cost savings of production but also supports the sustainability of the Indonesian ceramics industry.

Keywords: sustainable ceramic industry, burner tube, kiln, energy efficiency

Procedia PDF Downloads 310
2975 Multi-Modal Film Boiling Simulations on Adaptive Octree Grids

Authors: M. Wasy Akhtar

Abstract:

Multi-modal film boiling simulations are carried out on adaptive octree grids. The liquid-vapor interface is captured using the volume-of-fluid framework adjusted to account for exchanges of mass, momentum, and energy across the interface. Surface tension effects are included using a volumetric source term in the momentum equations. The phase change calculations are conducted based on the exact location and orientation of the interface; however, the source terms are calculated using the mixture variables to be consistent with the one field formulation used to represent the entire fluid domain. The numerical model on octree representation of the computational grid is first verified using test cases including advection tests in severely deforming velocity fields, gravity-based instabilities and bubble growth in uniformly superheated liquid under zero gravity. The model is then used to simulate both single and multi-modal film boiling simulations. The octree grid is dynamically adapted in order to maintain the highest grid resolution on the instability fronts using markers of interface location, volume fraction, and thermal gradients. The method thus provides an efficient platform to simulate fluid instabilities with or without phase change in the presence of body forces like gravity or shear layer instabilities.

Keywords: boiling flows, dynamic octree grids, heat transfer, interface capturing, phase change

Procedia PDF Downloads 231
2974 Contribution at Dimensioning of the Energy Dissipation Basin

Authors: M. Aouimeur

Abstract:

The environmental risks of a dam and particularly the security in the Valley downstream of it,, is a very complex problem. Integrated management and risk-sharing become more and more indispensable. The definition of "vulnerability “concept can provide assistance to controlling the efficiency of protective measures and the characterization of each valley relatively to the floods's risk. Security can be enhanced through the integrated land management. The social sciences may be associated to the operational systems of civil protection, in particular warning networks. The passage of extreme floods in the site of the dam causes the rupture of this structure and important damages downstream the dam. The river bed could be damaged by erosion if it is not well protected. Also, we may encounter some scouring and flooding problems in the downstream area of the dam. Therefore, the protection of the dam is crucial. It must have an energy dissipator in a specific place. The basin of dissipation plays a very important role for the security of the dam and the protection of the environment against floods downstream the dam. It allows to dissipate the potential energy created by the dam with the passage of the extreme flood on the weir and regularize in a natural manner and with more security the discharge or elevation of the water plan on the crest of the weir, also it permits to reduce the speed of the flow downstream the dam, in order to obtain an identical speed to the river bed. The problem of the dimensioning of a classic dissipation basin is in the determination of the necessary parameters for the dimensioning of this structure. This communication presents a simple graphical method, that is fast and complete, and a methodology which determines the main features of the hydraulic jump, necessary parameters for sizing the classic dissipation basin. This graphical method takes into account the constraints imposed by the reality of the terrain or the practice such as the one related to the topography of the site, the preservation of the environment equilibrium and the technical and economic side.This methodology is to impose the loss of head DH dissipated by the hydraulic jump as a hypothesis (free design) to determine all the others parameters of classical dissipation basin. We can impose the loss of head DH dissipated by the hydraulic jump that is equal to a selected value or to a certain percentage of the upstream total head created by the dam. With the parameter DH+ =(DH/k),(k: critical depth),the elaborate graphical representation allows to find the other parameters, the multiplication of these parameters by k gives the main characteristics of the hydraulic jump, necessary parameters for the dimensioning of classic dissipation basin.This solution is often preferred for sizing the dissipation basins of small concrete dams. The results verification and their comparison to practical data, confirm the validity and reliability of the elaborate graphical method.

Keywords: dimensioning, energy dissipation basin, hydraulic jump, protection of the environment

Procedia PDF Downloads 566
2973 Influence of Sewage Sludge on Agricultural Land Quality and Crop

Authors: Catalina Iticescu, Lucian P. Georgescu, Mihaela Timofti, Gabriel Murariu

Abstract:

Since the accumulation of large quantities of sewage sludge is producing serious environmental problems, numerous environmental specialists are looking for solutions to solve this problem. The sewage sludge obtained by treatment of municipal wastewater may be used as fertiliser on agricultural soils because such sludge contains large amounts of nitrogen, phosphorus and organic matter. In many countries, sewage sludge is used instead of chemical fertilizers in agriculture, this being the most feasible method to reduce the increasingly larger quantities of sludge. The use of sewage sludge on agricultural soils is allowed only with a strict monitoring of their physical and chemical parameters, because heavy metals exist in varying amounts in sewage sludge. Exceeding maximum permitted quantities of harmful substances may lead to pollution of agricultural soil and may cause their removal aside because the plants may take up the heavy metals existing in soil and these metals will most probably be found in humans and animals through food. The sewage sludge analyzed for the present paper was extracted from the Wastewater Treatment Station (WWTP) Galati, Romania. The physico-chemical parameters determined were: pH (upH), total organic carbon (TOC) (mg L⁻¹), N-total (mg L⁻¹), P-total (mg L⁻¹), N-NH₄ (mg L⁻¹), N-NO₂ (mg L⁻¹), N-NO₃ (mg L⁻¹), Fe-total (mg L⁻¹), Cr-total (mg L⁻¹), Cu (mg L⁻¹), Zn (mg L⁻¹), Cd (mg L⁻¹), Pb (mg L⁻¹), Ni (mg L⁻¹). The determination methods were electrometrical (pH, C, TSD) - with a portable HI 9828 HANNA electrodes committed multiparameter and spectrophotometric - with a Spectroquant NOVA 60 - Merck spectrophotometer and with specific Merck parameter kits. The tests made pointed out the fact that the sludge analysed is low heavy metal falling within the legal limits, the quantities of metals measured being much lower than the maximum allowed. The results of the tests made to determine the content of nutrients in the sewage sludge have shown that the existing nutrients may be used to increase the fertility of agricultural soils. Other tests were carried out on lands where sewage sludge was applied in order to establish the maximum quantity of sludge that may be used so as not to constitute a source of pollution. The tests were made on three plots: a first batch with no mud and no chemical fertilizers applied, a second batch on which only sewage sludge was applied, and a third batch on which small amounts of chemical fertilizers were applied in addition to sewage sludge. The results showed that the production increases when the soil is treated with sludge and small amounts of chemical fertilizers. Based on the results of the present research, a fertilization plan has been suggested. This plan should be reconsidered each year based on the crops planned, the yields proposed, the agrochemical indications, the sludge analysis, etc.

Keywords: agricultural use, crops, physico–chemical parameters, sewage sludge

Procedia PDF Downloads 267
2972 Effects of Initial Moisture Content on the Physical and Mechanical Properties of Norway Spruce Briquettes

Authors: Miloš Matúš, Peter Križan, Ľubomír Šooš, Juraj Beniak

Abstract:

The moisture content of densified biomass is a limiting parameter influencing the quality of this solid biofuel. It influences its calorific value, density, mechanical strength and dimensional stability as well as affecting its production process. This paper deals with experimental research into the effect of moisture content of the densified material on the final quality of biofuel in the form of logs (briquettes or pellets). Experiments based on the single-axis densification of the spruce sawdust were carried out with a hydraulic piston press (piston and die), where the densified logs were produced at room temperature. The effect of moisture content on the qualitative properties of the logs, including density, change of moisture, expansion and physical changes, and compressive and impact resistance were studied. The results show the moisture ranges required for producing good-quality logs. The experiments were evaluated and the moisture content of the tested material was optimized to achieve the optimum value for the best quality of the solid biofuel. The dense logs also have high-energy content per unit volume. The research results could be used to develop and optimize industrial technologies and machinery for biomass densification to achieve high quality solid biofuel.

Keywords: biomass, briquettes, densification, fuel quality, moisture content, density

Procedia PDF Downloads 407
2971 Assay for SARS-Cov-2 on Chicken Meat

Authors: R. Mehta, M. Ghogomu, B. Schoel

Abstract:

Reports appeared in 2020 about China detecting SARS-Cov-2 (Covid-19) on frozen meat, shrimp, and food packaging material. In this study, we examined the use of swabs for the detection of Covid-19 on meat samples, and chicken breast (CB) was used as a model. Methods: Heat inactivated SARS-Cov-2 virus (IV) from Microbiologics was loaded onto the CB, swabbing was done, and the recovered inactivated virus was subjected to the Machery & Nagel NucleoSpin RNAVirus kit for RNA isolation according to manufacturer's instructions. For RT-PCR, the IDT 2019-nCoV RUO Covid-19 test kit was used with the Taqman Fast Virus 1-step master mix. The limit of detection (LOD) of viral load recovered from the CB was determined under various conditions: first on frozen CB where the IV was introduced on a defined area, then on frozen CB, with IV spread-out, and finally, on thawed CB. Results: The lowest amount of IV which can be reliably detected on frozen CB was a load of 1,000 - 2,000 IV copies where the IV was loaded on one spot of about 1 square inch. Next, the IV was spread out over a whole frozen CB about 16 square inches. The IV could be recovered at a lowest load of 4,000 to 8,000 copies. Furthermore, the effects of temperature change on viral load recovery was investigated i.e., if raw unfrozen meat became contaminated and remains for 1 hour at 4°C or gets refrozen. The amount of IV recovered successfully from CB kept at 4°C and the refrozen CB was similar to the recovery gotten from loading the IV directly on the frozen CB. In conclusion, an assay using swabs was successfully established for the detection of SARS-Cov-2 on frozen or raw (unfrozen) CB with a minimal load of up to 8,000 copies spread over 16 square inches.

Keywords: assay, COVID-19, meat, SARS-Cov-2

Procedia PDF Downloads 189
2970 Production and Characterization of Ce3+: Si2N2O Phosphors for White Light-Emitting Diodes

Authors: Alparslan A. Balta, Hilmi Yurdakul, Orkun Tunckan, Servet Turan, Arife Yurdakul

Abstract:

Si2N2O (Sinoite) is an inorganic-based oxynitride material that reveals promising phosphor candidates for white light-emitting diodes (WLEDs). However, there is now limited knowledge to explain the synthesis of Si2N2O for this purpose. Here, to the best of authors’ knowledge, we report the first time the production of Si2N2O based phosphors by CeO2, SiO2, Si3N4 from main starting powders, and Li2O sintering additive through spark plasma sintering (SPS) route. The processing parameters, e.g., pressure, temperature, and sintering time, were optimized to reach the monophase Si2N2O containing samples. The lattice parameter, crystallite size, and amount of formation phases were characterized in detail by X-ray diffraction (XRD). Grain morphology, particle size, and distribution were analyzed by scanning and transmission electron microscopes (SEM and TEM). Cathodoluminescence (CL) in SEM and photoluminescence (PL) analyses were conducted on the samples to determine the excitation, and emission characteristics of Ce3+ activated Si2N2O. Results showed that the Si2N2O phase in a maximum 90% ratio was obtained by sintering for 15 minutes at 1650oC under 30 MPa pressure. Based on the SEM-CL and PL measurements, Ce3+: Si2N2O phosphor shows a broad emission summit between 400-700 nm that corresponds to white light. The present research was supported by TUBITAK under project number 217M667.

Keywords: cerium, oxynitride, phosphors, sinoite, Si₂N₂O

Procedia PDF Downloads 94
2969 Drag Reduction of Base Bleed at Various Flight Conditions

Authors: Man Chul Jeong, Hyoung Jin Lee, Sang Yoon Lee, Ji Hyun Park, Min Wook Chang, In-Seuck Jeung

Abstract:

This study focus on the drag reduction effect of the base bleed at supersonic flow. Base bleed is the method which bleeds the gas on the tail of the flight vehicle and reduces the base drag, which occupies over 50% of the total drag in any flight speed. Thus base bleed can reduce the total drag significantly, and enhance the total flight range. Drag reduction ratio of the base bleed is strongly related to the mass flow rate of the bleeding gas. Thus selecting appropriate mass flow rate is important. However, since the flight vehicle has various flight speed, same mass flow rate of the base bleed can have different drag reduction effect during the flight. Thus, this study investigates the effect of the drag reduction depending on the flight speed by numerical analysis using STAR-CCM+. The analysis model is 155mm diameter projectile with boat-tailed shape base. Angle of the boat-tail is chosen previously for minimum drag coefficient. Numerical analysis is conducted for Mach 2 and Mach 3, with various mass flow rate, or the injection parameter I, of the bleeding gas and the temperature of the bleeding gas, is fixed to 300K. The results showed that I=0.025 has the minimum drag at Mach 2, and I=0.014 has the minimum drag at Mach 3. Thus as the Mach number is higher, the lower mass flow rate of the base bleed has more effect on drag reduction.

Keywords: base bleed, supersonic, drag reduction, recirculation

Procedia PDF Downloads 398
2968 Analysis of Storm Flood in Typical Sewer Networks in High Mountain Watersheds of Colombia Based on SWMM

Authors: J. C. Hoyos, J. Zambrano Nájera

Abstract:

Increasing urbanization has led to changes in the natural dynamics of watersheds, causing problems such as increases in volumes of runoff, peak flow rates, and flow rates so that the risk of storm flooding increases. Sewerage networks designed 30 – 40 years ago don’t account for these increases in flow volumes and velocities. Besides, Andean cities with high slopes worsen the problem because velocities are even higher not allowing sewerage network work and causing cities less resilient to landscape changes and climatic change. In Latin America, especially Colombia, this is a major problem because urban population at late XX century was more than 70% is in urban areas increasing approximately in 790% in 1940-1990 period. Thus, it becomes very important to study how changes in hydrological behavior affect hydraulic capacity of sewerage networks in Andean Urban Watersheds. This research aims to determine the impact of urbanization in high-sloped urban watersheds in its hydrology. To this end it will be used as study area experimental urban watershed named Palogrande-San Luis watershed, located in the city of Manizales, Colombia. Manizales is a city in central western Colombia, located in Colombian Central Mountain Range (part of Los Andes Mountains) with an abrupt topography (average altitude is 2.153 m). The climate in Manizales is quite uniform, but due to its high altitude it presents high precipitations (1.545 mm/year average) with high humidity (83% average). Behavior of the current sewerage network will be reviewed by the hydraulic model SWMM (Storm Water Management Model). Based on SWMM the hydrological response of urban watershed selected will be evaluated under the design storm with different frequencies in the region, such as drainage effect and water-logging, overland flow on roads, etc. Cartographic information was obtained from a Geographic Information System (GIS) thematic maps of the Institute of Environmental Studies of the Universidad Nacional de Colombia and the utility Aguas de Manizales S.A. Rainfall and streamflow data is obtained from 4 rain gages and 1 stream gages. This information will allow determining critical issues on drainage systems design in urban watershed with very high slopes, and which practices will be discarded o recommended.

Keywords: land cover changes, storm sewer system, urban hydrology, urban planning

Procedia PDF Downloads 241
2967 Rural Women in Serbia: Key Challenges in Enjoyment of Economic and Social Rights

Authors: Mirjana Dokmanovic

Abstract:

In recent years, the disadvantaged and marginalised position of rural women in the Republic of Serbia has been recognised in a number of national strategies and policy papers. A number of measures have been adopted by the government aimed at economic empowerment of rural women and eliminating barriers to accessing decision making and economic and social opportunities. However, their implementation pace is still slow. The aim of the paper is to indicate the necessity of a comprehensive policy approach to eliminating discrimination against rural women that would include policy and financial commitments for enhancing agricultural and rural development as a whole, instead of taking fragmented measures targeting consequences instead of causes. The paper introduces main findings of the study of challenges, constraints, and opportunities of rural women in Serbia to enjoy their economic and social rights. The research methodology included the desk research and the qualitative analysis of the available data, statistics, policy papers, studies, and reports produced by the government, ministries and other governmental bodies, independent human rights bodies, and civil society organizations (CSOs). The findings of the study reveal that rural women are at great risk of poverty, particularly in remote areas, and when getting old or widowed. Young rural women working in agriculture are also in unfavorable position, as they do not have opportunities to enjoy their rights during pregnancy and maternity leave, childcare leave and leave due to the special care of a child. The study indicates that the main causes of their unfavorable position are related to the prevalent patriarchal surrounding and economic and social underdevelopment of rural areas in Serbia. Gender inequalities have been particularly present in accessing land and property rights, inheritance, education, social protection, healthcare, and decision making. Women living in the rural areas are exposed at high risk of discrimination in all spheres of public and private life that undermine their enjoyment of basic economic, social and cultural rights. The vulnerability of rural women to discrimination increases in cases of the intersectionality of other grounds of discrimination, such as disability, ethnicity, age, health condition and sexual discrimination. If they are victims of domestic violence, their experience lack of access to shelters and protection services. Despite the State’s recognition of the marginalized position of rural women, there is still a lack of a comprehensive policy approach to improving the economic and social position of rural women.

Keywords: agricultural and rural development, care economy, discrimination against women, economic and social rights, feminization of poverty, Republic of Serbia, rural women

Procedia PDF Downloads 239
2966 Green Synthesis and Characterization of Zinc Oxide Nanoparticles Using Neem (Azadiractha Indica) Leaf Extract and Investigate Its Antibacterial Activities

Authors: Elmineh Tsegahun Gedif

Abstract:

Zinc oxide nanoparticles (ZnO NPs) have attracted huge attention due to catalytic, optical, photonic, and antibacterial activity. Zinc oxide nanoparticles were successfully synthesized via a fast, non-toxic, cost-effective, and eco-friendly method by biologically reducing Zn(NO3)2.6H2O solution with Neem (Azadirachta indica) leaf extract under optimum conditions (pH = 9). The presence of active flavonoids, phenolic groups, alkaloids, terpenoids, and tannins, which were in the biomass of the Neem leaf extract before and after reduction, was identified using qualitative screening methods (observing the color changes) and FT-IR Spectroscopy. The formation of ZnO NPs was visually indicated by the color changes from colorless to light yellow color. Biosynthesized nanoparticles were also characterized by UV-visible, FT-IR, and XRD spectroscopies. The reduction process was simple and convenient to handle and was monitored by UV-visible spectroscopy that showed surface plasmon resonance (SPR) of the ZnO NPs at 321 nm. This result clearly revealed the formation of ZnO NPs. X-ray diffraction was used to investigate the crystal structure. The average particle size of ZnO powder and around 20 nm using the line width of the plane, and the refraction peak using Scherrer’s equation. The synthesized zinc oxide nanoparticles were evaluated for antimicrobial activities against Gram-positive and Gram-negative bacteria. Zinc nanoparticles exhibited the maximum zone of inhibition against Escherichia coli (15 mm), while the least activity was seen against Staphylococcus aureus.

Keywords: antimicrobial activity, azadirachta indica, green synthesis, ZnO NPs

Procedia PDF Downloads 79