Search results for: uniform loading
1416 Innovation and Analysis of Vibrating Fork Level Switch
Authors: Kuen-Ming Shu, Cheng-Yu Chen
Abstract:
A vibrating-fork sensor can measure the level height of solids and liquids and operates according to the principle that vibrations created by piezoelectric ceramics are transmitted to the vibrating fork, which produces resonance. When the vibrating fork touches an object, its resonance frequency changes and produces a signal that returns to a controller for immediate adjustment, so as to effectively monitor raw material loading. The design of the vibrating fork in a vibrating-fork material sensor is crucial. In this paper, ANSYS finite element analysis software is used to perform modal analysis on the vibrations of the vibrating fork. In addition, to design and produce a superior vibrating fork, the dimensions and welding shape of the vibrating fork are compared in a simulation performed using the Taguchi method.Keywords: vibrating fork, piezoelectric ceramics, sound wave, ANSYS, Taguchi method, modal analysis
Procedia PDF Downloads 2461415 Characterization of Ultrasonic Nonlinearity in Concrete under Cyclic Change of Prestressing Force
Authors: Gyu-Jin Kim, Hyo-Gyoung Kwak
Abstract:
In this research, the effect of prestressing force on the nonlinearity of concrete was investigated by an experimental study. For the measurement of ultrasonic nonlinearity, a prestressed concrete beam was prepared and a nonlinear resonant ultrasound method was adopted. When the prestressing force changes, the stress state of the concrete inside the beam is affected, which leads to the occurrence of micro-cracks and changes in mechanical properties. Therefore, it is necessary to introduce nonlinear ultrasonic technology which sensitively reflects microstructural changes. Repetitive prestressing load history, including maximum levels of 45%, 60% and 75%, depending on the compressive strength, is designed to evaluate the impact of loading levels on the nonlinearity. With the experimental results, the possibility of ultrasonic nonlinearity as a trial indicator of stress was evaluated.Keywords: micro crack, nonlinear ultrasonic resonant spectroscopy, prestressed concrete beam, prestressing force, ultrasonic nonlinearity
Procedia PDF Downloads 2371414 Determination of Stresses in Vlasov Beam Sections
Authors: Semih Erdogan
Abstract:
In this paper, the normal and shear stress distributions in Vlasov beams are determined by two-dimensional triangular finite element formulations. The proposed formulations take into account the warping effects along the beam axis. The shape of the considered beam sections may be arbitrary and varied throughout its length. The stiffness matrices and force vectors are derived for transversal forces, uniform torsion, and nonuniform torsion. The proposed finite element algorithm is validated by comparing the analytical solutions, structural engineering books, and related articles. The numerical examples include beams with different cross-section types such as solid, thick-walled, closed-thin-walled, and open-thin-walled sections. Materials defined in the examples are homogeneous, isotropic, and linearly elastic. Through these examples, the study demonstrates the capability of the proposed method to address a wide range of practical engineering scenarios.Keywords: Vlasov beams, warping function, nonuniform torsion, finite element method, normal and shear stresses, cross-section properties
Procedia PDF Downloads 621413 Influence of Antecedent Soil Moisture on Soil Erosion: A Two-Year Field Study
Authors: Yu-Da Chen, Chia-Chun Wu
Abstract:
The relationship between antecedent soil moisture content and soil erosion is a complicated phenomenon. Some studies confirm the effect of antecedent soil moisture content on soil erosion, but some deny it. Therefore, the objective of this study is to clarify such contradictions through field experiments. This study conducted two-year field observations of soil losses from natural rainfall events on runoff plots with a length of 10 meters, width of 3 meters, and uniform slope of 9%. Volumetric soil moisture sensors were used to log the soil moisture changes for each rainfall event. A total of 49 effective events were monitored. Results of this study show that antecedent soil moisture content promotes the generation of surface runoff, especially for rainfall events with short duration or lower magnitudes. A positive correlation was found between antecedent soil moisture content and soil loss per unit Rainfall-Runoff Erosivity Index, which indicated that soil with high moisture content is more susceptible to detachment. Once the rainfall duration exceeds 10 hours, the impact from the rainfall duration to soil erosion overwrites, and the effect of antecedent soil moisture is almost negligible.Keywords: antecedent soil moisture content, soil loss, runoff coefficient, rainfall-runoff erosivity
Procedia PDF Downloads 621412 Effect of Horizontal Joint Reinforcement on Shear Behaviour of RC Knee Connections
Authors: N. Zhang, J. S. Kuang, S. Mogili
Abstract:
To investigate seismic performance of beam-column knee joints, four full-scale reinforced concrete beam-column knee joints, which were fabricated to simulate those in as-built RC frame buildings designed to ACI 318-14 and ACI-ASCE 352R-02, were tested under reversed cyclic loading. In the experimental programme, particular emphasis was given to the effect of horizontal reinforcement (in format of inverted U-shape bars) on the shear strength and ductility capacity of knee joints. Test results are compared with those predicted by four seismic design codes, including ACI 318-14, EC8, NZS3101 and GB50010. It is seen that the current design codes of practice cannot accurately predict the shear strength of seismically designed knee joints.Keywords: large-scale tests, RC beam-column knee joints, seismic performance, shear strength
Procedia PDF Downloads 2481411 Synthesis of Vic-Dioxime Palladium (II) Complex: Precursor for Deposition on SBA-15 in ScCO2
Authors: Asım Egitmen, Aysen Demir, Burcu Darendeli, Fatma Ulusal, Bilgehan Güzel
Abstract:
Synthesizing supercritical carbon dioxide (scCO2) soluble precursors would be helpful for many processes of material syntheses based on scCO2. Ligand (amphi-(1Z, 2Z)-N-(2-fluoro-3-(trifluoromethyl) phenyl)-N'-hydroxy-2-(hydroxyimino) were synthesized from chloro glyoxime and flourus aniline and Pd(II) complex (precursor) prepared. For scCO2 deposition method, organometallic precursor was dissolved in scCO2 and impregnated onto the SBA-15 at 90 °C and 3000 psi. Then the organometallic precursor was reduced with H2 in the CO2 mixture (150 psi H2 + 2850 psi CO2). Pd deposited support material was characterized by ICP-OES, XRD, FE-SEM, TEM and EDX analyses. The Pd loading of the prepared catalyst, measured by ICP-OES showed a value of about 1.64% mol/g Pd of catalyst. Average particle size was found 5.3 nm. The catalytic activity of prepared catalyst was investigated over Suzuki-Miyaura C-C coupling reaction in different solvent with K2CO3 at 50 oC. The conversion ratio was determined by gas chromatography.Keywords: nanoparticle, nanotube, oximes, precursor, supercritical CO2
Procedia PDF Downloads 3531410 Reliability-Based Ductility Seismic Spectra of Structures with Tilting
Authors: Federico Valenzuela-Beltran, Sonia E. Ruiz, Alfredo Reyes-Salazar, Juan Bojorquez
Abstract:
A reliability-based methodology which uses structural demand hazard curves to consider the increment of the ductility demands of structures with tilting is proposed. The approach considers the effect of two orthogonal components of the ground motions as well as the influence of soil-structure interaction. The approach involves the calculation of ductility demand hazard curves for symmetric systems and, alternatively, for systems with different degrees of asymmetry. To get this objective, demand hazard curves corresponding to different global ductility demands of the systems are calculated. Next, Uniform Exceedance Rate Spectra (UERS) are developed for a specific mean annual rate of exceedance value. Ratios between UERS corresponding to asymmetric and to symmetric systems located in soft soil of the valley of Mexico are obtained. Results indicate that the ductility demands corresponding to tilted structures may be several times higher than those corresponding to symmetric structures, depending on several factors such as tilting angle and vibration period of structure and soil.Keywords: asymmetric yielding, seismic performance, structural reliability, tilted structures
Procedia PDF Downloads 5071409 CFD Simulation and Experimental Validation of the Bubble-Induced Flow during Electrochemical Water Splitting
Authors: Gabriel Wosiak, Jeyse da Silva, Sthefany S. Sena, Renato N. de Andrade, Ernesto Pereira
Abstract:
The bubble formation during hydrogen production by electrolysis and several electrochemical processes is an inherent phenomenon and can impact the energy consumption of the processes. In this work, it was reported both experimental and computational results describe the effect of bubble displacement, which, under the cases investigated, leads to the formation of a convective flow in the solution. The process is self-sustained, and a solution vortex is formed, which modifies the bubble growth and covering at the electrode surface. Using the experimental data, we have built a model to simulate it, which, with high accuracy, describes the phenomena. Then, it simulated many different experimental conditions and evaluated the effects of the boundary conditions on the bubble surface covering the surface. We have observed a position-dependent bubble covering the surface, which has an effect on the water-splitting efficiency. It was shown that the bubble covering is not uniform at the electrode surface, and using statistical analysis; it was possible to evaluate the influence of the gas type (H2 and O2), current density, and the bubble size (and cross-effects) on the covering fraction and the asymmetric behavior over the electrode surface.Keywords: water splitting, bubble, electrolysis, hydrogen production
Procedia PDF Downloads 981408 Strengthening of Reinforced Concrete Beam-Column Joint by Reversible Mixed Technologies of FRP
Authors: Nasser-Eddine Attari
Abstract:
After the earthquake many structures were classified as slightly damaged and, being uneconomic to replace them, at least in the short term, suitable means of repairs of the beam column joint area are being studied. Furthermore there exist a large number of buildings that need retrofitting of the joints before the next earthquake. The paper reports the results of the experimental programme, constituted of three beam-column reinforced concrete joints at a scale of one to three (1/3) tested under the effect of a pre-stressed axial load acting over the column. The beams were subjected at their ends to an alternate cyclic loading under displacement control to simulate a seismic action. Strain and cracking fields were monitored with the help a digital recording camera. Following the analysis of the results, a comparison can be made between the performances in terms of ductility, strength and mode of failure of the different strengthening solution considered.Keywords: fibrereinforced polymers, joints, reinforced concrete, beam columns
Procedia PDF Downloads 5001407 Impact of Rebar-Reinforcement on Flexural Response of Shear-Critical Ultrahigh-Performance Concrete Beams
Authors: Yassir M. Abbas, Mohammad Iqbal Khan, Galal Fare
Abstract:
In the present work, the structural responses of 12 ultrahigh-performance concrete (UHPC) beams to four-point loading conditions were experimentally and analytically studied. The inclusion of a fibrous system in the UHPC material increased its compressive and flexural strengths by 31.5% and 237.8%, respectively. Based on the analysis of the load-deflection curves of UHPC beams, it was found that UHPC beams with a low reinforcement ratio are prone to sudden brittle failure. This failure behavior was changed, however, to a ductile one in beams with medium to high ratios. The implication is that improving UHPC beam tensile reinforcement could result in a higher level of safety. More reinforcement bars also enabled the load-deflection behavior to be improved, particularly after yielding.Keywords: ultrahigh-performance concrete, moment capacity, RC beams, hybrid fiber, ductility
Procedia PDF Downloads 671406 Effect of Hydrostatic Stress on Yield Behavior of the High Density Polyethylene
Authors: Kamel Hachour, Lydia Sadeg, Djamel Sersab, Tassadit Bellahcen
Abstract:
The hydrostatic stress is, for polymers, a significant parameter which affects the yield behavior of these materials. In this work, we investigate the influence of this parameter on yield behavior of the high density polyethylene (hdpe). Some tests on specimens with diverse geometries are described in this paper. Uniaxial tests: tensile on notched round bar specimens with different curvature radii, compression on cylindrical specimens and simple shear on parallelepiped specimens were performed. Biaxial tests with various combinations of tensile/compressive and shear loading on butterfly specimens were also realized in order to determine the hydrostatic stress for different states of solicitation. The experimental results show that the yield stress is very affected by the hydrostatic stress developed in the material during solicitations.Keywords: biaxial tests, hdpe, Hydrostatic stress, yield behavior
Procedia PDF Downloads 3881405 Effect of Multi-Stage Fractured Patterns on Production Improvement of Horizontal Wells
Authors: Armin Shirbazo, Mohammad Vahab, Hamed Lamei Ramandi, Jalal Fahimpour
Abstract:
One of the most effective ways for increasing production in wells that are faced with problems such as pressure depletion and low rate is hydraulic fracturing. Hydraulic fracturing is creating a high permeable path through the reservoir and simulated area around the wellbore. This is very important for low permeability reservoirs, which their production is uneconomical. In this study, the influence of the fracturing pattern in multi-stage fractured horizontal wells is analyzed for a tight, heavy oil reservoir to explore the impact of fracturing patterns on improving oil recovery. The horizontal well has five transverse fractures with the same fracture length, width, height, and conductivity properties. The fracture patterns are divided into four distinct shapes: uniform shape, diamond shape, U shape, and W shape. The results show that different fracturing patterns produce various cumulative production after ten years, and the best pattern can be selected based on the most cumulative production. The result also illustrates that optimum design in fracturing can boost the production up to 3% through the permeability distribution around the wellbore and reservoir.Keywords: multi-stage fracturing, horizontal well, fracture patterns, fracture length, number of stages
Procedia PDF Downloads 2201404 Communicating Safety: Warnings, Appeals for Compliance and Visual Resources of Meaning
Authors: Sean McGovern
Abstract:
Discourses, in Foucault's sense of the term, exist as alternate knowledges about some aspect of reality. Discourses act as cognitive frameworks for how social matters are understood and legitimated. Alternate social discourses can stand competing and in conflict or be effectively interwoven. Discourses of public safety, for instance, can alternately be formulated in terms of physical risk; as a matter of social responsibility; or in terms of penalties and litigation. This research study investigates discourses of safety used in public transportation and consumer products in the Japanese cultural context. Employing a social semiotic analytic approach, it examines how posters, consumer manuals and other forms of visual (written and pictorial) warnings have been designed to influence behavioral compliance. The presentation identifies specific ways in which Japanese cultural sensibilities and social needs inform cultural design principles that operate in the visual domain. It makes the case that societies are not uniform in the way that objects and actions are represented and that visual forms of meaning are culturally shaped in ways consistent with social understandings and values.Keywords: communication design, culture, discourse, public safety
Procedia PDF Downloads 2741403 Mixed Convective Heat Transfer of Flow around a Radial Heat Sink
Authors: Benkherbache Souad
Abstract:
This work presents the numerical results of the mixed convective heat transfer of a three-dimensional flow around a radial heat sink composed of horizontal circular base fitted with rectangular fins. The governing equations of mass, momentum, and energy equation are solved by the finite volume method using the commercially available CFD software Fluent 6.3.26. The circular base of the heat sink is subjected to uniform heat generation; the flow enters through the sides of the heat sink around the fins then the heat is transmitted from the base to the fins afterwards the fluid. In this study two fluids are utilized, in the first case, the air for the following Reynolds numbers Re=600,900,1200 and a Grashof number Gr=3.7x10⁶, in the second case a water based nano fluid for which two types of nano particles (Cu and Al₂O₃) are carried out for Re=25 and a Richardson number Ri=2.7(Ri=Gr/Re²). The effect of the number of the fins of the heat sink as well as the type and the volume fraction of nano particles of the nano fluid were investigated. Results have been presented for N=15 and N=20 fins. The effect of the nano particles concentrations and the number of fins on the temperature in the heat sink and the Nusselt number has been studied.Keywords: heat sink, mixed convection, nano fluid, volumetric heat generation
Procedia PDF Downloads 1821402 2D Nanomaterials-Based Geopolymer as-Self-Sensing Buildings in Construction Industry
Authors: Maryam Kiani
Abstract:
The self-sensing capability opens up new possibilities for structural health monitoring, offering real-time information on the condition and performance of constructions. The synthesis and characterization of these functional 2D material geopolymers will be explored in this study. Various fabrication techniques, including mixing, dispersion, and coating methods, will be employed to ensure uniform distribution and integration of the 2D materials within the geopolymers. The resulting composite materials will be evaluated for their mechanical strength, electrical conductivity, and sensing capabilities through rigorous testing and analysis. The potential applications of these self-sensing geopolymers are vast. They can be used in infrastructure projects, such as bridges, tunnels, and buildings, to provide continuous monitoring and early detection of structural damage or degradation. This proactive approach to maintenance and safety can significantly improve the lifespan and efficiency of constructions, ultimately reducing maintenance costs and enhancing overall sustainability. In conclusion, the development of functional 2D material geopolymers as self-sensing materials presents an exciting advancement in the construction industry. By integrating these innovative materials into structures, we can create a new generation of intelligent, self-monitoring constructions that can adapt and respond to their environment.Keywords: 2D materials, geopolymers, electrical properties, self-sensing
Procedia PDF Downloads 1301401 The Comparison of the Reliability Margin Measure for the Different Concepts in the Slope Analysis
Authors: Filip Dodigovic, Kreso Ivandic, Damir Stuhec, S. Strelec
Abstract:
The general difference analysis between the former and new design concepts in geotechnical engineering is carried out. The application of new regulations results in the need for real adaptation of the computation principles of limit states, i.e. by providing a uniform way of analyzing engineering tasks. Generally, it is not possible to unambiguously match the limit state verification procedure with those in the construction engineering. The reasons are the inability to fully consistency of the common probabilistic basis of the analysis, and the fundamental effect of material properties on the value of actions and the influence of actions on resistance. Consequently, it is not possible to apply separate factorization with partial coefficients, as in construction engineering. For the slope stability analysis design procedures problems in the light of the use of limit states in relation to the concept of allowable stresses is detailed in. The quantifications of the safety margins in the slope stability analysis for both approaches is done. When analyzing the stability of the slope, by the strict application of the adopted forms from the new regulations for significant external temporary and/or seismic actions, the equivalent margin of safety is increased. The consequence is the emergence of more conservative solutions.Keywords: allowable pressure, Eurocode 7, limit states, slope stability
Procedia PDF Downloads 3361400 Band Gap Tuning Based on Adjustable Stiffness of Local Resonators
Authors: Hossein Alimohammadi, Kristina Vassiljeva, Hassan HosseinNia, Eduard Petlenkov
Abstract:
This research article discusses the mechanisms for bandgap tuning of beam-type resonators to achieve broadband vibration suppression through adjustable stiffness. The method involves changing the center of mass of the cantilever-type resonator to achieve piezo-free tuning of stiffness. The study investigates the effect of the center of masses variation (δ) of attached masses on the bandgap and vibration suppression performance of a non-uniform beam-type resonator within a phononic structure. The results suggest that the cantilever-type resonator beam can be used to achieve tunability and real-time control and indicate that varying δ significantly impacts the bandgap and transmittance response. Additionally, the research explores the use of the first and second modes of resonators for tunability and real-time control. These findings examine the feasibility of this approach, demonstrate the potential for improving resonator performance, and provide insights into the design and optimization of metamaterial beams for vibration suppression applications.Keywords: bandgap, adjustable stiffness, spatial variation, tunability
Procedia PDF Downloads 831399 An Investigation on the Sandwich Panels with Flexible and Toughened Adhesives under Flexural Loading
Authors: Emre Kara, Şura Karakuzu, Ahmet Fatih Geylan, Metehan Demir, Kadir Koç, Halil Aykul
Abstract:
The material selection in the design of the sandwich structures is very crucial aspect because of the positive or negative influences of the base materials to the mechanical properties of the entire panel. In the literature, it was presented that the selection of the skin and core materials plays very important role on the behavior of the sandwich. Beside this, the use of the correct adhesive can make the whole structure to show better mechanical results and behavior. By this way, the sandwich structures realized in the study were obtained with the combination of aluminum foam core and three different glass fiber reinforced polymer (GFRP) skins using two different commercial adhesives which are based on flexible polyurethane and toughened epoxy. The static and dynamic tests were already applied on the sandwiches with different types of adhesives. In the present work, the static three-point bending tests were performed on the sandwiches having an aluminum foam core with the thickness of 15 mm, the skins with three different types of fabrics ([0°/90°] cross ply E-Glass Biaxial stitched, [0°/90°] cross ply E-Glass Woven and [0°/90°] cross ply S-Glass Woven which have same thickness value of 1.75 mm) and two different commercial adhesives (flexible polyurethane and toughened epoxy based) at different values of support span distances (L= 55, 70, 80, 125 mm) by aiming the analyses of their flexural performance. The skins used in the study were produced via Vacuum Assisted Resin Transfer Molding (VARTM) technique and were easily bonded onto the aluminum foam core with flexible and toughened adhesives under a very low pressure using press machine with the alignment tabs having the total thickness of the whole panel. The main results of the flexural loading are: force-displacement curves obtained after the bending tests, peak force values, absorbed energy, collapse mechanisms, adhesion quality and the effect of the support span length and adhesive type. The experimental results presented that the sandwiches with epoxy based toughened adhesive and the skins made of S-Glass Woven fabrics indicated the best adhesion quality and mechanical properties. The sandwiches with toughened adhesive exhibited higher peak force and energy absorption values compared to the sandwiches with flexible adhesive. The core shear mode occurred in the sandwiches with flexible polyurethane based adhesive through the thickness of the core while the same mode took place in the sandwiches with toughened epoxy based adhesive along the length of the core. The use of these sandwich structures can lead to a weight reduction of the transport vehicles, providing an adequate structural strength under operating conditions.Keywords: adhesive and adhesion, aluminum foam, bending, collapse mechanisms
Procedia PDF Downloads 3271398 Second-Order Complex Systems: Case Studies of Autonomy and Free Will
Authors: Eric Sanchis
Abstract:
Although there does not exist a definitive consensus on a precise definition of a complex system, it is generally considered that a system is complex by nature. The presented work illustrates a different point of view: a system becomes complex only with regard to the question posed to it, i.e., with regard to the problem which has to be solved. A complex system is a couple (question, object). Because the number of questions posed to a given object can be potentially substantial, complexity does not present a uniform face. Two types of complex systems are clearly identified: first-order complex systems and second-order complex systems. First-order complex systems physically exist. They are well-known because they have been studied by the scientific community for a long time. In second-order complex systems, complexity results from the system composition and its articulation that are partially unknown. For some of these systems, there is no evidence of their existence. Vagueness is the keyword characterizing this kind of systems. Autonomy and free will, two mental productions of the human cognitive system, can be identified as second-order complex systems. A classification based on the properties structure makes it possible to discriminate complex properties from the others and to model this kind of second order complex systems. The final outcome is an implementable synthetic property that distinguishes the solid aspects of the actual property from those that are uncertain.Keywords: autonomy, free will, synthetic property, vaporous complex systems
Procedia PDF Downloads 2021397 Polynomial Chaos Expansion Combined with Exponential Spline for Singularly Perturbed Boundary Value Problems with Random Parameter
Authors: W. K. Zahra, M. A. El-Beltagy, R. R. Elkhadrawy
Abstract:
So many practical problems in science and technology developed over the past decays. For instance, the mathematical boundary layer theory or the approximation of solution for different problems described by differential equations. When such problems consider large or small parameters, they become increasingly complex and therefore require the use of asymptotic methods. In this work, we consider the singularly perturbed boundary value problems which contain very small parameters. Moreover, we will consider these perturbation parameters as random variables. We propose a numerical method to solve this kind of problems. The proposed method is based on an exponential spline, Shishkin mesh discretization, and polynomial chaos expansion. The polynomial chaos expansion is used to handle the randomness exist in the perturbation parameter. Furthermore, the Monte Carlo Simulations (MCS) are used to validate the solution and the accuracy of the proposed method. Numerical results are provided to show the applicability and efficiency of the proposed method, which maintains a very remarkable high accuracy and it is ε-uniform convergence of almost second order.Keywords: singular perturbation problem, polynomial chaos expansion, Shishkin mesh, two small parameters, exponential spline
Procedia PDF Downloads 1601396 Coupling of Two Discretization Schemes for the Lattice Boltzmann Equation
Authors: Tobias Horstmann, Thomas Le Garrec, Daniel-Ciprian Mincu, Emmanuel Lévêque
Abstract:
Despite the efficiency and low dissipation of the stream-collide formulation of the Lattice Boltzmann (LB) algorithm, which is nowadays implemented in many commercial LBM solvers, there are certain situations, e.g. mesh transition, in which a classical finite-volume or finite-difference formulation of the LB algorithm still bear advantages. In this paper, we present an algorithm that combines the node-based streaming of the distribution functions with a second-order finite volume discretization of the advection term of the BGK-LB equation on a uniform D2Q9 lattice. It is shown that such a coupling is possible for a multi-domain approach as long as the overlap, or buffer zone, between two domains, is achieved on at least 2Δx. This also implies that a direct coupling (without buffer zone) of a stream-collide and finite-volume LB algorithm on a single grid is not stable. The critical parameter in the coupling is the CFL number equal to 1 that is imposed by the stream-collide algorithm. Nevertheless, an explicit filtering step on the finite-volume domain can stabilize the solution. In a further investigation, we demonstrate how such a coupling can be used for mesh transition, resulting in an intrinsic conservation of mass over the interface.Keywords: algorithm coupling, finite volume formulation, grid refinement, Lattice Boltzmann method
Procedia PDF Downloads 3761395 Assessment of High Frequency Solidly Mounted Resonator as Viscosity Sensor
Authors: Vinita Choudhary
Abstract:
Solidly Acoustic Resonators (SMR) based on ZnO piezoelectric material operating at a frequency of 3.96 GHz and 6.49% coupling factor are used to characterize liquids with different viscosities. This behavior of the sensor is analyzed using Finite Element Modeling. Device architectures encapsulate bulk acoustic wave resonators with MO/SiO₂ Bragg mirror reflector and the silicon substrate. The proposed SMR is based on the mass loading effect response of the sensor to the change in the resonant frequency of the resonator that is caused by the increased density due to the absorption of liquids (water, acetone, olive oil) used in theoretical calculation. The sensitivity of sensors ranges from 0.238 MHz/mPa.s to 83.33 MHz/mPa.s, supported by the Kanazawa model. Obtained results are also compared with previous works on BAW viscosity sensors.Keywords: solidly mounted resonator, bragg mirror, kanazawa model, finite element model
Procedia PDF Downloads 801394 Seismic Behavior of Steel Moment-Resisting Frames for Uplift Permitted in Near-Fault Regions
Authors: M. Tehranizadeh, E. Shoushtari Rezvani
Abstract:
Seismic performance of steel moment-resisting frame structures is investigated considering nonlinear soil-structure interaction (SSI) effects. 10-, 15-, and 20-story planar building frames with aspect ratio of 3 are designed in accordance with current building codes. Inelastic seismic demands of the superstructure are considered using concentrated plasticity model. The raft foundation system is designed for different soil types. Beam-on-nonlinear Winkler foundation (BNWF) is used to represent dynamic impedance of the underlying soil. Two sets of pulse-like as well as no-pulse near-fault earthquakes are used as input ground motions. The results show that the reduction in drift demands due to nonlinear SSI is characterized by a more uniform distribution pattern along the height when compared to the fixed-base and linear SSI condition. It is also concluded that beneficial effects of nonlinear SSI on displacement demands is more significant in case of pulse-like ground motions and performance level of the steel moment-resisting frames can be enhanced.Keywords: soil-structure interaction, uplifting, soil plasticity, near-fault earthquake, tall building
Procedia PDF Downloads 5481393 Development of a Finite Element Model of the Upper Cervical Spine to Evaluate the Atlantoaxial Fixation Techniques
Authors: Iman Zafarparandeh, Muzammil Mumtaz, Paniz Taherzadeh, Deniz Erbulut
Abstract:
The instability in the atlantoaxial joint may occur due to cervical surgery, congenital anomalies, and trauma. There are different types of fixation techniques proposed for restoring the stability and preventing harmful neurological deterioration. Application of the screw constructs has become a popular alternative to the older techniques for stabilizing the joint. The main difference between the various screw constructs is the type of the screw which can be lateral mass screw, pedicle screw, transarticular screw, and translaminar screw. The aim of this paper is to study the effect of three popular screw constructs fixation techniques on the biomechanics of the atlantoaxial joint using the finite element (FE) method. A three-dimensional FE model of the upper cervical spine including the skull, C1 and C2 vertebrae, and groups of the existing ligaments were developed. The accurate geometry of the model was obtained from the CT data of a 35-year old male. Three screw constructs were designed to compare; Magerl transarticular screw (TA-Screw), Goel-Harms lateral mass screw and pedicle screw (LM-Screw and Pedicle-Screw), and Wright lateral mass screw and translaminar screw (LM-Screw and TL-Screw). Pure moments were applied to the model in the three main planes; flexion (Flex), extension (Ext), axial rotation (AR) and lateral bending (LB). The range of motion (ROM) of C0-C1 and C1-C2 segments for the implanted FE models are compared to the intact FE model and the in vitro study of Panjabi (1988). The Magerl technique showed less effect on the ROM of C0-C1 than the other two techniques in sagittal plane. In lateral bending and axial rotation, the Goel-Harms and Wright techniques showed less effect on the ROM of C0-C1 than the Magerl technique. The Magerl technique has the highest fusion rate as 99% in all loading directions for the C1-C2 segment. The Wright technique has the lowest fusion rate in LB as 79%. The three techniques resulted in the same fusion rate in extension loading as 99%. The maximum stress for the Magerl technique is the lowest in all load direction compared to other two techniques. The maximum stress in all direction was 234 Mpa and occurred in flexion with the Wright technique. The maximum stress for the Goel-Harms and Wright techniques occurred in lateral mass screw. The ROM obtained from the FE results support this idea that the fusion rate of the Magerl is more than 99%. Moreover, the maximum stress occurred in each screw constructs proves the less failure possibility for the Magerl technique. Another advantage of the Magerl technique is the less number of components compared to other techniques using screw constructs. Despite the benefits of the Magerl technique, there are drawbacks to using this method such as reduction of the C1 and C2 before screw placement. Therefore, other fixation methods such as Goel-Harms and Wright techniques find the solution for the drawbacks of the Magerl technique by adding screws separately to C1 and C2. The FE model implanted with the Wright technique showed the highest maximum stress almost in all load direction.Keywords: cervical spine, finite element model, atlantoaxial, fixation technique
Procedia PDF Downloads 3821392 Low Temperature Synthesis of Styrene via Catalytic Dehydrogenation of Ethylbenzene Using Vanadia Support SnO₂ Catalysts
Authors: S. Said, Samira M. Abdel-Azim, Aya M. Matloob
Abstract:
Nowadays, one of the most important industries is how to prepare a starting material like (styrene) which is used for the preparation of many petrochemical products in simple and inexpensive ways. Oxidative dehydrogenation of ethylbenzene (using CO2 as a soft oxidant) can solve this issue when using highly effective catalysts like SnO₂ and its nanocomposites (V₂Ox/SnO₂.) This study shows the effect of different synthesis methods of SnO₂ either by ethylene glycol or MOF then, uses the impregnation method for the preparation of its nanocomposite catalysts (V₂Ox/SnO₂.). The prepared catalysts were characterized by using different analytical techniques like XRD, BET, FTIR, TGA, XPS, and H₂-TPR. Oxidative dehydrogenation experimental results demonstrated that the composite V loading of 1 and 5 wt.% V₂Ox/SnO₂ (MOF &EG) catalyst exhibited extraordinarily high catalytic performance with selectivity toward styrene formation > 90% at 500oC, which can be attributed to the superior surface, textural, and structural properties of nanocomposites catalysts.Keywords: SnO₂, vanadium oxide, ethylbenzene dehydrogenation, styrene, CO₂
Procedia PDF Downloads 211391 Structural Analysis of Hydro-Turbine Spiral Casing and Stay Ring Using Ansys
Authors: Surjit Angra, Pooja Rani, Vinod Kumar
Abstract:
In hydro power plant spiral casing and Stay ring is meant to guide the water flow to guide vane and runner. Spiral casing and Stay ring is subjected to static i.e. pressure load as well as fluctuating load acting on the structure due to water hammer effect in water conductor system. Finite element method has been used to calculate stresses on spiral casing and stay ring. These calculations were done for the maximum possible loading under operating condition "LC1 Quick Shut Down”. The design load is reached for the spiral casing and stay ring during the emergency closure of the guide apparatus "LC1 Quick Shut Down”. During this operation the forces from the head cover to the stay ring also reach their maximum.Keywords: hydro-turbine, spiral casing, stay ring, structural analysis
Procedia PDF Downloads 5141390 Experimental Study of Local Scour Downstream of Cylindrical Bridge Piers
Authors: Mohammed Traeq Shukri
Abstract:
Scour is a natural phenomenon caused by the erosive action of flowing stream on alluvial beds, which removes the sediment around or near structures located in flowing water. It means the lowering of the riverbed level by water erosions such that there is a tendency to expose the foundations of a structure. It is the result of the erosive action of flowing water, excavating and carrying away material from the bed and banks of streams and from around the piers of bridges. The failure of bridges due to excessive local scour during floods poses a challenging problem to hydraulic engineers. The failure of bridges piers is due to many reasons such as localized scour combined with general riverbed degradation. In this paper, we try to estimate the temporal variation of scour depth at non-uniform cylindrical bridge pier, by experimental work in civil engineering hydraulic laboratories of Gaziantep University on a channel have dimensions of 8.3m length, 0.8m width and 0.9m depth. The experiments will be carried on 20 cm depth of sediment layer having d50=0.4 mm. Three bridge pier shapes having different scaled models will be constructed in a 1.5m of test section in the channel.Keywords: scour, local scour, bridge piers, scour depth, vortex, horseshoe vortex
Procedia PDF Downloads 1631389 Amino Acid Based Biodegradable Amphiphilic Polymers and Micelles as Drug Delivery Systems: Synthesis and Study
Authors: Sophio Kobauri, Vladimir P. Torchilin, David Tugushi, Ramaz Katsarava
Abstract:
Nanotherapy is an actual newest mode of treatment numerous diseases using nanoparticles (NPs) loading with different pharmaceuticals. NPs of biodegradable polymeric micelles (PMs) are gaining increased attention for their numerous and attractive abilities to be used in a variety of applications in the various fields of medicine. The present paper deals with the synthesis of a class of biodegradable micelle-forming polymers, namely ABA triblock-copolymer in which A-blocks represent amino-poly(ethylene glycol) (H2N-PEG) and B-block is biodegradable amino acid-based poly(ester amide) constituted of α-amino acid – L-phenylalanine. The obtained copolymer formed micelles of 70±4 nm size at 10 mg/mL concentration.Keywords: amino acids, biodegradable poly (ester amide), amphiphilic triblock-copolymer, micelles
Procedia PDF Downloads 1901388 A Fundamental Study on the Molecular Chemistry of Agarwood Water Mixture
Authors: Fatmawati Adam, Saidatul Syaima Mat Tari, Saiful Nizam Tajuddin, Nurul Salwa Azliyana Hamzah
Abstract:
Essential oil of agarwood or known as Gaharu in Malay is highly prized for its value as luxury fragrances and incense. However, the complexities of the chemical composition of agarwood itself is the main challenge for establishment of an effective recovery method, which is able to ensure uniform qualities and standard for each batch of essential oil production. Agarwood markers are actually a blend of volatile and non-volatile compounds. While volatile molecules could be easily retrieved by the present distillation technique, the high solubility properties are the limiting factor for the latter. With regard to this, an elementary chemistry resolution study had been performed on commercial agarwood essential oil-water mixture, by the application of preparative HPLC and FTIR. Interpretation of the results leads to the theoretical postulation that, agarwood water mixture comprise of agarospirol, jinkohol, jinkoh eremol and khusenol. This study provides a pinpoint on the chemical characteristics of water soluble (non-volatile) agarwood compounds, therefore, will be an insight for researchers to develop a more strategic technique for their extraction. Thereafter the optimum quality of this essential oil could be controlled in a more improved way.Keywords: Agarwood, Aquillaria Malaccensis, agarospirol, jinkohol, jinkoh eremol, khusenol
Procedia PDF Downloads 5471387 Developing Measurement Model of Interpersonal Skills of Youth
Authors: Mohd Yusri Ibrahim
Abstract:
Although it is known that interpersonal skills are essential for personal development, the debate however continues as to how to measure those skills, especially in youths. This study was conducted to develop a measurement model of interpersonal skills by suggesting three construct namely personal, skills and relationship; six function namely self, perception, listening, conversation, emotion and conflict management; and 30 behaviours as indicators. This cross-sectional survey by questionnaires was applied in east side of peninsula of Malaysia for 150 respondents, and analyzed by structural equation modelling (SEM) by AMOS. The suggested constructs, functions and indicators were consider accepted as measurement elements by observing on regression weight for standard loading, average variance extracted (AVE) for convergent validity, square root of AVE for discriminant validity, composite reliability (CR), and at least three fit indexes for model fitness. Finally, a measurement model of interpersonal skill for youth was successfully developed.Keywords: interpersonal communication, interpersonal skill, youth, communication skill
Procedia PDF Downloads 314