Search results for: seasonal dependence
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1289

Search results for: seasonal dependence

269 Special Single Mode Fiber Tests of Polarization Mode Dispersion Changes in a Harsh Environment

Authors: Jan Bohata, Stanislav Zvanovec, Matej Komanec, Jakub Jaros, David Hruby

Abstract:

Even though there is a rapid development in new optical networks, still optical communication infrastructures remain composed of thousands of kilometers of aging optical cables. Many of them are located in a harsh environment which contributes to an increased attenuation or induced birefringence of the fibers leading to the increase of polarization mode dispersion (PMD). In this paper, we report experimental results from environmental optical cable tests and characterization in the climate chamber. We focused on the evaluation of optical network reliability in a harsh environment. For this purpose, a special thermal chamber was adopted, targeting to the large temperature changes between -60 °C and 160 C° with defined humidity. Single mode optical cable 230 meters long, having six tubes and a total number of 72 single mode optical fibers was spliced together forming one fiber link, which was afterward tested in the climate chamber. The main emphasis was put to the polarization mode dispersion (PMD) changes, which were evaluated by three different PMD measuring methods (general interferometry technique, scrambled state-of-polarization analysis and polarization optical time domain reflectometer) in order to fully validate obtained results. Moreover, attenuation and chromatic dispersion (CD), as well as the PMD, were monitored using 17 km long single mode optical cable. Results imply a strong PMD dependence on thermal changes, imposing the exceeding 200 % of its value during the exposure to extreme temperatures and experienced more than 20 dB insertion losses in the optical system. The derived statistic is provided in the paper together with an evaluation of such as optical system reliability, which could be a crucial tool for the optical network designers. The environmental tests are further taken in context to our previously published results from long-term monitoring of fundamental parameters within an optical cable placed in a harsh environment in a special outdoor testbed. Finally, we provide a correlation between short-term and long-term monitoring campaigns and statistics, which are necessary for optical network safety and reliability.

Keywords: optical fiber, polarization mode dispersion, harsh environment, aging

Procedia PDF Downloads 388
268 Copolymers of Epsilon-Caprolactam Received via Anionic Polymerization in the Presence of Polypropylene Glycol Based Polymeric Activators

Authors: Krasimira N. Zhilkova, Mariya K. Kyulavska, Roza P. Mateva

Abstract:

The anionic polymerization of -caprolactam (CL) with bifunctional activators has been extensively studied as an effective and beneficial method of improving chemical and impact resistances, elasticity and other mechanical properties of polyamide (PA6). In presence of activators or macroactivators (MAs) also called polymeric activators (PACs) the anionic polymerization of lactams proceeds rapidly at a temperature range of 130-180C, well below the melting point of PA-6 (220C) permitting thus the direct manufacturing of copolymer product together with desired modifications of polyamide properties. Copolymers of PA6 with an elastic polypropylene glycol (PPG) middle block into main chain were successfully synthesized via activated anionic ring opening polymerization (ROP) of CL. Using novel PACs based on PPG polyols (with differ molecular weight) the anionic ROP of CL was realized and investigated in the presence of a basic initiator sodium salt of CL (NaCL). The PACs were synthesized as N-carbamoyllactam derivatives of hydroxyl terminated PPG functionalized with isophorone diisocyanate [IPh, 5-Isocyanato-1-(isocyanatomethyl)-1,3,3-trimethylcyclohexane] and blocked then with CL units via an addition reaction. The block copolymers were analyzed and proved with 1H-NMR and FT-IR spectroscopy. The influence of the CL/PACs ratio in feed, the length of the PPG segments and polymerization conditions on the kinetics of anionic ROP, on average molecular weight, and on the structure of the obtained block copolymers were investigated. The structure and phase behaviour of the copolymers were explored with differential scanning calorimetry, wide-angle X-ray diffraction, thermogravimetric analysis and dynamic mechanical thermal analysis. The crystallinity dependence of PPG content incorporated into copolymers main backbone was estimate. Additionally, the mechanical properties of the obtained copolymers were studied by notched impact test. From the performed investigation in this study could be concluded that using PPG based PACs at the chosen ROP conditions leads to obtaining well-defined PA6-b-PPG-b-PA6 copolymers with improved impact resistance.

Keywords: anionic ring opening polymerization, caprolactam, polyamide copolymers, polypropylene glycol

Procedia PDF Downloads 415
267 Baseline Study of Water Quality in Indonesia Using Dynamic Methods and Technologies

Authors: R. L. P. de Lima, F. C. B. Boogaard, D. Setyo Rini, P. Arisandi, R. E. de Graaf-Van Dinther

Abstract:

Water quality in many Asian countries is very poor due to inefficient solid waste management, high population growth and the lack of sewage and purification systems for households and industry. A consortium of Indonesian and Dutch organizations has begun a large-scale international research project to evaluate and propose solutions to face the surface water pollution challenges in Brantas Basin, Indonesia (East Java: Malang / Surabaya). The first phase of the project consisted in a baseline study to assess the current status of surface water bodies and to determine the ambitions and strategies among local stakeholders. This study was conducted with high participatory / collaborative and knowledge sharing objectives. Several methods such as using mobile sensors (attached to boats or underwater drones), test strips and mobile apps, bio-monitoring (sediments), ecology scans using underwater cameras, or continuous / static measurements, were applied in different locations in the regions of the basin, at multiple locations within the water systems (e.g. spring, upstream / downstream of industry and urban areas, mouth of the Surabaya River, groundwater). Results gave an indication of (reference) values of basic water quality parameters such as turbidity, electrical conductivity, dissolved oxygen or nutrients (ammonium / nitrate). An important outcome was that collecting random samples may not be representative of a body of water, given that water quality parameters can vary widely in space (x, y, and depth) and time (day / night and seasonal). Innovative / dynamic monitoring methods (e.g. underwater drones, sensors on boats) can contribute to better understand the quality of the living environment (water, ecology, sediment) and factors that affect it. The field work activities, in particular, underwater drones, revealed potential as awareness actions as they attracted interest from locals and local press. This baseline study involved the cooperation with local managing organizations with Dutch partners, and their willingness to work together is important to ensure participatory actions and social awareness regarding the process of adaptation and strengthening of regulations, or for the construction of facilities such as sewage.

Keywords: water quality monitoring, pollution, underwater drones, social awareness

Procedia PDF Downloads 192
266 Thermal Stability and Electrical Conductivity of Ca₅Mg₄₋ₓMₓ(VO₄)₆ (0 ≤ x ≤ 4) where M = Zn, Ni Measured by Impedance Spectroscopy

Authors: Anna S. Tolkacheva, Sergey N. Shkerin, Kirill G. Zemlyanoi, Olga G. Reznitskikh, Pavel D. Khavlyuk

Abstract:

Calcium oxovanadates with garnet related structure are multifunctional oxides in various fields like photoluminescence, microwave dielectrics, and magneto-dielectrics. For example, vanadate garnets are self-luminescent compounds. They attract attention as RE-free broadband excitation and emission phosphors and are candidate materials for UV-based white light-emitting diodes (WLEDs). Ca₅M₄(VO₄)₆ (M = Mg, Zn, Co, Ni, Mn) compounds are also considered promising for application in microwave devices as substrate materials. However, the relation between their structure, composition and physical/chemical properties remains unclear. Given the above-listed observations, goals of this study are to synthesise Ca₅M₄(VO₄)₆ (M = Mg, Zn, Ni) and to study their thermal and electrical properties. Solid solutions Ca₅Mg₄₋ₓMₓ(VO₄)₆ (0 ≤ x ≤ 4) where M is Zn and Ni have been synthesized by sol-gel method. The single-phase character of the final products was checked by powder X-ray diffraction on a Rigaku D/MAX-2200 X-ray diffractometer using Cu Kα radiation in the 2θ range from 15° to 70°. The dependence of thermal properties on chemical composition of solid solutions was studied using simultaneous thermal analyses (DSC and TG). Thermal analyses were conducted in a Netzch simultaneous analyser STA 449C Jupiter, in Ar atmosphere, in temperature range from 25 to 1100°C heat rate was 10 K·min⁻¹. Coefficients of thermal expansion (CTE) were obtained by dilatometry measurements in air up to 800°C using a Netzsch 402PC dilatometer; heat rate was 1 K·min⁻¹. Impedance spectra were obtained via the two-probe technique with an impedance meter Parstat 2273 in air up to 700°C with the variation of pH₂O from 0.04 to 3.35 kPa. Cation deficiency in Ca and Mg sublattice under the substitution of MgO with ZnO up to 1/6 was observed using Rietveld refinement of the crystal structure. Melting point was found to decrease with x changing from 0 to 4 in Ca₅Mg₄₋ₓMₓ(VO₄)₆ where M is Zn and Ni. It was observed that electrical conductivity does not depend on air humidity. The reported study was funded by the RFBR Grant No. 17–03–01280. Sample attestation was carried out in the Shared Access Centers at the IHTE UB RAS.

Keywords: garnet structure, electrical conductivity, thermal expansion, thermal properties

Procedia PDF Downloads 156
265 Investigating the Atmospheric Phase Distribution of Inorganic Reactive Nitrogen Species along the Urban Transect of Indo Gangetic Plains

Authors: Reema Tiwari, U. C. Kulshrestha

Abstract:

As a key regulator of atmospheric oxidative capacity and secondary aerosol formations, the signatures of reactive nitrogen (Nr) emissions are becoming increasingly evident in the cascade of air pollution, acidification, and eutrophication of the ecosystem. However, their accurate estimates in N budget remains limited by the photochemical conversion processes where occurrence of differential atmospheric residence time of gaseous (NOₓ, HNO₃, NH₃) and particulate (NO₃⁻, NH₄⁺) Nr species becomes imperative to their spatio temporal evolution on a synoptic scale. The present study attempts to quantify such interactions under tropical conditions when low anticyclonic winds become favorable to the advections from west during winters. For this purpose, a diurnal sampling was conducted using low volume sampler assembly where ambient concentrations of Nr trace gases along with their ionic fractions in the aerosol samples were determined with UV-spectrophotometer and ion chromatography respectively. The results showed a spatial gradient of the gaseous precursors with a much pronounced inter site variability (p < 0.05) than their particulate fractions. Such observations were confirmed for their limited photochemical conversions where less than 1 ratios of day and night measurements (D/N) for the different Nr fractions suggested an influence of boundary layer dynamics at the background site. These phase conversion processes were further corroborated with the molar ratios of NOₓ/NOᵧ and NH₃/NHₓ where incomplete titrations of NOₓ and NH₃ emissions were observed irrespective of their diurnal phases along the sampling transect. Their calculations with equilibrium based approaches for an NH₃-HNO₃-NH₄NO₃ system, on the other hand, were characterized by delays in equilibrium attainment where plots of their below deliquescence Kₘ and Kₚ values with 1000/T confirmed the role of lower temperature ranges in NH₄NO₃ aerosol formation. These results would help us in not only resolving the changing atmospheric inputs of reduced (NH₃, NH₄⁺) and oxidized (NOₓ, HNO₃, NO₃⁻) Nr estimates but also in understanding the dependence of Nr mixing ratios on their local meteorological conditions.

Keywords: diurnal ratios, gas-aerosol interactions, spatial gradient, thermodynamic equilibrium

Procedia PDF Downloads 128
264 The Constitutional Rights of a Child to a Clean and Healthy Environment: A Case Study in the Vaal Triangle Region

Authors: Christiena Van Der Bank, Marjone Van Der Bank, Ronelle Prinsloo

Abstract:

The constitutional right to a healthy environment and the constitutional duty imposed on the state actively to protect the environment fulfill the specific duties to prevent pollution and ecological degradation and to promote conservation. The aim of this paper is to draw attention to the relationship between child rights and the environment. The focus is to analyse government’s responses as mandated with section 24 of the Bill of Rights for ensuring the right to a clean and healthy environment. The principle of sustainability of the environment encompasses the notion of equity and the harm to the environment affects the present as well as future generations. Section 24 obliges the state to ensure that the legacy of future generations is protected, an obligation that has been said to be part of the common law. The environment is an elusive and wide concept that can mean different things to different people depending on the context in which it is used for example clean drinking water or safe food. An extensive interpretation of the term environment would include almost everything that may positively or negatively influence the quality of human life. The analysis will include assessing policy measures, legislation, budgetary measures and other measures taken by the government in order to progressively meet its constitutional obligation. The opportunity of the child to grow up in a healthy and safe environment is extremely unjustly distributed. Without a realignment of political, legal and economic conditions this situation will not fundamentally change. South Africa as a developing country that needs to meet the demand of social transformation and economic growth whilst at the same time expediting its ability to compete in global markets, the country will inevitably embark on developmental programmes as a measure for sustainable development. The courts would have to inquire into the reasonableness of those measures. Environmental threats to children’s rights must be identified, taking into account children’s specific needs and vulnerabilities, their dependence and marginalisation. Obligations of states and violations of rights must be made more visible to the general public.

Keywords: environment, children rights, pollution, healthy, violation

Procedia PDF Downloads 173
263 Predictions for the Anisotropy in Thermal Conductivity in Polymers Subjected to Model Flows by Combination of the eXtended Pom-Pom Model and the Stress-Thermal Rule

Authors: David Nieto Simavilla, Wilco M. H. Verbeeten

Abstract:

The viscoelastic behavior of polymeric flows under isothermal conditions has been extensively researched. However, most of the processing of polymeric materials occurs under non-isothermal conditions and understanding the linkage between the thermo-physical properties and the process state variables remains a challenge. Furthermore, the cost and energy required to manufacture, recycle and dispose polymers is strongly affected by the thermo-physical properties and their dependence on state variables such as temperature and stress. Experiments show that thermal conductivity in flowing polymers is anisotropic (i.e. direction dependent). This phenomenon has been previously omitted in the study and simulation of industrially relevant flows. Our work combines experimental evidence of a universal relationship between thermal conductivity and stress tensors (i.e. the stress-thermal rule) with differential constitutive equations for the viscoelastic behavior of polymers to provide predictions for the anisotropy in thermal conductivity in uniaxial, planar, equibiaxial and shear flow in commercial polymers. A particular focus is placed on the eXtended Pom-Pom model which is able to capture the non-linear behavior in both shear and elongation flows. The predictions provided by this approach are amenable to implementation in finite elements packages, since viscoelastic and thermal behavior can be described by a single equation. Our results include predictions for flow-induced anisotropy in thermal conductivity for low and high density polyethylene as well as confirmation of our method through comparison with a number of thermoplastic systems for which measurements of anisotropy in thermal conductivity are available. Remarkably, this approach allows for universal predictions of anisotropy in thermal conductivity that can be used in simulations of complex flows in which only the most fundamental rheological behavior of the material has been previously characterized (i.e. there is no need for additional adjusting parameters other than those in the constitutive model). Accounting for polymers anisotropy in thermal conductivity in industrially relevant flows benefits the optimization of manufacturing processes as well as the mechanical and thermal performance of finalized plastic products during use.

Keywords: anisotropy, differential constitutive models, flow simulations in polymers, thermal conductivity

Procedia PDF Downloads 184
262 Efficiency of Maritime Simulator Training in Oil Spill Response Competence Development

Authors: Antti Lanki, Justiina Halonen, Juuso Punnonen, Emmi Rantavuo

Abstract:

Marine oil spill response operation requires extensive vessel maneuvering and navigation skills. At-sea oil containment and recovery include both single vessel and multi-vessel operations. Towing long oil containment booms that are several hundreds of meters in length, is a challenge in itself. Boom deployment and towing in multi-vessel configurations is an added challenge that requires precise coordination and control of the vessels. Efficient communication, as a prerequisite for shared situational awareness, is needed in order to execute the response task effectively. To gain and maintain adequate maritime skills, practical training is needed. Field exercises are the most effective way of learning, but especially the related vessel operations are resource-intensive and costly. Field exercises may also be affected by environmental limitations such as high sea-state or other adverse weather conditions. In Finland, the seasonal ice-coverage also limits the training period to summer seasons only. In addition, environmental sensitiveness of the sea area restricts the use of real oil or other target substances. This paper examines, whether maritime simulator training can offer a complementary method to overcome the training challenges related to field exercises. The objective is to assess the efficiency and the learning impact of simulator training, and the specific skills that can be trained most effectively in simulators. This paper provides an overview of learning results from two oil spill response pilot courses, in which maritime navigational bridge simulators were used to train the oil spill response authorities. The simulators were equipped with an oil spill functionality module. The courses were targeted at coastal Fire and Rescue Services responsible for near shore oil spill response in Finland. The competence levels of the participants were surveyed before and after the course in order to measure potential shifts in competencies due to the simulator training. In addition to the quantitative analysis, the efficiency of the simulator training is evaluated qualitatively through feedback from the participants. The results indicate that simulator training is a valid and effective method for developing marine oil spill response competencies that complement traditional field exercises. Simulator training provides a safe environment for assessing various oil containment and recovery tactics. One of the main benefits of the simulator training was found to be the immediate feedback the spill modelling software provides on the oil spill behaviour as a reaction to response measures.

Keywords: maritime training, oil spill response, simulation, vessel manoeuvring

Procedia PDF Downloads 172
261 Spatial Mapping and Change Detection of a Coastal Woodland Mangrove Habitat in Fiji

Authors: Ashneel Ajay Singh, Anish Maharaj, Havish Naidu, Michelle Kumar

Abstract:

Mangrove patches are the foundation species located in the estuarine land areas. These patches provide a nursery, food source and protection for numerous aquatic, intertidal and well as land-based organisms. Mangroves also help in coastal protection, maintain water clarity and are one of the biggest sinks for blue carbon sequestration. In the Pacific Island countries, numerous coastal communities have a heavy socioeconomic dependence on coastal resources and mangroves play a key ecological and economical role in structuring the availability of these resources. Fiji has a large mangrove patch located in the Votua area of the Ba province. Globally, mangrove population continues to decline with the changes in climatic conditions and anthropogenic activities. Baseline information through wetland maps and time series change are essential references for development of effective mangrove management plans. These maps reveal the status of the resource and the effects arising from anthropogenic activities and climate change. In this study, we used remote sensing and GIS tools for mapping and temporal change detection over a period of >20 years in Votua, Fiji using Landsat imagery. Landsat program started in 1972 initially as Earth Resources Technology Satellite. Since then it has acquired millions of images of Earth. This archive allows mapping of temporal changes in mangrove forests. Mangrove plants consisted of the species Rhizophora stylosa, Rhizophora samoensis, Bruguiera gymnorrhiza, Lumnitzera littorea, Heritiera littoralis, Excoecaria agallocha and Xylocarpus granatum. Change detection analysis revealed significant reduction in the mangrove patch over the years. This information serves as a baseline for the development and implementation of effective management plans for one of Fiji’s biggest mangrove patches.

Keywords: climate change, GIS, Landsat, mangrove, temporal change

Procedia PDF Downloads 180
260 Phase Optimized Ternary Alloy Material for Gas Turbines

Authors: Mayandi Ramanathan

Abstract:

Gas turbine blades see the most aggressive thermal stress conditions within the engine, due to Turbine Entry Temperatures in the range of 1500 to 1600°C, but in synchronization with other functional components, they must readily deliver efficient performance, whilst incurring minimal overhaul and repair costs during its service life up to 5 million flying miles. The blades rotate at very high rotation rates and remove significant amount of thermal power from the gas stream. At high temperatures the major component failure mechanism is creep. During its service over time under high temperatures and loads, the blade will deform, lengthen and rupture. High strength and stiffness in the longitudinal direction up to elevated service temperatures are certainly the most needed properties of turbine blades. The proposed advanced Ti alloy material needs a process that provides strategic orientation of metallic ordering, uniformity in composition and high metallic strength. 25% Ta/(Al+Ta) ratio ensures TaAl3 phase formation, where as 51% Al/(Al+Ti) ratio ensures formation of α-Ti3Al and γ-TiAl mixed phases fand the three phase combination ensures minimal Al excess (~1.4% Al excess), unlike Ti-47Al-2Cr-2Nb which has significant excess Al (~5% Al excess) that could affect the service life of turbine blades. This presentation will involve the summary of additive manufacturing and heat treatment process conditions to fabricate turbine blade with Ti-43Al matrix alloyed with optimized amount of refractory Ta metal. Summary of thermo-mechanical test results such as high temperature tensile strength, creep strain rate, thermal expansion coefficient and fracture toughness will be presented. Improvement in service temperature of the turbine blades and corrosion resistance dependence on coercivity of the alloy material will be reported. Phase compositions will be quantified, and a summary of its correlation with creep strain rate will be presented.

Keywords: gas turbine, aerospace, specific strength, creep, high temperature materials, alloys, phase optimization

Procedia PDF Downloads 181
259 Projected Uncertainties in Herbaceous Production Result from Unpredictable Rainfall Pattern and Livestock Grazing in a Humid Tropical Savanna Ecosystem

Authors: Daniel Osieko Okach, Joseph Otieno Ondier, Gerhard Rambold, John Tenhunen, Bernd Huwe, Dennis Otieno

Abstract:

Increased human activities such as grazing, logging, and agriculture alongside unpredictable rainfall patterns have been detrimental to the ecosystem service delivery, therefore compromising its productivity potential. This study aimed at simulating the impact of drought (50%) and enhanced rainfall (150%) on the future herbaceous CO2 uptake, biomass production and soil C:N dynamics in a humid savanna ecosystem influenced by livestock grazing. Rainfall pattern was predicted using manipulation experiments set up to reduce (50%) and increase (150%) ambient (100%) rainfall amounts in grazed and non-grazed plots. The impact of manipulated rainfall regime on herbaceous CO2 fluxes, biomass production and soil C:N dynamics was measured against volumetric soil water content (VWC) logged every 30 minutes using the 5TE (Decagon Devices Inc., Washington, USA) soil moisture sensors installed (at 20 cm soil depth) in every plots. Herbaceous biomass was estimated using destructive method augmented by standardized photographic imaging. CO2 fluxes were measured using the ecosystem chamber method and the gas analysed using LI-820 gas analyzer (USA). C:N ratio was calculated from the soil carbon and Nitrogen contents (analyzed using EA2400CHNS/O and EA2410 N elemental analyzers respectively) of different plots under study. The patterning of VWC was directly influenced by the rainfall amount with lower VWC observed in the grazed compared to the non-grazed plots. Rainfall variability, grazing and their interaction significantly affected changes in VWC (p < 0.05) and subsequently total biomass and CO2 fluxes. VWC had a strong influence on CO2 fluxes under 50% rainfall reduction in the grazed (r2 = 0.91; p < 0.05) and ambient rainfall in the ungrazed (r2 = 0.77; p < 0.05). The dependence of biomass on VWC across plots was enhanced under grazed (r2 = 0.78 - 0.87; p < 0.05) condition as compared to ungrazed (r2 = 0.44 - 0.85; p < 0.05). The C:N ratio was however not correlated to VWC across plots. This study provides insight on how the predicted trends in humid savanna will respond to changes influenced by rainfall variability and livestock grazing and consequently the sustainable management of such ecosystems.

Keywords: CO2 fluxes, rainfall manipulation, soil properties, sustainability

Procedia PDF Downloads 135
258 Lead-Free Inorganic Cesium Tin-Germanium Triiodide Perovskites for Photovoltaic Application

Authors: Seyedeh Mozhgan Seyed-Talebi, Javad Beheshtian

Abstract:

The toxicity of lead associated with the lifecycle of perovskite solar cells (PSCs( is a serious concern which may prove to be a major hurdle in the path toward their commercialization. The current proposed lead-free PSCs including Ag(I), Bi(III), Sb(III), Ti(IV), Ge(II), and Sn(II) low-toxicity cations are still plagued with the critical issues of poor stability and low efficiency. This is mainly because of their chemical stability. In the present research, utilization of all inorganic CsSnGeI3 based materials offers the advantages to enhance resistance of device to degradation, reduce the cost of cells, and minimize the carrier recombination. The presence of inorganic halide perovskite improves the photovoltaic parameters of PCSs via improved surface coverage and stability. The inverted structure of simulated devices using a 1D simulator like solar cell capacitance simulator (SCAPS) version 3308 involves TCOHTL/Perovskite/ETL/Au contact layer. PEDOT:PSS, PCBM, and CsSnGeI3 used as hole transporting layer (HTL), electron transporting layer (ETL), and perovskite absorber layer in the inverted structure for the first time. The holes are injected from highly stable and air tolerant Sn0.5Ge0.5I3 perovskite composition to HTM and electrons from the perovskite to ETL. Simulation results revealed a great dependence of power conversion efficiency (PCE) on the thickness and defect density of perovskite layer. Here the effect of an increase in operating temperature from 300 K to 400 K on the performance of CsSnGeI3 based perovskite devices is investigated. Comparison between simulated CsSnGeI3 based PCSs and similar real testified devices with spiro-OMeTAD as HTL showed that the extraction of carriers at the interfaces of perovskite absorber depends on the energy level mismatches between perovskite and HTL/ETL. We believe that optimization results reported here represent a critical avenue for fabricating the stable, low-cost, efficient, and eco-friendly all-inorganic Cs-Sn-Ge based lead-free perovskite devices.

Keywords: hole transporting layer, lead-free, perovskite solar cell, SCAPS-1D, Sn-Ge based

Procedia PDF Downloads 156
257 Literature Review on the Barriers to Access Credit for Small Agricultural Producers and Policies to Mitigate Them in Developing Countries

Authors: Margarita Gáfaro, Karelys Guzmán, Paola Poveda

Abstract:

This paper establishes the theoretical aspects that explain the barriers to accessing credit for small agricultural producers in developing countries and identifies successful policy experiences to mitigate them. We will test two hypotheses. The first one is that information asymmetries, high transaction costs and high-risk exposure limit the supply of credit to small agricultural producers in developing countries. The second hypothesis is that low levels of financial education and productivity and high uncertainty about the returns of agricultural activity limit the demand for credit. To test these hypotheses, a review of the theoretical and empirical literature on access to rural credit in developing countries will be carried out. The first part of this review focuses on theoretical models that incorporate information asymmetries in the credit market and analyzes the interaction between these asymmetries and the characteristics of the agricultural sector in developing countries. Some of the characteristics we will focus on are the absence of collateral, the underdevelopment of the judicial systems and insurance markets, and the high dependence on climatic factors of production technologies. The second part of this review focuses on the determinants of credit demand by small agricultural producers, including the profitability of productive projects, security conditions, risk aversion or loss, financial education, and cognitive biases, among others. There are policies that focus on resolving these supply and demand constraints and managing to improve credit access. Therefore, another objective of this paper is to present a review of effective policies that have promoted access to credit for smallholders in the world. For this, information available in policy documents will be collected. This information will be complemented by interviews with officials in charge of the design and execution of these policies in a subset of selected countries. The information collected will be analyzed in light of the conceptual framework proposed in the first two parts of this section. The barriers to access to credit that each policy attempts to resolve and the factors that could explain its effectiveness will be identified.

Keywords: agricultural economics, credit access, smallholder, developing countries

Procedia PDF Downloads 69
256 Numerical Study of the Breakdown of Surface Divergence Based Models for Interfacial Gas Transfer Velocity at Large Contamination Levels

Authors: Yasemin Akar, Jan G. Wissink, Herlina Herlina

Abstract:

The effect of various levels of contamination on the interfacial air–water gas transfer velocity is studied by Direct Numerical Simulation (DNS). The interfacial gas transfer is driven by isotropic turbulence, introduced at the bottom of the computational domain, diffusing upwards. The isotropic turbulence is generated in a separate, concurrently running the large-eddy simulation (LES). The flow fields in the main DNS and the LES are solved using fourth-order discretisations of convection and diffusion. To solve the transport of dissolved gases in water, a fifth-order-accurate WENO scheme is used for scalar convection combined with a fourth-order central discretisation for scalar diffusion. The damping effect of the surfactant contamination on the near surface (horizontal) velocities in the DNS is modelled using horizontal gradients of the surfactant concentration. An important parameter in this model, which corresponds to the level of contamination, is ReMa⁄We, where Re is the Reynolds number, Ma is the Marangoni number, and We is the Weber number. It was previously found that even small levels of contamination (ReMa⁄We small) lead to a significant drop in the interfacial gas transfer velocity KL. It is known that KL depends on both the Schmidt number Sc (ratio of the kinematic viscosity and the gas diffusivity in water) and the surface divergence β, i.e. K_L∝√(β⁄Sc). Previously it has been shown that this relation works well for surfaces with low to moderate contamination. However, it will break down for β close to zero. To study the validity of this dependence in the presence of surface contamination, simulations were carried out for ReMa⁄We=0,0.12,0.6,1.2,6,30 and Sc = 2, 4, 8, 16, 32. First, it will be shown that the scaling of KL with Sc remains valid also for larger ReMa⁄We. This is an important result that indicates that - for various levels of contamination - the numerical results obtained at low Schmidt numbers are also valid for significantly higher and more realistic Sc. Subsequently, it will be shown that - with increasing levels of ReMa⁄We - the dependency of KL on β begins to break down as the increased damping of near surface fluctuations results in an increased damping of β. Especially for large levels of contamination, this damping is so severe that KL is found to be underestimated significantly.

Keywords: contamination, gas transfer, surfactants, turbulence

Procedia PDF Downloads 300
255 COVID-19 in Nigeria: An external Analysis from the perspective of social media

Authors: Huseyin Arasli, Maryam Abdullahi, Tugrul Gunay

Abstract:

One of the prominence elements used by the destination marketing organization (DMO) as a marketing strategy is the application of Social media tools. During the current spread of coronavirus disease (COVID-19), travel restriction was placed in most countries of the world, leading to the closure of borders movement. It should be noted that most tourism travelers depend on social media to obtain and exchange different kinds of information about COVID-19 in an unprecedented scale. The situational information people received is valued, which calls for the response of the tourism industry on the epidemic. Therefore, it is highly important to recognize such situational information and to understand how people spread this propaganda on social media platforms so that suitable information that relates the COVID-19 epidemic is available in a manner that will not tarnish the marketing strategies, festival planners. Data for this research study was collected from the desk review, which is a secondary source data, online blogs, and interview through social media chat. The results of this research show that the widespread of COVID-19 pandemics led to rapid lockdown in states and cities all over Nigeria, causing declining demands in hotels, airlines, recreation, and tourism centers. Additionally, billions of dollars lost has been recorded in the high increase of hotels and travel bookings cancellations which caused hundreds and thousands of job loss in the country. The result of this research also revealed that COVID-19 is causing more havoc on the unemployment rate indices of the country. Similarly, the over-dependence of government on petroleum has further caused considerable revenue loss, thereby raising a high poverty rate among less privileged Nigerians. Based on this result, the study suggested that there is an urgent need for the government to diversify its economy by looking at other different sectors such as tourism and agricultural farm produce to harmonize other commercial trades sectors in the country.

Keywords: social media, destination marketing organizations, DMOs, cultural COVID-19, coronavirus, hospitality, travel tour, tourism

Procedia PDF Downloads 99
254 Impact of the Non-Energy Sectors Diversification on the Energy Dependency Mitigation: Visualization by the “IntelSymb” Software Application

Authors: Ilaha Rzayeva, Emin Alasgarov, Orkhan Karim-Zada

Abstract:

This study attempts to consider the linkage between management and computer sciences in order to develop the software named “IntelSymb” as a demo application to prove data analysis of non-energy* fields’ diversification, which will positively influence on energy dependency mitigation of countries. Afterward, we analyzed 18 years of economic fields of development (5 sectors) of 13 countries by identifying which patterns mostly prevailed and which can be dominant in the near future. To make our analysis solid and plausible, as a future work, we suggest developing a gateway or interface, which will be connected to all available on-line data bases (WB, UN, OECD, U.S. EIA) for countries’ analysis by fields. Sample data consists of energy (TPES and energy import indicators) and non-energy industries’ (Main Science and Technology Indicator, Internet user index, and Sales and Production indicators) statistics from 13 OECD countries over 18 years (1995-2012). Our results show that the diversification of non-energy industries can have a positive effect on energy sector dependency (energy consumption and import dependence on crude oil) deceleration. These results can provide empirical and practical support for energy and non-energy industries diversification’ policies, such as the promoting of Information and Communication Technologies (ICTs), services and innovative technologies efficiency and management, in other OECD and non-OECD member states with similar energy utilization patterns and policies. Industries, including the ICT sector, generate around 4 percent of total GHG, but this is much higher — around 14 percent — if indirect energy use is included. The ICT sector itself (excluding the broadcasting sector) contributes approximately 2 percent of global GHG emissions, at just under 1 gigatonne of carbon dioxide equivalent (GtCO2eq). Ergo, this can be a good example and lesson for countries which are dependent and independent on energy, and mainly emerging oil-based economies, as well as to motivate non-energy industries diversification in order to be ready to energy crisis and to be able to face any economic crisis as well.

Keywords: energy policy, energy diversification, “IntelSymb” software, renewable energy

Procedia PDF Downloads 224
253 Merchants’ Attitudes towards Tourism Development in Mahane Yehuda Market: A Case Study

Authors: Rotem Mashkov, Noam Shoval

Abstract:

In an age when a tourist’s gaze is more focused on the daily lives of locals, it is evident that local food markets are being rediscovered. Traditional urban markets succeed in reinventing themselves as a space for consumption, recreation, and culture, enabling authentic experiences and interpersonal interactions with the local culture. Alongside this, the pressure of tourism development may result in commercialization and retail gentrification to the point of losing the sense of local identity. The issue of finding a balance between tourism development and the preservation of unique local features is at the heart of this study and is being tested using the case of the Mahane Yehuda market in Jerusalem. The research question—how merchants respond to tourism development in the Mahane Yehuda food market— focuses on local traders, a group of players who are usually absent from the research arenas, although they influence tourism development as well as influenced by it. Three main research methods were integrated into this study. The first two methods, a survey of articles survey and comparative mapping of the business mix, were used to characterize the changes in the Mahane Yehuda market both consciously and physically. The third research method, involving in-depth interviews with merchants, was used to examine the traders' attitudes and responses to tourism development. The findings indicate that there has been a turnaround in the market image over the past decade and a half. Additionally, there has been a significant physical change in the business mix, reflected by a decline of 15% in the number of stalls selling food products and delicacies. The data from the interviews on the traders’ attitudes towards tourism development were inconclusive; there were disagreements among the traders about the economic contribution of tourism development in relation to their dependence on the tourism industry. However, there was a consensus on the need for authentic elements in the marketplace. The findings of the study also indicate a strong link between the merchants’ response to tourism development and their stall ownership status as the merchant could exercise their position in various ways depending on the possession type.

Keywords: business mix, Jerusalem, local food markets, Mahane Yehuda market, merchants’ attitude, ownership status, retail gentrification, tourism development, traditional urban markets

Procedia PDF Downloads 136
252 Spatial Ecology of an Endangered Amphibian Litoria Raniformis within Modified Tasmanian Landscapes

Authors: Timothy Garvey, Don Driscoll

Abstract:

Within Tasmania, the growling grass frog (Litoria raniformis) has experienced a rapid contraction in distribution. This decline is primarily attributed to habitat loss through landscape modification and improved land drainage. Reductions in seasonal water-sources have placed increasing importance on permanent water bodies for reproduction and foraging. Tasmanian agricultural and commercial forestry landscapes often feature small artificial ponds, utilized for watering livestock and fighting wildfires. Improved knowledge of how L. raniformis may be exploiting anthropogenic ponds is required for improved conservation management. We implemented telemetric tracking in order to evaluate the spatial ecology of L. raniformis (n = 20) within agricultural and managed forestry sites, with tracking conducted periodically over the breeding season (November/December, January/February, March/April). We investigated (1) potential differences in habitat utilization between agricultural and plantation sites, and (2) the post-breeding dispersal of individual frogs. Frogs were found to remain in close proximity to ponds throughout November/December, with individuals occupying vegetative depauperate water bodies beginning to disperse by January/February. Dispersing individuals traversed exposed plantation understory and agricultural pasture land in order to enter patches of native scrubland. By March/April all individuals captured at minimally vegetated ponds had retreated to adjacent scrub corridors. Animals found in ponds featuring dense riparian vegetation were not recorded to disperse. No difference in behavior was recorded between sexes. Rising temperatures coincided with increased movement by individuals towards native scrub refugia. The patterns of movement reported in this investigation emphasize the significant contribution of manmade water-bodies towards the conservation of L. raniformis within modified landscapes. The use of natural scrubland as cyclical retreats between breeding seasons also highlights the importance of the continued preservation of remnant vegetation corridors. Loss of artificial dams or buffering scrubland in heavily altered landscapes could see the breakdown of the greater L. raniformis meta-population further threatening their regional persistence.

Keywords: habitat loss, modified landscapes, spatial ecology, telemetry

Procedia PDF Downloads 119
251 Scenarios for the Energy Transition in Residential Buildings for the European Regions

Authors: Domenico Carmelo Mongelli, Laura Carnieletto, Michele De Carli, Filippo Busato

Abstract:

Starting from the current context in which the Russian invasion in Ukraine has highlighted Europe's dependence on natural gas imports for heating buildings, this study proposes solutions to resolve this dependency and evaluates related scenarios in the near future. In the first part of this work the methodologies and results of the economic impact are indicated by simulating a massive replacement of boilers powered by fossil fuels with electrically powered hightemperature air-water heat pumps for heating residential buildings in different European climates, without changing the current energy mix. For each individual European region, the costs for the purchase and installation of heat pumps for all residential buildings have been determined. Again for each individual European region, the economic savings during the operation phase that would be obtained in this future scenario of energy transition from fossil fuels to the electrification of domestic heating were calculated. For the European regions for which the economic savings were identified as positive, the payback times of the economic investments were analysed. In the second part of the work, hypothesizing different scenarios for a possible greater use of renewable energy sources and therefore with different possible future scenarios of the energy mix, the methodologies and results of the simulations on the economic analysis and on the environmental analysis are reported which have allowed us to evaluate the future effects of the energy transition from boilers to heat pumps for each European region. In the third part, assuming a rapid short-term diffusion of cooling for European residential buildings, the penetration shares in the cooling market and future projections of energy needs for cooling for each European region have been identified. A database was created where the results of this research relating to 38 European Nations divided into 179 regions were reported. Other previous works on the topics covered were limited to analyzing individual European nations, without ever going into detail about the individual regions within each nation, while the original contribution of the present work lies in the fact that the results achieved allow a specific numerical analysis and punctual for every single European region.

Keywords: buildings, energy, Europe, future

Procedia PDF Downloads 93
250 Investigating the Aerosol Load of Eastern Mediterranean Basin with Sentinel-5p Satellite

Authors: Deniz Yurtoğlu

Abstract:

Aerosols directly affect the radiative balance of the earth by absorbing and/or scattering the sun rays reaching the atmosphere and indirectly affect the balance by acting as a nucleus in cloud formation. The composition, physical, and chemical properties of aerosols vary depending on their sources and the time spent in the atmosphere. The Eastern Mediterranean Basin has a high aerosol load that is formed from different sources; such as anthropogenic activities, desert dust outbreaks, and the spray of sea salt; and the area is subjected to atmospheric transport from other locations on the earth. This region, which includes the deserts of Africa, the Middle East, and the Mediterranean sea, is one of the most affected areas by climate change due to its location and the chemistry of the atmosphere. This study aims to investigate the spatiotemporal deviation of aerosol load in the Eastern Mediterranean Basin between the years 2018-2022 with the help of a new pioneer satellite of ESA (European Space Agency), Sentinel-5P. The TROPOMI (The TROPOspheric Monitoring Instrument) traveling on this low-Earth orbiting satellite is a UV (Ultraviolet)-sensing spectrometer with a resolution of 5.5 km x 3.5 km, which can make measurements even in a cloud-covered atmosphere. By using Absorbing Aerosol Index data produced by this spectrometer and special scripts written in Python language that transforms this data into images, it was seen that the majority of the aerosol load in the Eastern Mediterranean Basin is sourced from desert dust and anthropogenic activities. After retrieving the daily data, which was separated from the NaN values, seasonal analyses match with the normal aerosol variations expected, which are high in warm seasons and lower in cold seasons. Monthly analyses showed that in four years, there was an increase in the amount of Absorbing Aerosol Index in spring and winter by 92.27% (2019-2021) and 39.81% (2019-2022), respectively. On the other hand, in the summer and autumn seasons, a decrease has been observed by 20.99% (2018-2021) and 0.94% (2018-2021), respectively. The overall variation of the mean absorbing aerosol index from TROPOMI between April 2018 to April 2022 reflects a decrease of 115.87% by annual mean from 0.228 to -0.036. However, when the data is analyzed by the annual mean values of the years which have the data from January to December, meaning from 2019 to 2021, there was an increase of 57.82% increase (0.108-0.171). This result can be interpreted as the effect of climate change on the aerosol load and also, more specifically, the effect of forest fires that happened in the summer months of 2021.

Keywords: aerosols, eastern mediterranean basin, sentinel-5p, tropomi, aerosol index, remote sensing

Procedia PDF Downloads 68
249 Experimental Investigation of the Out-of-Plane Dynamic Behavior of Adhesively Bonded Composite Joints at High Strain Rates

Authors: Sonia Sassi, Mostapha Tarfaoui, Hamza Ben Yahia

Abstract:

In this investigation, an experimental technique in which the dynamic response, damage kinetic and heat dissipation are measured simultaneously during high strain rates on adhesively bonded joints materials. The material used in this study is widely used in the design of structures for military applications. It was composed of a 45° Bi-axial fiber-glass mat of 0.286 mm thickness in a Polyester resin matrix. In adhesive bonding, a NORPOL Polyvinylester of 1 mm thickness was used to assemble the composite substrate. The experimental setup consists of a compression Split Hopkinson Pressure Bar (SHPB), a high-speed infrared camera and a high-speed Fastcam rapid camera. For the dynamic compression tests, 13 mm x 13 mm x 9 mm samples for out-of-plane tests were considered from 372 to 1030 s-1. Specimen surface is controlled and monitored in situ and in real time using the high-speed camera which acquires the damage progressive in specimens and with the infrared camera which provides thermal images in time sequence. Preliminary compressive stress-strain vs. strain rates data obtained show that the dynamic material strength increases with increasing strain rates. Damage investigations have revealed that the failure mainly occurred in the adhesive/adherent interface because of the brittle nature of the polymeric adhesive. Results have shown the dependency of the dynamic parameters on strain rates. Significant temperature rise was observed in dynamic compression tests. Experimental results show that the temperature change depending on the strain rate and the damage mode and their maximum exceed 100 °C. The dependence of these results on strain rate indicates that there exists a strong correlation between damage rate sensitivity and heat dissipation, which might be useful when developing damage models under dynamic loading tacking into account the effect of the energy balance of adhesively bonded joints.

Keywords: adhesive bonded joints, Hopkinson bars, out-of-plane tests, dynamic compression properties, damage mechanisms, heat dissipation

Procedia PDF Downloads 212
248 Phosphate Use Efficiency in Plants: A GWAS Approach to Identify the Pathways Involved

Authors: Azizah M. Nahari, Peter Doerner

Abstract:

Phosphate (Pi) is one of the essential macronutrients in plant growth and development, and it plays a central role in metabolic processes in plants, particularly photosynthesis and respiration. Limitation of crop productivity by Pi is widespread and is likely to increase in the future. Applications of Pi fertilizers have improved soil Pi fertility and crop production; however, they have also caused environmental damage. Therefore, in order to reduce dependence on unsustainable Pi fertilizers, a better understanding of phosphate use efficiency (PUE) is required for engineering nutrient-efficient crop plants. Enhanced Pi efficiency can be achieved by improved productivity per unit Pi taken up. We aim to identify, by using association mapping, general features of the most important loci that contribute to increased PUE to allow us to delineate the physiological pathways involved in defining this trait in the model plant Arabidopsis. As PUE is in part determined by the efficiency of uptake, we designed a hydroponic system to avoid confounding effects due to differences in root system architecture leading to differences in Pi uptake. In this system, 18 parental lines and 217 lines of the MAGIC population (a Multiparent Advanced Generation Inter-Cross) grown in high and low Pi availability conditions. The results showed revealed a large variation of PUE in the parental lines, indicating that the MAGIC population was well suited to identify PUE loci and pathways. 2 of 18 parental lines had the highest PUE in low Pi while some lines responded strongly and increased PUE with increased Pi. Having examined the 217 MAGIC population, considerable variance in PUE was found. A general feature was the trend of most lines to exhibit higher PUE when grown in low Pi conditions. Association mapping is currently in progress, but initial observations indicate that a wide variety of physiological processes are involved in influencing PUE in Arabidopsis. The combination of hydroponic growth methods and genome-wide association mapping is a powerful tool to identify the physiological pathways underpinning complex quantitative traits in plants.

Keywords: hydroponic system growth, phosphate use efficiency (PUE), Genome-wide association mapping, MAGIC population

Procedia PDF Downloads 321
247 Macroeconomic Policies Followed in Turkey after the Crisis 2001 and the Effect of These Policies on Foreign Trade: Sample of the Province Konya

Authors: Bilge Afşar, Zeynep Karaçor, Burcu Guvenek

Abstract:

The aim of this study is to examine and analyze the effect of macroeconomic policies on foreign trade. In the study, the effect of the macroeconomic policies applied in Turkey after 2001 on foreign trade was scrutinized carrying out a survey study in the sample of the province Konya. In the survey study, the survey was administered to a total of 209 exporter firms, which are the members of Konya Chamber of Commerce. While 51 of the firms, to which the survey was administered, exported below $ 100,000, 158 of them are the firms exporting above $ 100,000. Survey was realized in the way of face to face interview with the firms in the rate of 79%. 47% of the institutions forming the mass were reached. In forming survey questionnaire, in general, 5-point Likert scale was used. In order to assess the study results, SPSS 15 package program was utilized. In the survey, foreign trade activities of the firms in Konya were analyzed; and the problems they face, while performing foreign trade, and those needing to be carried out for increasing foreign trade volume of Konya were revealed by determining how and at what degree they were affected from the macroeconomic policies applied. Thus, foreign trade structure and state of the province Konya were attempted to be analyzed. In the survey study, it emerges that although the problems Konya faces in foreign trade overlap with the problems across Turkey, the province Konya seems to be affected relatively less from the last crisis with its equity capital in either trade or other areas. Until the year 2008, while Konya is in a position of the province continuously increasing its export, also with the effect of global crisis, in 2009, a fall was seen in the amount of export. The results emerging in the survey study also confirm this case. In parallel with demand inadequacy and recession all over the world, firms experience trouble. However, again according to our survey result, foreign market weight of firms shifted from EU countries to Russia, East Bloc, and Middle East countries. This prevented Konya from negative affecting from EU crisis at maximum level. That is, Russian and Middle East market express significance for Konya. That market is diversified, and being relatively rid of dependence to EU is extremely important in terms of Konya export.

Keywords: economy, foreign trade, economic crise, macro economic politicies

Procedia PDF Downloads 300
246 Latent Heat Storage Using Phase Change Materials

Authors: Debashree Ghosh, Preethi Sridhar, Shloka Atul Dhavle

Abstract:

The judicious and economic consumption of energy for sustainable growth and development is nowadays a thing of primary importance; Phase Change Materials (PCM) provide an ingenious option of storing energy in the form of Latent Heat. Energy storing mechanism incorporating phase change material increases the efficiency of the process by minimizing the difference between supply and demand; PCM heat exchangers are used to storing the heat or non-convectional energy within the PCM as the heat of fusion. The experimental study evaluates the effect of thermo-physical properties, variation in inlet temperature, and flow rate on charging period of a coiled heat exchanger. Secondly, a numerical study is performed on a PCM double pipe heat exchanger packed with two different PCMs, namely, RT50 and Fatty Acid, in the annular region. In this work, the simulation of charging of paraffin wax (RT50) using water as high-temperature fluid (HTF) is performed. Commercial software Ansys-Fluent 15 is used for simulation, and hence charging of PCM is studied. In the Enthalpy-porosity model, a single momentum equation is applicable to describe the motion of both solid and liquid phases. The details of the progress of phase change with time are presented through the contours of melt-fraction, temperature. The velocity contour is shown to describe the motion of the liquid phase. The experimental study revealed that paraffin wax melts with almost the same temperature variation at the two Intermediate positions. Fatty acid, on the other hand, melts faster owing to greater thermal conductivity and low melting temperature. It was also observed that an increase in flow rate leads to a reduction in the charging period. The numerical study also supports some of the observations found in the experimental study like the significant dependence of driving force on the process of melting. The numerical study also clarifies the melting pattern of the PCM, which cannot be observed in the experimental study.

Keywords: latent heat storage, charging period, discharging period, coiled heat exchanger

Procedia PDF Downloads 121
245 Empirical Analysis of the Effect of Cloud Movement in a Basic Off-Grid Photovoltaic System: Case Study Using Transient Response of DC-DC Converters

Authors: Asowata Osamede, Christo Pienaar, Johan Bekker

Abstract:

Mismatch in electrical energy (power) or outage from commercial providers, in general, does not promote development to the public and private sector, these basically limit the development of industries. The necessity for a well-structured photovoltaic (PV) system is of importance for an efficient and cost-effective monitoring system. The major renewable energy potential on earth is provided from solar radiation and solar photovoltaics (PV) are considered a promising technological solution to support the global transformation to a low-carbon economy and reduction on the dependence on fossil fuels. Solar arrays which consist of various PV module should be operated at the maximum power point in order to reduce the overall cost of the system. So power regulation and conditioning circuits should be incorporated in the set-up of a PV system. Power regulation circuits used in PV systems include maximum power point trackers, DC-DC converters and solar chargers. Inappropriate choice of power conditioning device in a basic off-grid PV system can attribute to power loss, hence the need for a right choice of power conditioning device to be coupled with the system of the essence. This paper presents the design and implementation of a power conditioning devices in order to improve the overall yield from the availability of solar energy and the system’s total efficiency. The power conditioning devices taken into consideration in the project includes the Buck and Boost DC-DC converters as well as solar chargers with MPPT. A logging interface circuit (LIC) is designed and employed into the system. The LIC is designed on a printed circuit board. It basically has DC current signalling sensors, specifically the LTS 6-NP. The LIC is consequently required to program the voltages in the system (these include the PV voltage and the power conditioning device voltage). The voltage is structured in such a way that it can be accommodated by the data logger. Preliminary results which include availability of power as well as power loss in the system and efficiency will be presented and this would be used to draw the final conclusion.

Keywords: tilt and orientation angles, solar chargers, PV panels, storage devices, direct solar radiation

Procedia PDF Downloads 136
244 Coprophagus Beetles (Scarabaeidae: Coleoptera) of Buxa Tiger Reserve, West Bengal, India

Authors: Subhankar Kumar Sarkar

Abstract:

Scarab beetles composing the family Scarabaeidae is one of the largest families in the order Coleoptera. The family is comprised of 11 subfamilies. Of these, the subfamily Scarabaeinae includes 13 tribes globally. Indian species are however considered within 2 tribes Scarabaeini and Coprini. Scarab beetles under this subfamily also known as Coprophagus beetles play an indispensable role in forestry and agriculture. Both adults and larvae of these beetles do a remarkable job of carrying excrement into the soil thus enriching the soil to a great extent. Eastern and North Eastern states of India are heavily rich in diversity of organisms as this region exhibits the tropical rain forests of the eastern Himalayas, which exhibits one of the 18 biodiversity hotspots of the world and one of the three of India. Buxa Tiger Reserve located in Dooars between latitudes 26°30” to 26°55” North & longitudes 89°20” to 89°35” East is one such fine example of rain forests of the eastern Himalayas. Despite this, the subfamily is poorly known, particularly from this part of the globe and demands serious revisionary studies. It is with this background; the attempt is being made to assess the Scarabaeinae fauna of the forest. Both extensive and intensive surveys were conducted in different beats under different ranges of Buxa Tiger Reserve. For collection sweep nets, bush beating and collection in inverted umbrella, hand picking techniques were used. Several pit fall traps were laid in the collection localities of the Reserve to trap ground dwelling scarabs. Dung of various animals was also examined to make collections. In the evening hours UV light, trap was used to collect nocturnal beetles. The collected samples were studied under Stereozoom Binocular Microscopes Zeiss SV6, SV11 and Olympus SZ 30. The faunistic investigation of the forest revealed in the recognition of 19 species under 6 genera distributed over 2 tribes. Of these Heliocopris tyrannus Thomson, 1859 was recorded new from the Country, while Catharsius javanus Lansberge, 1886, Copris corpulentus Gillet, 1910, C. doriae Harold, 1877 and C. sarpedon Harold, 1868 from the state. 4 species are recorded as endemic to India. The forest is dominated by the members of the Genus Onthophagus, of which Onthophagus (Colobonthophagus) dama (Fabricius, 1798) is represented by highest number of individuals. Their seasonal distribution is most during Premonsoon followed by Monsoon and Postmonsoon. Zoogeographically all the recorded species are of oriental distribution.

Keywords: buxa tiger reserve, diversity, India, new records, scarabaeinae, scarabaeidae

Procedia PDF Downloads 242
243 Cross-Comparison between Land Surface Temperature from Polar and Geostationary Satellite over Heterogenous Landscape: A Case Study in Hong Kong

Authors: Ibrahim A. Adeniran, Rui F. Zhu, Man S. Wong

Abstract:

Owing to the insufficiency in the spatial representativeness and continuity of in situ temperature measurements from weather stations (WS), the use of temperature measurement from WS for large-range diurnal analysis in heterogenous landscapes has been limited. This has made the accurate estimation of land surface temperature (LST) from remotely sensed data more crucial. Moreover, the study of dynamic interaction between the atmosphere and the physical surface of the Earth could be enhanced at both annual and diurnal scales by using optimal LST data derived from satellite sensors. The tradeoff between the spatial and temporal resolution of LSTs from satellite’s thermal infrared sensors (TIRS) has, however, been a major challenge, especially when high spatiotemporal LST data are recommended. It is well-known from existing literature that polar satellites have the advantage of high spatial resolution, while geostationary satellites have a high temporal resolution. Hence, this study is aimed at designing a framework for the cross-comparison of LST data from polar and geostationary satellites in a heterogeneous landscape. This could help to understand the relationship between the LST estimates from the two satellites and, consequently, their integration in diurnal LST analysis. Landsat-8 satellite data will be used as the representative of the polar satellite due to the availability of its long-term series, while the Himawari-8 satellite will be used as the data source for the geostationary satellite because of its improved TIRS. For the study area, Hong Kong Special Administrative Region (HK SAR) will be selected; this is due to the heterogeneity in the landscape of the region. LST data will be retrieved from both satellites using the Split window algorithm (SWA), and the resulting data will be validated by comparing satellite-derived LST data with temperature data from automatic WS in HK SAR. The LST data from the satellite data will then be separated based on the land use classification in HK SAR using the Global Land Cover by National Mapping Organization version3 (GLCNMO 2013) data. The relationship between LST data from Landsat-8 and Himawari-8 will then be investigated based on the land-use class and over different seasons of the year in order to account for seasonal variation in their relationship. The resulting relationship will be spatially and statistically analyzed and graphically visualized for detailed interpretation. Findings from this study will reveal the relationship between the two satellite data based on the land use classification within the study area and the seasons of the year. While the information provided by this study will help in the optimal combination of LST data from Polar (Landsat-8) and geostationary (Himawari-8) satellites, it will also serve as a roadmap in the annual and diurnal urban heat (UHI) analysis in Hong Kong SAR.

Keywords: automatic weather station, Himawari-8, Landsat-8, land surface temperature, land use classification, split window algorithm, urban heat island

Procedia PDF Downloads 75
242 Diurnal Circle of Rainfall and Convective Properties over West and Central Africa

Authors: Balogun R. Ayodeji, Adefisan E. Adesanya, Adeyewa Z. Debo, E. C. Okogbue

Abstract:

The need to investigate diurnal weather circles in West Africa is coined in the fact that complex interactions often results from diurnal weather patterns. This study investigates diurnal circles of wind, rainfall and convective properties using six (6) hour interval data from the ERA-Interim and the Tropical Rainfall Measurement Mission (TRMM). The seven distinct zones, used in this work and classified as rainforest (west-coast, dry, Nigeria-Cameroon), Savannah (Nigeria, and Central Africa and South Sudan (CASS)), Sudano-Sahel, and Sahel, were clearly indicated by the rainfall pattern in each zones. Results showed that the land‐ocean warming contrast was more strongly sensitive to seasonal cycle and has been very weak during March-May (MAM) but clearly spelt out during June-September (JJAS). Dipoles of wind convergence/divergence and wet/dry precipitation, between CASS and Nigeria Savannah zones, were identified in morning and evening hours of MAM, whereas distinct night and day anomaly, in the same location of CASS, were found to be consistent during the JJAS season. Diurnal variation of convective properties showed that stratiform precipitation, due to the extremely low occurrence of flashcount climatology, was dominant during morning hours for both MAM and JJAS than other periods of the day. On the other hand, diurnal variation of the system sizes showed that small system sizes were most dominant during the day time periods for both MAM and JJAS, whereas larger system sizes were frequent during the evening, night, and morning hours. The locations of flashcount and system sizes agreed with earlier results that morning and day-time hours were dominated by stratiform precipitation and small system sizes respectively. Most results clearly showed that the eastern locations of Sudano and Sahel were consistently dry because rainfall and precipitation features were predominantly few. System sizes greater than or equal to 800 km² were found in the western axis of the Sudano and Sahel zones, whereas the eastern axis, particularly in the Sahel zone, had minimal occurrences of small/large system sizes. From the results of locations of extreme systems, flashcount greater than 275 in one single system was never observed during the morning (6Z) diurnal, whereas, the evening (18Z) diurnal had the most frequent cases (at least 8) of flashcount exceeding 275 in one single system. Results presented had shown the importance of diurnal variation in understanding precipitation, flashcount, system sizes patterns at diurnal scales, and understanding land-ocean contrast, precipitation, and wind field anomaly at diurnal scales.

Keywords: convective properties, diurnal circle, flashcount, system sizes

Procedia PDF Downloads 133
241 Computational Study of Composite Films

Authors: Rudolf Hrach, Stanislav Novak, Vera Hrachova

Abstract:

Composite and nanocomposite films represent the class of promising materials and are often objects of the study due to their mechanical, electrical and other properties. The most interesting ones are probably the composite metal/dielectric structures consisting of a metal component embedded in an oxide or polymer matrix. Behaviour of composite films varies with the amount of the metal component inside what is called filling factor. The structures contain individual metal particles or nanoparticles completely insulated by the dielectric matrix for small filling factors and the films have more or less dielectric properties. The conductivity of the films increases with increasing filling factor and finally a transition into metallic state occurs. The behaviour of composite films near a percolation threshold, where the change of charge transport mechanism from a thermally-activated tunnelling between individual metal objects to an ohmic conductivity is observed, is especially important. Physical properties of composite films are given not only by the concentration of metal component but also by the spatial and size distributions of metal objects which are influenced by a technology used. In our contribution, a study of composite structures with the help of methods of computational physics was performed. The study consists of two parts: -Generation of simulated composite and nanocomposite films. The techniques based on hard-sphere or soft-sphere models as well as on atomic modelling are used here. Characterizations of prepared composite structures by image analysis of their sections or projections follow then. However, the analysis of various morphological methods must be performed as the standard algorithms based on the theory of mathematical morphology lose their sensitivity when applied to composite films. -The charge transport in the composites was studied by the kinetic Monte Carlo method as there is a close connection between structural and electric properties of composite and nanocomposite films. It was found that near the percolation threshold the paths of tunnel current forms so-called fuzzy clusters. The main aim of the present study was to establish the correlation between morphological properties of composites/nanocomposites and structures of conducting paths in them in the dependence on the technology of composite films.

Keywords: composite films, computer modelling, image analysis, nanocomposite films

Procedia PDF Downloads 393
240 Hydrological Challenges and Solutions in the Nashik Region: A Multi Tracer and Geochemistry Approach to Groundwater Management

Authors: Gokul Prasad, Pennan Chinnasamy

Abstract:

The degradation of groundwater resources, attributed to factors such as excessive abstraction and contamination, has emerged as a global concern. This study delves into the stable isotopes of water) in a hard-rock aquifer situated in the Upper Godavari watershed, an agriculturally rich region in India underlain by Basalt. The higher groundwater draft (> 90%) poses significant risks; comprehending groundwater sources, flow patterns, and their environmental impacts is pivotal for researchers and water managers. The region has faced five droughts in the past 20 years; four are categorized as medium. The recharge rates are variable and show a very minimum contribution to groundwater. The rainfall pattern shows vast variability, with the region receiving seasonal monsoon rainfall for just four months and the rest of the year experiencing minimal rainfall. This research closely monitored monsoon precipitation inputs and examined spatial and temporal fluctuations in δ18O and δ2H in both groundwater and precipitation. By discerning individual recharge events during monsoons, it became possible to identify periods when evaporation led to groundwater quality deterioration, characterized by elevated salinity and stable isotope values in the return flow. The locally derived meteoric water line (LMWL) (δ2H = 6.72 * δ18O + 1.53, r² = 0.6) provided valuable insights into the groundwater system. The leftward shift of the Nashik LMWL in relation to the GMWL and LMWL indicated groundwater evaporation (-33 ‰), supported by spatial variations in electrical conductivity (EC) data. Groundwater in the eastern and northern watershed areas exhibited higher salinity > 3000uS/cm, expanding > 40% of the area compared to the western and southern regions due to geological disparities (alluvium vs basalt). The findings emphasize meteoric precipitation as the primary groundwater source in the watershed. However, spatial variations in isotope values and chemical constituents indicate other contributing factors, including evaporation, groundwater source type, and natural or anthropogenic (specifically agricultural and industrial) contaminants. Therefore, the study recommends focused hydro geochemistry and isotope analysis in areas with strong agricultural and industrial influence for the development of holistic groundwater management plans for protecting the groundwater aquifers' quantity and quality.

Keywords: groundwater quality, stable isotopes, salinity, groundwater management, hard-rock aquifer

Procedia PDF Downloads 48