Search results for: sales process ARIMA models
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 20749

Search results for: sales process ARIMA models

19729 Study of the Influence of Eccentricity Due to Configuration and Materials on Seismic Response of a Typical Building

Authors: A. Latif Karimi, M. K. Shrimali

Abstract:

Seismic design is a critical stage in the process of design and construction of a building. It includes strategies for designing earthquake-resistant buildings to ensure health, safety, and security of the building occupants and assets. Hence, it becomes very important to understand the behavior of structural members precisely, for construction of buildings that can yield a better response to seismic forces. This paper investigates the behavior of a typical structure when subjected to ground motion. The corresponding mode shapes and modal frequencies are studied to interpret the response of an actual structure using different fabricated models and 3D visual models. In this study, three different structural configurations are subjected to horizontal ground motion, and the effect of “stiffness eccentricity” and placement of infill walls are checked to determine how each parameter contributes in a building’s response to dynamic forces. The deformation data from lab experiments and the analysis on SAP2000 software are reviewed to obtain the results. This study revealed that seismic response in a building can be improved by introducing higher deformation capacity in the building. Also, proper design of infill walls and maintaining a symmetrical configuration in a building are the key factors in building stability during the earthquake.

Keywords: eccentricity, seismic response, mode shape, building configuration, building dynamics

Procedia PDF Downloads 200
19728 Employment Promotion and Its Role in Counteracting Unemployment during the Financial Crisis in the USA

Authors: Beata Wentura-Dudek

Abstract:

In the United States in 2007-2010 before the crisis, the US labour market policy focused mainly on providing residents with unemployment insurance, after the recession this policy changed. The aim of the article was to present quantitative research presenting the most effective labor market instruments contributing to reducing unemployment during the crisis in the USA. The article presents research based on the analysis of available documents and statistical data. The results of the conducted research show that the most effective forms of counteracting unemployment at that time were: direct job creation, job search assistance, subsidized employment, training and employment promotion using new technologies, including social media.

Keywords: lotteries, loyalty programs, competitions, bonus sales, rebate campaigns

Procedia PDF Downloads 143
19727 Random Vertical Seismic Vibrations of the Long Span Cantilever Beams

Authors: Sergo Esadze

Abstract:

Seismic resistance norms require calculation of cantilevers on vertical components of the base seismic acceleration. Long span cantilevers, as a rule, must be calculated as a separate construction element. According to the architectural-planning solution, functional purposes and environmental condition of a designing buildings/structures, long span cantilever construction may be of very different types: both by main bearing element (beam, truss, slab), and by material (reinforced concrete, steel). A choice from these is always linked with bearing construction system of the building. Research of vertical seismic vibration of these constructions requires individual approach for each (which is not specified in the norms) in correlation with model of seismic load. The latest may be given both as deterministic load and as a random process. Loading model as a random process is more adequate to this problem. In presented paper, two types of long span (from 6m – up to 12m) reinforcement concrete cantilever beams have been considered: a) bearing elements of cantilevers, i.e., elements in which they fixed, have cross-sections with large sizes and cantilevers are made with haunch; b) cantilever beam with load-bearing rod element. Calculation models are suggested, separately for a) and b) types. They are presented as systems with finite quantity degree (concentrated masses) of freedom. Conditions for fixing ends are corresponding with its types. Vertical acceleration and vertical component of the angular acceleration affect masses. Model is based on assumption translator-rotational motion of the building in the vertical plane, caused by vertical seismic acceleration. Seismic accelerations are considered as random processes and presented by multiplication of the deterministic envelope function on stationary random process. Problem is solved within the framework of the correlation theory of random process. Solved numerical examples are given. The method is effective for solving the specific problems.

Keywords: cantilever, random process, seismic load, vertical acceleration

Procedia PDF Downloads 189
19726 Colored Image Classification Using Quantum Convolutional Neural Networks Approach

Authors: Farina Riaz, Shahab Abdulla, Srinjoy Ganguly, Hajime Suzuki, Ravinesh C. Deo, Susan Hopkins

Abstract:

Recently, quantum machine learning has received significant attention. For various types of data, including text and images, numerous quantum machine learning (QML) models have been created and are being tested. Images are exceedingly complex data components that demand more processing power. Despite being mature, classical machine learning still has difficulties with big data applications. Furthermore, quantum technology has revolutionized how machine learning is thought of, by employing quantum features to address optimization issues. Since quantum hardware is currently extremely noisy, it is not practicable to run machine learning algorithms on it without risking the production of inaccurate results. To discover the advantages of quantum versus classical approaches, this research has concentrated on colored image data. Deep learning classification models are currently being created on Quantum platforms, but they are still in a very early stage. Black and white benchmark image datasets like MNIST and Fashion MINIST have been used in recent research. MNIST and CIFAR-10 were compared for binary classification, but the comparison showed that MNIST performed more accurately than colored CIFAR-10. This research will evaluate the performance of the QML algorithm on the colored benchmark dataset CIFAR-10 to advance QML's real-time applicability. However, deep learning classification models have not been developed to compare colored images like Quantum Convolutional Neural Network (QCNN) to determine how much it is better to classical. Only a few models, such as quantum variational circuits, take colored images. The methodology adopted in this research is a hybrid approach by using penny lane as a simulator. To process the 10 classes of CIFAR-10, the image data has been translated into grey scale and the 28 × 28-pixel image containing 10,000 test and 50,000 training images were used. The objective of this work is to determine how much the quantum approach can outperform a classical approach for a comprehensive dataset of color images. After pre-processing 50,000 images from a classical computer, the QCNN model adopted a hybrid method and encoded the images into a quantum simulator for feature extraction using quantum gate rotations. The measurements were carried out on the classical computer after the rotations were applied. According to the results, we note that the QCNN approach is ~12% more effective than the traditional classical CNN approaches and it is possible that applying data augmentation may increase the accuracy. This study has demonstrated that quantum machine and deep learning models can be relatively superior to the classical machine learning approaches in terms of their processing speed and accuracy when used to perform classification on colored classes.

Keywords: CIFAR-10, quantum convolutional neural networks, quantum deep learning, quantum machine learning

Procedia PDF Downloads 129
19725 Deep Learning Approach for Chronic Kidney Disease Complications

Authors: Mario Isaza-Ruget, Claudia C. Colmenares-Mejia, Nancy Yomayusa, Camilo A. González, Andres Cely, Jossie Murcia

Abstract:

Quantification of risks associated with complications development from chronic kidney disease (CKD) through accurate survival models can help with patient management. A retrospective cohort that included patients diagnosed with CKD from a primary care program and followed up between 2013 and 2018 was carried out. Time-dependent and static covariates associated with demographic, clinical, and laboratory factors were included. Deep Learning (DL) survival analyzes were developed for three CKD outcomes: CKD stage progression, >25% decrease in Estimated Glomerular Filtration Rate (eGFR), and Renal Replacement Therapy (RRT). Models were evaluated and compared with Random Survival Forest (RSF) based on concordance index (C-index) metric. 2.143 patients were included. Two models were developed for each outcome, Deep Neural Network (DNN) model reported C-index=0.9867 for CKD stage progression; C-index=0.9905 for reduction in eGFR; C-index=0.9867 for RRT. Regarding the RSF model, C-index=0.6650 was reached for CKD stage progression; decreased eGFR C-index=0.6759; RRT C-index=0.8926. DNN models applied in survival analysis context with considerations of longitudinal covariates at the start of follow-up can predict renal stage progression, a significant decrease in eGFR and RRT. The success of these survival models lies in the appropriate definition of survival times and the analysis of covariates, especially those that vary over time.

Keywords: artificial intelligence, chronic kidney disease, deep neural networks, survival analysis

Procedia PDF Downloads 134
19724 An Integrated Approach to Syllabus Design for Business Chinese

Authors: Dongshuo Wang, Minjie Xing

Abstract:

International businesses prefer to hire people who speak more than one language. With the booming of China’s market, industries and trade, business leaders are looking for people who can speak Chinese and operate successfully in a Chinese cultural context, and therefore an increasing number of tertiary students choose a Business Chinese (BC) course. As a result, BC syllabus design is urgently needed. What business knowledge should be included in China’s context? What aspects of BC culture should be included? How much Chinese language should be introduced to conduct business in China? With these research questions, this research explores a syllabus design that integrates the three aspects of subject knowledge of business in communication, business practice including the procedure of and strategies for communicating business in practice and language skills including the disciplinary and professional contexts in which linguistic choices are made. After literature review and consultancy with China-related business professionals, senior staff from business schools and representatives of students, the authors of this paper, together with language tutors drafted a syllabus based on the integrated approach to include subject knowledge, business practice and language skills. Due to the nature of this research which requires trial/test and detailed description for each correction, qualitative methods are adopted. Two in-depth focus group interviews (with 2 staff and 4 students in each group), and 18 individual interviews (8 staff and 10 students) were conducted. QDA was used for systematizing, organizing, and analysing qualitative data. It was discovered that the business knowledge related to a Chinese cultural context, including face value, networking skills, strategic plans for signing a contract, marketing, sales, and after-sale service, should be introduced through lectures and seminars; business practice could be implemented by students setting up their own companies, virtual or real; and language skills would be trained via writing business messages and presenting their companies in fairs and exhibitions. After a longitudinal study of trials and amendments for three years from 2013 to 2016, the syllabus was approved by staff and students and the university. Students appreciated the syllabus, as they could apply the subject knowledge into practice by using it in their own companies and Chinese language was used throughout the process. The syllabus is now ready to be used in universities offering BC, and the designing process can be applied to other new courses as well.

Keywords: business Chinese, syllabus design, business knowledge, language skills

Procedia PDF Downloads 335
19723 Optimizing Performance of Tablet's Direct Compression Process Using Fuzzy Goal Programming

Authors: Abbas Al-Refaie

Abstract:

This paper aims at improving the performance of the tableting process using statistical quality control and fuzzy goal programming. The tableting process was studied. Statistical control tools were used to characterize the existing process for three critical responses including the averages of a tablet’s weight, hardness, and thickness. At initial process factor settings, the estimated process capability index values for the tablet’s averages of weight, hardness, and thickness were 0.58, 3.36, and 0.88, respectively. The L9 array was utilized to provide experimentation design. Fuzzy goal programming was then employed to find the combination of optimal factor settings. Optimization results showed that the process capability index values for a tablet’s averages of weight, hardness, and thickness were improved to 1.03, 4.42, and 1.42, respectively. Such improvements resulted in significant savings in quality and production costs.

Keywords: fuzzy goal programming, control charts, process capability, tablet optimization

Procedia PDF Downloads 270
19722 Use of Cassava Waste and Its Energy Potential

Authors: I. Inuaeyen, L. Phil, O. Eni

Abstract:

Fossil fuels have been the main source of global energy for many decades, accounting for about 80% of global energy need. This is beginning to change however with increasing concern about greenhouse gas emissions which comes mostly from fossil fuel combustion. Greenhouse gases such as carbon dioxide are responsible for stimulating climate change. As a result, there has been shift towards more clean and renewable energy sources of energy as a strategy for stemming greenhouse gas emission into the atmosphere. The production of bio-products such as bio-fuel, bio-electricity, bio-chemicals, and bio-heat etc. using biomass materials in accordance with the bio-refinery concept holds a great potential for reducing high dependence on fossil fuel and their resources. The bio-refinery concept promotes efficient utilisation of biomass material for the simultaneous production of a variety of products in order to minimize or eliminate waste materials. This will ultimately reduce greenhouse gas emissions into the environment. In Nigeria, cassava solid waste from cassava processing facilities has been identified as a vital feedstock for bio-refinery process. Cassava is generally a staple food in Nigeria and one of the most widely cultivated foodstuff by farmers across Nigeria. As a result, there is an abundant supply of cassava waste in Nigeria. In this study, the aim is to explore opportunities for converting cassava waste to a range of bio-products such as butanol, ethanol, electricity, heat, methanol, furfural etc. using a combination of biochemical, thermochemical and chemical conversion routes. . The best process scenario will be identified through the evaluation of economic analysis, energy efficiency, life cycle analysis and social impact. The study will be carried out by developing a model representing different process options for cassava waste conversion to useful products. The model will be developed using Aspen Plus process simulation software. Process economic analysis will be done using Aspen Icarus software. So far, comprehensive survey of literature has been conducted. This includes studies on conversion of cassava solid waste to a variety of bio-products using different conversion techniques, cassava waste production in Nigeria, modelling and simulation of waste conversion to useful products among others. Also, statistical distribution of cassava solid waste production in Nigeria has been established and key literatures with useful parameters for developing different cassava waste conversion process has been identified. In the future work, detailed modelling of the different process scenarios will be carried out and the models validated using data from literature and demonstration plants. A techno-economic comparison of the various process scenarios will be carried out to identify the best scenario using process economics, life cycle analysis, energy efficiency and social impact as the performance indexes.

Keywords: bio-refinery, cassava waste, energy, process modelling

Procedia PDF Downloads 374
19721 Modelling Conceptual Quantities Using Support Vector Machines

Authors: Ka C. Lam, Oluwafunmibi S. Idowu

Abstract:

Uncertainty in cost is a major factor affecting performance of construction projects. To our knowledge, several conceptual cost models have been developed with varying degrees of accuracy. Incorporating conceptual quantities into conceptual cost models could improve the accuracy of early predesign cost estimates. Hence, the development of quantity models for estimating conceptual quantities of framed reinforced concrete structures using supervised machine learning is the aim of the current research. Using measured quantities of structural elements and design variables such as live loads and soil bearing pressures, response and predictor variables were defined and used for constructing conceptual quantities models. Twenty-four models were developed for comparison using a combination of non-parametric support vector regression, linear regression, and bootstrap resampling techniques. R programming language was used for data analysis and model implementation. Gross soil bearing pressure and gross floor loading were discovered to have a major influence on the quantities of concrete and reinforcement used for foundations. Building footprint and gross floor loading had a similar influence on beams and slabs. Future research could explore the modelling of other conceptual quantities for walls, finishes, and services using machine learning techniques. Estimation of conceptual quantities would assist construction planners in early resource planning and enable detailed performance evaluation of early cost predictions.

Keywords: bootstrapping, conceptual quantities, modelling, reinforced concrete, support vector regression

Procedia PDF Downloads 206
19720 Linearization and Process Standardization of Construction Design Engineering Workflows

Authors: T. R. Sreeram, S. Natarajan, C. Jena

Abstract:

Civil engineering construction is a network of tasks involving varying degree of complexity and streamlining, and standardization is the only way to establish a systemic approach to design. While there are off the shelf tools such as AutoCAD that play a role in the realization of design, the repeatable process in which these tools are deployed often is ignored. The present paper addresses this challenge through a sustainable design process and effective standardizations at all stages in the design workflow. The same is demonstrated through a case study in the context of construction, and further improvement points are highlighted.

Keywords: syste, lean, value stream, process improvement

Procedia PDF Downloads 123
19719 An Approach on Intelligent Tolerancing of Car Body Parts Based on Historical Measurement Data

Authors: Kai Warsoenke, Maik Mackiewicz

Abstract:

To achieve a high quality of assembled car body structures, tolerancing is used to ensure a geometric accuracy of the single car body parts. There are two main techniques to determine the required tolerances. The first is tolerance analysis which describes the influence of individually tolerated input values on a required target value. Second is tolerance synthesis to determine the location of individual tolerances to achieve a target value. Both techniques are based on classical statistical methods, which assume certain probability distributions. To ensure competitiveness in both saturated and dynamic markets, production processes in vehicle manufacturing must be flexible and efficient. The dimensional specifications selected for the individual body components and the resulting assemblies have a major influence of the quality of the process. For example, in the manufacturing of forming tools as operating equipment or in the higher level of car body assembly. As part of the metrological process monitoring, manufactured individual parts and assemblies are recorded and the measurement results are stored in databases. They serve as information for the temporary adjustment of the production processes and are interpreted by experts in order to derive suitable adjustments measures. In the production of forming tools, this means that time-consuming and costly changes of the tool surface have to be made, while in the body shop, uncertainties that are difficult to control result in cost-intensive rework. The stored measurement results are not used to intelligently design tolerances in future processes or to support temporary decisions based on real-world geometric data. They offer potential to extend the tolerancing methods through data analysis and machine learning models. The purpose of this paper is to examine real-world measurement data from individual car body components, as well as assemblies, in order to develop an approach for using the data in short-term actions and future projects. For this reason, the measurement data will be analyzed descriptively in the first step in order to characterize their behavior and to determine possible correlations. In the following, a database is created that is suitable for developing machine learning models. The objective is to create an intelligent way to determine the position and number of measurement points as well as the local tolerance range. For this a number of different model types are compared and evaluated. The models with the best result are used to optimize equally distributed measuring points on unknown car body part geometries and to assign tolerance ranges to them. The current results of this investigation are still in progress. However, there are areas of the car body parts which behave more sensitively compared to the overall part and indicate that intelligent tolerancing is useful here in order to design and control preceding and succeeding processes more efficiently.

Keywords: automotive production, machine learning, process optimization, smart tolerancing

Procedia PDF Downloads 116
19718 Models of Environmental, Crack Propagation of Some Aluminium Alloys (7xxx)

Authors: H. A. Jawan

Abstract:

This review describes the models of environmental-related crack propagation of aluminum alloys (7xxx) during the last few decades. Acknowledge on effects of different factors on the susceptibility to SCC permits to propose valuable mechanisms on crack advancement. The reliable mechanism of cracking give a possibility to propose the optimum chemical composition and thermal treatment conditions resulting in microstructure the most suitable for real environmental condition and stress state.

Keywords: microstructure, environmental, propagation, mechanism

Procedia PDF Downloads 418
19717 Application of the Micropolar Beam Theory for the Construction of the Discrete-Continual Model of Carbon Nanotubes

Authors: Samvel H. Sargsyan

Abstract:

Together with the study of electron-optical properties of nanostructures and proceeding from experiment-based data, the study of the mechanical properties of nanostructures has become quite actual. For the study of the mechanical properties of fullerene, carbon nanotubes, graphene and other nanostructures one of the crucial issues is the construction of their adequate mathematical models. Among all mathematical models of graphene or carbon nano-tubes, this so-called discrete-continuous model is specifically important. It substitutes the interactions between atoms by elastic beams or springs. The present paper demonstrates the construction of the discrete-continual beam model for carbon nanotubes or graphene, where the micropolar beam model based on the theory of moment elasticity is accepted. With the account of the energy balance principle, the elastic moment constants for the beam model, expressed by the physical and geometrical parameters of carbon nanotube or graphene, are determined. By switching from discrete-continual beam model to the continual, the models of micropolar elastic cylindrical shell and micropolar elastic plate are confirmed as continual models for carbon nanotube and graphene respectively.

Keywords: carbon nanotube, discrete-continual, elastic, graphene, micropolar, plate, shell

Procedia PDF Downloads 159
19716 Pricing European Options under Jump Diffusion Models with Fast L-stable Padé Scheme

Authors: Salah Alrabeei, Mohammad Yousuf

Abstract:

The goal of option pricing theory is to help the investors to manage their money, enhance returns and control their financial future by theoretically valuing their options. Modeling option pricing by Black-School models with jumps guarantees to consider the market movement. However, only numerical methods can solve this model. Furthermore, not all the numerical methods are efficient to solve these models because they have nonsmoothing payoffs or discontinuous derivatives at the exercise price. In this paper, the exponential time differencing (ETD) method is applied for solving partial integrodifferential equations arising in pricing European options under Merton’s and Kou’s jump-diffusion models. Fast Fourier Transform (FFT) algorithm is used as a matrix-vector multiplication solver, which reduces the complexity from O(M2) into O(M logM). A partial fraction form of Pad`e schemes is used to overcome the complexity of inverting polynomial of matrices. These two tools guarantee to get efficient and accurate numerical solutions. We construct a parallel and easy to implement a version of the numerical scheme. Numerical experiments are given to show how fast and accurate is our scheme.

Keywords: Integral differential equations, , L-stable methods, pricing European options, Jump–diffusion model

Procedia PDF Downloads 151
19715 Assessment of Adsorption Properties of Neem Leaves Wastes for the Removal of Congo Red and Methyl Orange

Authors: Muhammad B. Ibrahim, Muhammad S. Sulaiman, Sadiq Sani

Abstract:

Neem leaves were studied as plant wastes derived adsorbents for detoxification of Congo Red (CR) and Methyl Orange (MO) from aqueous solutions using batch adsorption technique. The objectives involved determining the effects of the basic adsorption parameters are namely, agitation time, adsorbent dosage, adsorbents particle size, adsorbate loading concentrations and initial pH, on the adsorption process as well as characterizing the adsorbents by determining their physicochemical properties, functional groups responsible for the adsorption process using Fourier Transform Infrared (FTIR) spectroscopy and surface morphology using scanning electron microscopy (SEM) coupled with energy dispersion X – ray spectroscopy (EDS). The adsorption behaviours of the materials were tested against Langmuir, Freundlich, etc. isotherm models. Percent adsorption increased with increase in agitation time (5 – 240 minutes), adsorbent dosage (100-500mg), initial concentration (100-300mg/L), and with decrease in particle size (≥75μm to ≤300μm) of the adsorbents. Both processes are dye pH-dependent, increasing or decreasing percent adsorption in acidic (2-6) or alkaline (8-12) range over the studied pH (2-12) range. From the experimental data the Langmuir’s separation factor (RL) suggests unfavourable adsorption for all processes, Freundlich constant (nF) indicates unfavourable process for CR and MO adsorption; while the mean free energy of adsorption

Keywords: adsorption, congo red, methyl orange, neem leave

Procedia PDF Downloads 365
19714 Solitons and Universes with Acceleration Driven by Bulk Particles

Authors: A. C. Amaro de Faria Jr, A. M. Canone

Abstract:

Considering a scenario where our universe is taken as a 3d domain wall embedded in a 5d dimensional Minkowski space-time, we explore the existence of a richer class of solitonic solutions and their consequences for accelerating universes driven by collisions of bulk particle excitations with the walls. In particular it is shown that some of these solutions should play a fundamental role at the beginning of the expansion process. We present some of these solutions in cosmological scenarios that can be applied to models that describe the inflationary period of the Universe.

Keywords: solitons, topological defects, branes, kinks, accelerating universes in brane scenarios

Procedia PDF Downloads 137
19713 Modeling and Simulation Methods Using MATLAB/Simulink

Authors: Jamuna Konda, Umamaheswara Reddy Karumuri, Sriramya Muthugi, Varun Pishati, Ravi Shakya,

Abstract:

This paper investigates the challenges involved in mathematical modeling of plant simulation models ensuring the performance of the plant models much closer to the real time physical model. The paper includes the analysis performed and investigation on different methods of modeling, design and development for plant model. Issues which impact the design time, model accuracy as real time model, tool dependence are analyzed. The real time hardware plant would be a combination of multiple physical models. It is more challenging to test the complete system with all possible test scenarios. There are possibilities of failure or damage of the system due to any unwanted test execution on real time.

Keywords: model based design (MBD), MATLAB, Simulink, stateflow, plant model, real time model, real-time workshop (RTW), target language compiler (TLC)

Procedia PDF Downloads 343
19712 Method of Parameter Calibration for Error Term in Stochastic User Equilibrium Traffic Assignment Model

Authors: Xiang Zhang, David Rey, S. Travis Waller

Abstract:

Stochastic User Equilibrium (SUE) model is a widely used traffic assignment model in transportation planning, which is regarded more advanced than Deterministic User Equilibrium (DUE) model. However, a problem exists that the performance of the SUE model depends on its error term parameter. The objective of this paper is to propose a systematic method of determining the appropriate error term parameter value for the SUE model. First, the significance of the parameter is explored through a numerical example. Second, the parameter calibration method is developed based on the Logit-based route choice model. The calibration process is realized through multiple nonlinear regression, using sequential quadratic programming combined with least square method. Finally, case analysis is conducted to demonstrate the application of the calibration process and validate the better performance of the SUE model calibrated by the proposed method compared to the SUE models under other parameter values and the DUE model.

Keywords: parameter calibration, sequential quadratic programming, stochastic user equilibrium, traffic assignment, transportation planning

Procedia PDF Downloads 299
19711 Application of Human Biomonitoring and Physiologically-Based Pharmacokinetic Modelling to Quantify Exposure to Selected Toxic Elements in Soil

Authors: Eric Dede, Marcus Tindall, John W. Cherrie, Steve Hankin, Christopher Collins

Abstract:

Current exposure models used in contaminated land risk assessment are highly conservative. Use of these models may lead to over-estimation of actual exposures, possibly resulting in negative financial implications due to un-necessary remediation. Thus, we are carrying out a study seeking to improve our understanding of human exposure to selected toxic elements in soil: arsenic (As), cadmium (Cd), chromium (Cr), nickel (Ni), and lead (Pb) resulting from allotment land-use. The study employs biomonitoring and physiologically-based pharmacokinetic (PBPK) modelling to quantify human exposure to these elements. We recruited 37 allotment users (adults > 18 years old) in Scotland, UK, to participate in the study. Concentrations of the elements (and their bioaccessibility) were measured in allotment samples (soil and allotment produce). Amount of produce consumed by the participants and participants’ biological samples (urine and blood) were collected for up to 12 consecutive months. Ethical approval was granted by the University of Reading Research Ethics Committee. PBPK models (coded in MATLAB) were used to estimate the distribution and accumulation of the elements in key body compartments, thus indicating the internal body burden. Simulating low element intake (based on estimated ‘doses’ from produce consumption records), predictive models suggested that detection of these elements in urine and blood was possible within a given period of time following exposure. This information was used in planning biomonitoring, and is currently being used in the interpretation of test results from biological samples. Evaluation of the models is being carried out using biomonitoring data, by comparing model predicted concentrations and measured biomarker concentrations. The PBPK models will be used to generate bioavailability values, which could be incorporated in contaminated land exposure models. Thus, the findings from this study will promote a more sustainable approach to contaminated land management.

Keywords: biomonitoring, exposure, PBPK modelling, toxic elements

Procedia PDF Downloads 319
19710 Development of the Integrated Quality Management System of Cooked Sausage Products

Authors: Liubov Lutsyshyn, Yaroslava Zhukova

Abstract:

Over the past twenty years, there has been a drastic change in the mode of nutrition in many countries which has been reflected in the development of new products, production techniques, and has also led to the expansion of sales markets for food products. Studies have shown that solution of the food safety problems is almost impossible without the active and systematic activity of organizations directly involved in the production, storage and sale of food products, as well as without management of end-to-end traceability and exchange of information. The aim of this research is development of the integrated system of the quality management and safety assurance based on the principles of HACCP, traceability and system approach with creation of an algorithm for the identification and monitoring of parameters of technological process of manufacture of cooked sausage products. Methodology of implementation of the integrated system based on the principles of HACCP, traceability and system approach during the manufacturing of cooked sausage products for effective provision for the defined properties of the finished product has been developed. As a result of the research evaluation technique and criteria of performance of the implementation and operation of the system of the quality management and safety assurance based on the principles of HACCP have been developed and substantiated. In the paper regularities of influence of the application of HACCP principles, traceability and system approach on parameters of quality and safety of the finished product have been revealed. In the study regularities in identification of critical control points have been determined. The algorithm of functioning of the integrated system of the quality management and safety assurance has also been described and key requirements for the development of software allowing the prediction of properties of finished product, as well as the timely correction of the technological process and traceability of manufacturing flows have been defined. Based on the obtained results typical scheme of the integrated system of the quality management and safety assurance based on HACCP principles with the elements of end-to-end traceability and system approach for manufacture of cooked sausage products has been developed. As a result of the studies quantitative criteria for evaluation of performance of the system of the quality management and safety assurance have been developed. A set of guidance documents for the implementation and evaluation of the integrated system based on the HACCP principles in meat processing plants have also been developed. On the basis of the research the effectiveness of application of continuous monitoring of the manufacturing process during the control on the identified critical control points have been revealed. The optimal number of critical control points in relation to the manufacture of cooked sausage products has been substantiated. The main results of the research have been appraised during 2013-2014 under the conditions of seven enterprises of the meat processing industry and have been implemented at JSC «Kyiv meat processing plant».

Keywords: cooked sausage products, HACCP, quality management, safety assurance

Procedia PDF Downloads 247
19709 The BL-5D Model: The Development of a Model of Instructional Design for Blended Learning Activities

Authors: Damian Gordon, Paul Doyle, Anna Becevel, Júlia Vilafranca Molero, Cinta Gascon, Arianna Vitiello, Tina Baloh

Abstract:

It has long been recognized that the creation of any teaching content can be enhanced if the development process follows a pre-defined approach, which is often referred to as an instructional design methodology. These methodologies typically define a number of stages, or phases, that an educator should undertake to help ensure the quality of the final teaching content that is developed. In this paper, we present an instructional design methodology that is focused specifically on the introduction of blended resources into a heretofore bricks-and-mortar course. To achieve this, research was undertaken concerning a range of models of instructional design, as well as literature covering some of the key challenges and “pain points” of blending. Following this, our model, the BL-5D model, is presented, which incorporates some key questions at each stage of this five-stage methodology to guide the development process. Finally, a discussion of some of the key themes and issues that have been uncovered in this work is presented, as well as a template for a blended learning case study that emerged from this approach.

Keywords: blended learning, challenges of blended learning, design methodologies, instructional design

Procedia PDF Downloads 119
19708 Crude Distillation Process Simulation Using Unisim Design Simulator

Authors: C. Patrascioiu, M. Jamali

Abstract:

The paper deals with the simulation of the crude distillation process using the Unisim Design simulator. The necessity of simulating this process is argued both by considerations related to the design of the crude distillation column, but also by considerations related to the design of advanced control systems. In order to use the Unisim Design simulator to simulate the crude distillation process, the identification of the simulators used in Romania and an analysis of the PRO/II, HYSYS, and Aspen HYSYS simulators were carried out. Analysis of the simulators for the crude distillation process has allowed the authors to elaborate the conclusions of the success of the crude modelling. A first aspect developed by the authors is the implementation of specific problems of petroleum liquid-vapors equilibrium using Unisim Design simulator. The second major element of the article is the development of the methodology and the elaboration of the simulation program for the crude distillation process, using Unisim Design resources. The obtained results validate the proposed methodology and will allow dynamic simulation of the process.  

Keywords: crude oil, distillation, simulation, Unisim Design, simulators

Procedia PDF Downloads 249
19707 Empowering Women through the Fishermen of Functional Skills for City Gorontalo Indonesia

Authors: Abdul Rahmat

Abstract:

Community-based education in the economic empowerment of the family is an attempt to accelerate human development index (HDI) Dumbo Kingdom District of Gorontalo economics (purchasing power) program developed in this activity is the manufacture of functional skills shredded fish, fish balls, fish nuggets, chips anchovies, and corn sticks fish. The target audience of this activity is fishing se mothers subdistrict Dumbo Kingdom include Talumolo Village, Village Botu, Kampung Bugis Village, Village North and Sub Leato South Leato that each village is represented by 20 participants so totaling 100 participants. Time activities beginning in October s/d November 2014 held once a week on every Saturday at 9.00 s/d 13:00/14:00. From the results of the learning process of testing the skills of functional skills of making shredded fish, fish balls, fish nuggets, chips anchovies, fish and corn sticks residents have additional knowledge and experience are: 1) Order the concept include: nutrient content, processing food with fish raw materials , variations in taste, packaging, pricing and marketing sales. 2) Products made: in accordance with the wishes of the residents learned that estimated Eligible selling, product packaging logo creation, preparation and realization of the establishment of Business Study Group (KBU) and pioneered the marketing network with restaurant, store / shop staple food vendors that are around CLC.

Keywords: community development, functional skills, gender, HDI

Procedia PDF Downloads 313
19706 Comparisons of Co-Seismic Gravity Changes between GRACE Observations and the Predictions from the Finite-Fault Models for the 2012 Mw = 8.6 Indian Ocean Earthquake Off-Sumatra

Authors: Armin Rahimi

Abstract:

The Gravity Recovery and Climate Experiment (GRACE) has been a very successful project in determining math redistribution within the Earth system. Large deformations caused by earthquakes are in the high frequency band. Unfortunately, GRACE is only capable to provide reliable estimate at the low-to-medium frequency band for the gravitational changes. In this study, we computed the gravity changes after the 2012 Mw8.6 Indian Ocean earthquake off-Sumatra using the GRACE Level-2 monthly spherical harmonic (SH) solutions released by the University of Texas Center for Space Research (UTCSR). Moreover, we calculated gravity changes using different fault models derived from teleseismic data. The model predictions showed non-negligible discrepancies in gravity changes. However, after removing high-frequency signals, using Gaussian filtering 350 km commensurable GRACE spatial resolution, the discrepancies vanished, and the spatial patterns of total gravity changes predicted from all slip models became similar at the spatial resolution attainable by GRACE observations, and predicted-gravity changes were consistent with the GRACE-detected gravity changes. Nevertheless, the fault models, in which give different slip amplitudes, proportionally lead to different amplitude in the predicted gravity changes.

Keywords: undersea earthquake, GRACE observation, gravity change, dislocation model, slip distribution

Procedia PDF Downloads 355
19705 A Demonstration of How to Employ and Interpret Binary IRT Models Using the New IRT Procedure in SAS 9.4

Authors: Ryan A. Black, Stacey A. McCaffrey

Abstract:

Over the past few decades, great strides have been made towards improving the science in the measurement of psychological constructs. Item Response Theory (IRT) has been the foundation upon which statistical models have been derived to increase both precision and accuracy in psychological measurement. These models are now being used widely to develop and refine tests intended to measure an individual's level of academic achievement, aptitude, and intelligence. Recently, the field of clinical psychology has adopted IRT models to measure psychopathological phenomena such as depression, anxiety, and addiction. Because advances in IRT measurement models are being made so rapidly across various fields, it has become quite challenging for psychologists and other behavioral scientists to keep abreast of the most recent developments, much less learn how to employ and decide which models are the most appropriate to use in their line of work. In the same vein, IRT measurement models vary greatly in complexity in several interrelated ways including but not limited to the number of item-specific parameters estimated in a given model, the function which links the expected response and the predictor, response option formats, as well as dimensionality. As a result, inferior methods (a.k.a. Classical Test Theory methods) continue to be employed in efforts to measure psychological constructs, despite evidence showing that IRT methods yield more precise and accurate measurement. To increase the use of IRT methods, this study endeavors to provide a comprehensive overview of binary IRT models; that is, measurement models employed on test data consisting of binary response options (e.g., correct/incorrect, true/false, agree/disagree). Specifically, this study will cover the most basic binary IRT model, known as the 1-parameter logistic (1-PL) model dating back to over 50 years ago, up until the most recent complex, 4-parameter logistic (4-PL) model. Binary IRT models will be defined mathematically and the interpretation of each parameter will be provided. Next, all four binary IRT models will be employed on two sets of data: 1. Simulated data of N=500,000 subjects who responded to four dichotomous items and 2. A pilot analysis of real-world data collected from a sample of approximately 770 subjects who responded to four self-report dichotomous items pertaining to emotional consequences to alcohol use. Real-world data were based on responses collected on items administered to subjects as part of a scale-development study (NIDA Grant No. R44 DA023322). IRT analyses conducted on both the simulated data and analyses of real-world pilot will provide a clear demonstration of how to construct, evaluate, and compare binary IRT measurement models. All analyses will be performed using the new IRT procedure in SAS 9.4. SAS code to generate simulated data and analyses will be available upon request to allow for replication of results.

Keywords: instrument development, item response theory, latent trait theory, psychometrics

Procedia PDF Downloads 357
19704 Logical-Probabilistic Modeling of the Reliability of Complex Systems

Authors: Sergo Tsiramua, Sulkhan Sulkhanishvili, Elisabed Asabashvili, Lazare Kvirtia

Abstract:

The paper presents logical-probabilistic methods, models and algorithms for reliability assessment of complex systems, based on which a web application for structural analysis and reliability assessment of systems was created. The reliability assessment process included the following stages, which were reflected in the application: 1) Construction of a graphical scheme of the structural reliability of the system; 2) Transformation of the graphic scheme into a logical representation and modeling of the shortest ways of successful functioning of the system; 3) Description of system operability condition with logical function in the form of disjunctive normal form (DNF); 4) Transformation of DNF into orthogonal disjunction normal form (ODNF) using the orthogonalization algorithm; 5) Replacing logical elements with probabilistic elements in ODNF, obtaining a reliability estimation polynomial and quantifying reliability; 6) Calculation of weights of elements. Using the logical-probabilistic methods, models and algorithms discussed in the paper, a special software was created, by means of which a quantitative assessment of the reliability of systems of a complex structure is produced. As a result, structural analysis of systems, research and designing of optimal structure systems are carried out.

Keywords: Complex systems, logical-probabilistic methods, orthogonalization algorithm, reliability, weight of element

Procedia PDF Downloads 73
19703 The Study of the Determinants of Impulse Buying in Algeria

Authors: Amina Merabet, Ali Iznasni, Abderrezzak Benhabib

Abstract:

Impulse buying is of strategic importance to distributors. Currently, distribution companies rely heavily on contextual variables (music, smells, colors, sound, design ...) in order to push customers towards purchase and consumption. As such, a crucial way for commercial brands to increase sales is to stimulate impulse buying. For this reason, this study aims at identifying the factors that initiate and encourage impulse buying, as well as the levers that help distributors highlight effective marketing techniques in order to encourage consumers to make impulse purchase. Thus, we try to show, upon a field survey of 590 buyers, the impact of situational elements of both the store and the product on achieving impulse buying.

Keywords: Algerian shoppers, impulse buying, shopping environment, situational variables, product

Procedia PDF Downloads 351
19702 Statistical Analysis with Prediction Models of User Satisfaction in Software Project Factors

Authors: Katawut Kaewbanjong

Abstract:

We analyzed a volume of data and found significant user satisfaction in software project factors. A statistical significance analysis (logistic regression) and collinearity analysis determined the significance factors from a group of 71 pre-defined factors from 191 software projects in ISBSG Release 12. The eight prediction models used for testing the prediction potential of these factors were Neural network, k-NN, Naïve Bayes, Random forest, Decision tree, Gradient boosted tree, linear regression and logistic regression prediction model. Fifteen pre-defined factors were truly significant in predicting user satisfaction, and they provided 82.71% prediction accuracy when used with a neural network prediction model. These factors were client-server, personnel changes, total defects delivered, project inactive time, industry sector, application type, development type, how methodology was acquired, development techniques, decision making process, intended market, size estimate approach, size estimate method, cost recording method, and effort estimate method. These findings may benefit software development managers considerably.

Keywords: prediction model, statistical analysis, software project, user satisfaction factor

Procedia PDF Downloads 124
19701 Research on the Optimization of the Facility Layout of Efficient Cafeterias for Troops

Authors: Qing Zhang, Jiachen Nie, Yujia Wen, Guanyuan Kou, Peng Yu, Kun Xia, Qin Yang, Li Ding

Abstract:

BACKGROUND: A facility layout problem (FLP) is an NP-complete (non-deterministic polynomial) problem, which is hard to obtain an exact optimal solution. FLP has been widely studied in various limited spaces and workflows. For example, cafeterias with many types of equipment for troops cause chaotic processes when dining. OBJECTIVE: This article tried to optimize the layout of troops’ cafeteria and to improve the overall efficiency of the dining process. METHODS: First, the original cafeteria layout design scheme was analyzed from an ergonomic perspective and two new design schemes were generated. Next, three facility layout models were designed, and further simulation was applied to compare the total time and density of troops between each scheme. Last, an experiment of the dining process with video observation and analysis verified the simulation results. RESULTS: In a simulation, the dining time under the second new layout is shortened by 2.25% and 1.89% (p<0.0001, p=0.0001) compared with the other two layouts, while troops-flow density and interference both greatly reduced in the two new layouts. In the experiment, process completing time and the number of interference reduced as well, which verified corresponding simulation results. CONCLUSIONS: Our two new layout schemes are tested to be optimal by a series of simulation and space experiments. In future research, similar approaches could be applied when taking layout-design algorithm calculation into consideration.

Keywords: layout optimization, dining efficiency, troops’ cafeteria, anylogic simulation, field experiment

Procedia PDF Downloads 143
19700 Automatic and High Precise Modeling for System Optimization

Authors: Stephanie Chen, Mitja Echim, Christof Büskens

Abstract:

To describe and propagate the behavior of a system mathematical models are formulated. Parameter identification is used to adapt the coefficients of the underlying laws of science. For complex systems this approach can be incomplete and hence imprecise and moreover too slow to be computed efficiently. Therefore, these models might be not applicable for the numerical optimization of real systems, since these techniques require numerous evaluations of the models. Moreover not all quantities necessary for the identification might be available and hence the system must be adapted manually. Therefore, an approach is described that generates models that overcome the before mentioned limitations by not focusing on physical laws, but on measured (sensor) data of real systems. The approach is more general since it generates models for every system detached from the scientific background. Additionally, this approach can be used in a more general sense, since it is able to automatically identify correlations in the data. The method can be classified as a multivariate data regression analysis. In contrast to many other data regression methods this variant is also able to identify correlations of products of variables and not only of single variables. This enables a far more precise and better representation of causal correlations. The basis and the explanation of this method come from an analytical background: the series expansion. Another advantage of this technique is the possibility of real-time adaptation of the generated models during operation. Herewith system changes due to aging, wear or perturbations from the environment can be taken into account, which is indispensable for realistic scenarios. Since these data driven models can be evaluated very efficiently and with high precision, they can be used in mathematical optimization algorithms that minimize a cost function, e.g. time, energy consumption, operational costs or a mixture of them, subject to additional constraints. The proposed method has successfully been tested in several complex applications and with strong industrial requirements. The generated models were able to simulate the given systems with an error in precision less than one percent. Moreover the automatic identification of the correlations was able to discover so far unknown relationships. To summarize the above mentioned approach is able to efficiently compute high precise and real-time-adaptive data-based models in different fields of industry. Combined with an effective mathematical optimization algorithm like WORHP (We Optimize Really Huge Problems) several complex systems can now be represented by a high precision model to be optimized within the user wishes. The proposed methods will be illustrated with different examples.

Keywords: adaptive modeling, automatic identification of correlations, data based modeling, optimization

Procedia PDF Downloads 409