Search results for: real time data processing
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 40574

Search results for: real time data processing

39554 Statistically Accurate Synthetic Data Generation for Enhanced Traffic Predictive Modeling Using Generative Adversarial Networks and Long Short-Term Memory

Authors: Srinivas Peri, Siva Abhishek Sirivella, Tejaswini Kallakuri, Uzair Ahmad

Abstract:

Effective traffic management and infrastructure planning are crucial for the development of smart cities and intelligent transportation systems. This study addresses the challenge of data scarcity by generating realistic synthetic traffic data using the PeMS-Bay dataset, improving the accuracy and reliability of predictive modeling. Advanced synthetic data generation techniques, including TimeGAN, GaussianCopula, and PAR Synthesizer, are employed to produce synthetic data that replicates the statistical and structural characteristics of real-world traffic. Future integration of Spatial-Temporal Generative Adversarial Networks (ST-GAN) is planned to capture both spatial and temporal correlations, further improving data quality and realism. The performance of each synthetic data generation model is evaluated against real-world data to identify the best models for accurately replicating traffic patterns. Long Short-Term Memory (LSTM) networks are utilized to model and predict complex temporal dependencies within traffic patterns. This comprehensive approach aims to pinpoint areas with low vehicle counts, uncover underlying traffic issues, and inform targeted infrastructure interventions. By combining GAN-based synthetic data generation with LSTM-based traffic modeling, this study supports data-driven decision-making that enhances urban mobility, safety, and the overall efficiency of city planning initiatives.

Keywords: GAN, long short-term memory, synthetic data generation, traffic management

Procedia PDF Downloads 26
39553 Design and Implementation of Machine Learning Model for Short-Term Energy Forecasting in Smart Home Management System

Authors: R. Ramesh, K. K. Shivaraman

Abstract:

The main aim of this paper is to handle the energy requirement in an efficient manner by merging the advanced digital communication and control technologies for smart grid applications. In order to reduce user home load during peak load hours, utility applies several incentives such as real-time pricing, time of use, demand response for residential customer through smart meter. However, this method provides inconvenience in the sense that user needs to respond manually to prices that vary in real time. To overcome these inconvenience, this paper proposes a convolutional neural network (CNN) with k-means clustering machine learning model which have ability to forecast energy requirement in short term, i.e., hour of the day or day of the week. By integrating our proposed technique with home energy management based on Bluetooth low energy provides predicted value to user for scheduling appliance in advanced. This paper describes detail about CNN configuration and k-means clustering algorithm for short-term energy forecasting.

Keywords: convolutional neural network, fuzzy logic, k-means clustering approach, smart home energy management

Procedia PDF Downloads 305
39552 A Generalized Sparse Bayesian Learning Algorithm for Near-Field Synthetic Aperture Radar Imaging: By Exploiting Impropriety and Noncircularity

Authors: Pan Long, Bi Dongjie, Li Xifeng, Xie Yongle

Abstract:

The near-field synthetic aperture radar (SAR) imaging is an advanced nondestructive testing and evaluation (NDT&E) technique. This paper investigates the complex-valued signal processing related to the near-field SAR imaging system, where the measurement data turns out to be noncircular and improper, meaning that the complex-valued data is correlated to its complex conjugate. Furthermore, we discover that the degree of impropriety of the measurement data and that of the target image can be highly correlated in near-field SAR imaging. Based on these observations, A modified generalized sparse Bayesian learning algorithm is proposed, taking impropriety and noncircularity into account. Numerical results show that the proposed algorithm provides performance gain, with the help of noncircular assumption on the signals.

Keywords: complex-valued signal processing, synthetic aperture radar, 2-D radar imaging, compressive sensing, sparse Bayesian learning

Procedia PDF Downloads 131
39551 Pressure Losses on Realistic Geometry of Tracheobronchial Tree

Authors: Michaela Chovancova, Jakub Elcner

Abstract:

Real bronchial tree is very complicated piping system. Analysis of flow and pressure losses in this system is very difficult. Due to the complex geometry and the very small size in the lower generations is examination by CFD possible only in the central part of bronchial tree. For specify the pressure losses of lower generations is necessary to provide a mathematical equation. Determination of mathematical formulas for calculating the pressure losses in the real lungs is due to its complexity and diversity lengthy and inefficient process. For these calculations is necessary the lungs to slightly simplify (same cross-section over the length of individual generation) or use one of the models of lungs. The simplification could cause deviations from real values. The article compares the values of pressure losses obtained from CFD simulation of air flow in the central part of the real bronchial tree with the values calculated in a slightly simplified real lungs by using a mathematical relationship derived from the Bernoulli equation and continuity equation. Then, evaluate the desirability of using this formula to determine the pressure loss across the bronchial tree.

Keywords: pressure gradient, airways resistance, real geometry of bronchial tree, breathing

Procedia PDF Downloads 322
39550 Subsea Processing: Deepwater Operation and Production

Authors: Md Imtiaz, Sanchita Dei, Shubham Damke

Abstract:

In recent years, there has been a rapidly accelerating shift from traditional surface processing operations to subsea processing operation. This shift has been driven by a number of factors including the depletion of shallow fields around the world, technological advances in subsea processing equipment, the need for production from marginal fields, and lower initial upfront investment costs compared to traditional production facilities. Moving production facilities to the seafloor offers a number of advantage, including a reduction in field development costs, increased production rates from subsea wells, reduction in the need for chemical injection, minimization of risks to worker ,reduction in spills due to hurricane damage, and increased in oil production by enabling production from marginal fields. Subsea processing consists of a range of technologies for separation, pumping, compression that enables production from offshore well without the need for surface facilities. At present, there are two primary technologies being used for subsea processing: subsea multiphase pumping and subsea separation. Multiphase pumping is the most basic subsea processing technology. Multiphase pumping involves the use of boosting system to transport the multiphase mixture through pipelines to floating production vessels. The separation system is combined with single phase pumps or water would be removed and either pumped to the surface, re-injected, or discharged to the sea. Subsea processing can allow for an entire topside facility to be decommissioned and the processed fluids to be tied back to a new, more distant, host. This type of application reduces costs and increased both overall facility and integrity and recoverable reserve. In future, full subsea processing could be possible, thereby eliminating the need for surface facilities.

Keywords: FPSO, marginal field, Subsea processing, SWAG

Procedia PDF Downloads 413
39549 Event Data Representation Based on Time Stamp for Pedestrian Detection

Authors: Yuta Nakano, Kozo Kajiwara, Atsushi Hori, Takeshi Fujita

Abstract:

In association with the wave of electric vehicles (EV), low energy consumption systems have become more and more important. One of the key technologies to realize low energy consumption is a dynamic vision sensor (DVS), or we can call it an event sensor, neuromorphic vision sensor and so on. This sensor has several features, such as high temporal resolution, which can achieve 1 Mframe/s, and a high dynamic range (120 DB). However, the point that can contribute to low energy consumption the most is its sparsity; to be more specific, this sensor only captures the pixels that have intensity change. In other words, there is no signal in the area that does not have any intensity change. That is to say, this sensor is more energy efficient than conventional sensors such as RGB cameras because we can remove redundant data. On the other side of the advantages, it is difficult to handle the data because the data format is completely different from RGB image; for example, acquired signals are asynchronous and sparse, and each signal is composed of x-y coordinate, polarity (two values: +1 or -1) and time stamp, it does not include intensity such as RGB values. Therefore, as we cannot use existing algorithms straightforwardly, we have to design a new processing algorithm to cope with DVS data. In order to solve difficulties caused by data format differences, most of the prior arts make a frame data and feed it to deep learning such as Convolutional Neural Networks (CNN) for object detection and recognition purposes. However, even though we can feed the data, it is still difficult to achieve good performance due to a lack of intensity information. Although polarity is often used as intensity instead of RGB pixel value, it is apparent that polarity information is not rich enough. Considering this context, we proposed to use the timestamp information as a data representation that is fed to deep learning. Concretely, at first, we also make frame data divided by a certain time period, then give intensity value in response to the timestamp in each frame; for example, a high value is given on a recent signal. We expected that this data representation could capture the features, especially of moving objects, because timestamp represents the movement direction and speed. By using this proposal method, we made our own dataset by DVS fixed on a parked car to develop an application for a surveillance system that can detect persons around the car. We think DVS is one of the ideal sensors for surveillance purposes because this sensor can run for a long time with low energy consumption in a NOT dynamic situation. For comparison purposes, we reproduced state of the art method as a benchmark, which makes frames the same as us and feeds polarity information to CNN. Then, we measured the object detection performances of the benchmark and ours on the same dataset. As a result, our method achieved a maximum of 7 points greater than the benchmark in the F1 score.

Keywords: event camera, dynamic vision sensor, deep learning, data representation, object recognition, low energy consumption

Procedia PDF Downloads 97
39548 Studying the Value-Added Chain for the Fish Distribution Process at Quang Binh Fishing Port in Vietnam

Authors: Van Chung Nguyen

Abstract:

The purpose of this study is to study the current status of the value chain for fish distribution at Quang Binh Fishing Port with 360 research samples in which the research subjects are fishermen, traders, retailers, and businesses. The research uses the approach of applying the value chain theoretical framework of Kaplinsky and Morris to quantify and describe market channels and actors participating in the value chain and analyze the value-added process of these companies according to market channels. The analysis results show that fishermen directly catch fish with high economic efficiency, but processing enterprises and, especially retailers, are the agents to obtain higher added value. Processing enterprises play a role that is not really clear due to outdated processing technology; in contrast, retailers have the highest added value. This shows that the added value of the fish supply chain at Quang Binh fishing port is still limited, leading to low output quality. Therefore, the selling price of fish to the market is still high compared to the abundant fish resources, leading to low consumption and limiting exports due to the quality of processing enterprises. This reduces demand and fishing capacity, and productivity is lower than potential. To improve the fish value chain at fishing ports, it is necessary to focus on improving product quality, strengthening linkages between actors, building brands and product consumption markets at the same time, improving the capacity of export processing enterprises.

Keywords: Quang Binh fishing port, value chain, market, distributions channel

Procedia PDF Downloads 73
39547 The Positive Effects of Processing Instruction on the Acquisition of French as a Second Language: An Eye-Tracking Study

Authors: Cecile Laval, Harriet Lowe

Abstract:

Processing Instruction is a psycholinguistic pedagogical approach drawing insights from the Input Processing Model which establishes the initial innate strategies used by second language learners to connect form and meaning of linguistic features. With the ever-growing use of technology in Second Language Acquisition research, the present study uses eye-tracking to measure the effectiveness of Processing Instruction in the acquisition of French and its effects on learner’s cognitive strategies. The experiment was designed using a TOBII Pro-TX300 eye-tracker to measure participants’ default strategies when processing French linguistic input and any cognitive changes after receiving Processing Instruction treatment. Participants were drawn from lower intermediate adult learners of French at the University of Greenwich and randomly assigned to two groups. The study used a pre-test/post-test methodology. The pre-tests (one per linguistic item) were administered via the eye-tracker to both groups one week prior to instructional treatment. One group received full Processing Instruction treatment (explicit information on the grammatical item and on the processing strategies, and structured input activities) on the primary target linguistic feature (French past tense imperfective aspect). The second group received Processing Instruction treatment except the explicit information on the processing strategies. Three immediate post-tests on the three grammatical structures under investigation (French past tense imperfective aspect, French Subjunctive used for the expression of doubt, and the French causative construction with Faire) were administered with the eye-tracker. The eye-tracking data showed the positive change in learners’ processing of the French target features after instruction with improvement in the interpretation of the three linguistic features under investigation. 100% of participants in both groups made a statistically significant improvement (p=0.001) in the interpretation of the primary target feature (French past tense imperfective aspect) after treatment. 62.5% of participants made an improvement in the secondary target item (French Subjunctive used for the expression of doubt) and 37.5% of participants made an improvement in the cumulative target feature (French causative construction with Faire). Statistically there was no significant difference between the pre-test and post-test scores in the cumulative target feature; however, the variance approximately tripled between the pre-test and the post-test (3.9 pre-test and 9.6 post-test). This suggests that the treatment does not affect participants homogenously and implies a role for individual differences in the transfer-of-training effect of Processing Instruction. The use of eye-tracking provides an opportunity for the study of unconscious processing decisions made during moment-by-moment comprehension. The visual data from the eye-tracking demonstrates changes in participants’ processing strategies. Gaze plots from pre- and post-tests display participants fixation points changing from focusing on content words to focusing on the verb ending. This change in processing strategies can be clearly seen in the interpretation of sentences in both primary and secondary target features. This paper will present the research methodology, design and results of the experimental study using eye-tracking to investigate the primary effects and transfer-of-training effects of Processing Instruction. It will then provide evidence of the cognitive benefits of Processing Instruction in Second Language Acquisition and offer suggestion in second language teaching of grammar.

Keywords: eye-tracking, language teaching, processing instruction, second language acquisition

Procedia PDF Downloads 280
39546 The Impacts of Digital Marketing Activities on Customers' Purchase Intention via Brand Reputation and Awareness: Empirical Study

Authors: Radwan Al Dwairi, Sara Melhem

Abstract:

Today’s billions of individuals are linked together in real-time using different types of social platforms. Despite the increasing importance of social media marketing activities in enhancing customers’ intention to purchase online; still, the majority of research has concentrated on the impact of such tools on customer satisfaction or retention and neglecting its real role in enhancing brand reputation and awareness, which in turn impact customers’ intention to purchase online. In response, this study aims to close this gap by conducting an empirical study using a qualitative approach by collecting a sample of data from 216 respondents in this domain. Results of the study reveal the significant impact of word-of-mouth, interactions, and influencers on a brand reputation, where the latter positively and significantly impacted customers’ intention to purchase via social platforms. In addition, results show the significant impact of brand reputation on enhancing customers' purchase intention.

Keywords: brand awareness, brand reputation, EWOM, influencers, interaction

Procedia PDF Downloads 95
39545 Brain-Computer Interface Based Real-Time Control of Fixed Wing and Multi-Rotor Unmanned Aerial Vehicles

Authors: Ravi Vishwanath, Saumya Kumaar, S. N. Omkar

Abstract:

Brain-computer interfacing (BCI) is a technology that is almost four decades old, and it was developed solely for the purpose of developing and enhancing the impact of neuroprosthetics. However, in the recent times, with the commercialization of non-invasive electroencephalogram (EEG) headsets, the technology has seen a wide variety of applications like home automation, wheelchair control, vehicle steering, etc. One of the latest developed applications is the mind-controlled quadrotor unmanned aerial vehicle. These applications, however, do not require a very high-speed response and give satisfactory results when standard classification methods like Support Vector Machine (SVM) and Multi-Layer Perceptron (MLPC). Issues are faced when there is a requirement for high-speed control in the case of fixed-wing unmanned aerial vehicles where such methods are rendered unreliable due to the low speed of classification. Such an application requires the system to classify data at high speeds in order to retain the controllability of the vehicle. This paper proposes a novel method of classification which uses a combination of Common Spatial Paradigm and Linear Discriminant Analysis that provides an improved classification accuracy in real time. A non-linear SVM based classification technique has also been discussed. Further, this paper discusses the implementation of the proposed method on a fixed-wing and VTOL unmanned aerial vehicles.

Keywords: brain-computer interface, classification, machine learning, unmanned aerial vehicles

Procedia PDF Downloads 283
39544 The Foundation Binary-Signals Mechanics and Actual-Information Model of Universe

Authors: Elsadig Naseraddeen Ahmed Mohamed

Abstract:

In contrast to the uncertainty and complementary principle, it will be shown in the present paper that the probability of the simultaneous occupation event of any definite values of coordinates by any definite values of momentum and energy at any definite instance of time can be described by a binary definite function equivalent to the difference between their numbers of occupation and evacuation epochs up to that time and also equivalent to the number of exchanges between those occupation and evacuation epochs up to that times modulus two, these binary definite quantities can be defined at all point in the time’s real-line so it form a binary signal represent a complete mechanical description of physical reality, the time of these exchanges represent the boundary of occupation and evacuation epochs from which we can calculate these binary signals using the fact that the time of universe events actually extends in the positive and negative of time’s real-line in one direction of extension when these number of exchanges increase, so there exists noninvertible transformation matrix can be defined as the matrix multiplication of invertible rotation matrix and noninvertible scaling matrix change the direction and magnitude of exchange event vector respectively, these noninvertible transformation will be called actual transformation in contrast to information transformations by which we can navigate the universe’s events transformed by actual transformations backward and forward in time’s real-line, so these information transformations will be derived as an elements of a group can be associated to their corresponded actual transformations. The actual and information model of the universe will be derived by assuming the existence of time instance zero before and at which there is no coordinate occupied by any definite values of momentum and energy, and then after that time, the universe begin its expanding in spacetime, this assumption makes the need for the existence of Laplace’s demon who at one moment can measure the positions and momentums of all constituent particle of the universe and then use the law of classical mechanics to predict all future and past of universe’s events, superfluous, we only need for the establishment of our analog to digital converters to sense the binary signals that determine the boundaries of occupation and evacuation epochs of the definite values of coordinates relative to its origin by the definite values of momentum and energy as present events of the universe from them we can predict approximately in high precision it's past and future events.

Keywords: binary-signal mechanics, actual-information model of the universe, actual-transformation, information-transformation, uncertainty principle, Laplace's demon

Procedia PDF Downloads 175
39543 A Real-Time Bayesian Decision-Support System for Predicting Suspect Vehicle’s Intended Target Using a Sparse Camera Network

Authors: Payam Mousavi, Andrew L. Stewart, Huiwen You, Aryeh F. G. Fayerman

Abstract:

We present a decision-support tool to assist an operator in the detection and tracking of a suspect vehicle traveling to an unknown target destination. Multiple data sources, such as traffic cameras, traffic information, weather, etc., are integrated and processed in real-time to infer a suspect’s intended destination chosen from a list of pre-determined high-value targets. Previously, we presented our work in the detection and tracking of vehicles using traffic and airborne cameras. Here, we focus on the fusion and processing of that information to predict a suspect’s behavior. The network of cameras is represented by a directional graph, where the edges correspond to direct road connections between the nodes and the edge weights are proportional to the average time it takes to travel from one node to another. For our experiments, we construct our graph based on the greater Los Angeles subset of the Caltrans’s “Performance Measurement System” (PeMS) dataset. We propose a Bayesian approach where a posterior probability for each target is continuously updated based on detections of the suspect in the live video feeds. Additionally, we introduce the concept of ‘soft interventions’, inspired by the field of Causal Inference. Soft interventions are herein defined as interventions that do not immediately interfere with the suspect’s movements; rather, a soft intervention may induce the suspect into making a new decision, ultimately making their intent more transparent. For example, a soft intervention could be temporarily closing a road a few blocks from the suspect’s current location, which may require the suspect to change their current course. The objective of these interventions is to gain the maximum amount of information about the suspect’s intent in the shortest possible time. Our system currently operates in a human-on-the-loop mode where at each step, a set of recommendations are presented to the operator to aid in decision-making. In principle, the system could operate autonomously, only prompting the operator for critical decisions, allowing the system to significantly scale up to larger areas and multiple suspects. Once the intended target is identified with sufficient confidence, the vehicle is reported to the authorities to take further action. Other recommendations include a selection of road closures, i.e., soft interventions, or to continue monitoring. We evaluate the performance of the proposed system using simulated scenarios where the suspect, starting at random locations, takes a noisy shortest path to their intended target. In all scenarios, the suspect’s intended target is unknown to our system. The decision thresholds are selected to maximize the chances of determining the suspect’s intended target in the minimum amount of time and with the smallest number of interventions. We conclude by discussing the limitations of our current approach to motivate a machine learning approach, based on reinforcement learning in order to relax some of the current limiting assumptions.

Keywords: autonomous surveillance, Bayesian reasoning, decision support, interventions, patterns of life, predictive analytics, predictive insights

Procedia PDF Downloads 115
39542 Sepiolite as a Processing Aid in Fibre Reinforced Cement Produced in Hatschek Machine

Authors: R. Pérez Castells, J. M. Carbajo

Abstract:

Sepiolite is used as a processing aid in the manufacture of fibre cement from the start of the replacement of asbestos in the 80s. Sepiolite increases the inter-laminar bond between cement layers and improves homogeneity of the slurries. A new type of sepiolite processed product, Wollatrop TF/C, has been checked as a retention agent for fine particles in the production of fibre cement in a Hatschek machine. The effect of Wollatrop T/FC on filtering and fine particle losses was studied as well as the interaction with anionic polyacrylamide and microsilica. The design of the experiments were factorial and the VDT equipment used for measuring retention and drainage was modified Rapid Köethen laboratory sheet former. Wollatrop TF/C increased the fine particle retention improving the economy of the process and reducing the accumulation of solids in recycled process water. At the same time, drainage time increased sharply at high concentration, however drainage time can be improved by adjusting APAM concentration. Wollatrop TF/C and microsilica are having very small interactions among them. Microsilica does not control fine particle losses while Wollatrop TF/C does efficiently. Further research on APAM type (molecular weight and anionic character) is advisable to improve drainage.

Keywords: drainage, fibre-reinforced cement, fine particle losses, flocculation, microsilica, sepiolite

Procedia PDF Downloads 326
39541 The Vision Baed Parallel Robot Control

Authors: Sun Lim, Kyun Jung

Abstract:

In this paper, we describe the control strategy of high speed parallel robot system with EtherCAT network. This work deals the parallel robot system with centralized control on the real-time operating system such as window TwinCAT3. Most control scheme and algorithm is implemented master platform on the PC, the input and output interface is ported on the slave side. The data is transferred by maximum 20usecond with 1000byte. EtherCAT is very high speed and stable industrial network. The control strategy with EtherCAT is very useful and robust on Ethernet network environment. The developed parallel robot is controlled pre-design nonlinear controller for 6G/0.43 cycle time of pick and place motion tracking. The experiment shows the good design and validation of the controller.

Keywords: parallel robot control, etherCAT, nonlinear control, parallel robot inverse kinematic

Procedia PDF Downloads 571
39540 Bayesian Analysis of Topp-Leone Generalized Exponential Distribution

Authors: Najrullah Khan, Athar Ali Khan

Abstract:

The Topp-Leone distribution was introduced by Topp- Leone in 1955. In this paper, an attempt has been made to fit Topp-Leone Generalized exponential (TPGE) distribution. A real survival data set is used for illustrations. Implementation is done using R and JAGS and appropriate illustrations are made. R and JAGS codes have been provided to implement censoring mechanism using both optimization and simulation tools. The main aim of this paper is to describe and illustrate the Bayesian modelling approach to the analysis of survival data. Emphasis is placed on the modeling of data and the interpretation of the results. Crucial to this is an understanding of the nature of the incomplete or 'censored' data encountered. Analytic approximation and simulation tools are covered here, but most of the emphasis is on Markov chain based Monte Carlo method including independent Metropolis algorithm, which is currently the most popular technique. For analytic approximation, among various optimization algorithms and trust region method is found to be the best. In this paper, TPGE model is also used to analyze the lifetime data in Bayesian paradigm. Results are evaluated from the above mentioned real survival data set. The analytic approximation and simulation methods are implemented using some software packages. It is clear from our findings that simulation tools provide better results as compared to those obtained by asymptotic approximation.

Keywords: Bayesian Inference, JAGS, Laplace Approximation, LaplacesDemon, posterior, R Software, simulation

Procedia PDF Downloads 535
39539 The Impact of Foreign Direct Investment on Economic Growth of Ethiopia: Econometrics Cointegration Analysis

Authors: Dejene Gizaw Kidane

Abstract:

This study examines the impact of foreign direct investment on economic growth of Ethiopia using yearly time-series data for 1974 through 2013. Economic growth is proxies by real per capita gross domestic product and foreign direct investment proxies by the inflow of foreign direct investment. Other control variables such as gross domestic saving, trade, government consumption and inflation has been incorporated. In order to fully account for feedbacks, a vector autoregressive model is utilized. The results show that there is a stable, long-run relationship between foreign direct investment and economic growth. The variance decomposition results show that the main sources of Ethiopia economic growth variations are due largely own shocks. The pairwise Granger causality results show that there is a unidirectional causality that runs from FDI to economic growth of Ethiopia. Hence, the researcher therefore recommends that, FDI facilitate economic growth, so the government has to exert much effort in order to attract more FDI into the country.

Keywords: real per capita GDP, FDI, co-integration, VECM, Granger causality

Procedia PDF Downloads 436
39538 Overexpression of CAS8 Enhances Necroptosis and Metastasis in Iranian Sporadic Colorectal Cancer

Authors: Sayed Ali Garossi, Azar Heidarizadi, Shahla Mohammad Ganji

Abstract:

Context: Colorectal cancer is the second type of cancer-related mortality globally. Expression of cas8 (caspase 8) is closely connected to growth and metastasis of colorectal cancer.Cas8/Rip1 plays a vital role in the apoptosis pathway and resistance to chemotherapy. The aim of the present study is to investigate the pattern of gene expression in colorectal cancer and compare the differences using Real-Time PCR to find a potential biomarker candidate for colorectal cancer. Methodology: This study conducted real-time PCR to evaluate gene expression of Cas8 in colorectal cancer patients. The gene-specific primer sequences exon–exon junction was designed by OLIGO7 software for the expression of the gene under investigation. Forty-six patient samples without any chemotherapy were selected, including tumoral tissue and adjacent normal tissue samples. The age of the patients was 50 and the size of the tumors was 5.5 cm. The categories were before and after age 50. Findings: Here, we found that Caspase 8 was overexpressed in CRC tissues compared to corresponding adjacent colon tissues (Cas8: 5.2 vs. 1 ratio); high expression of Cas8 was associated with poor overall survival and independent risk factors for the prognosis of CRC patients. Conclusion: In conclusion, our study pioneered the reporting of high Casp8 expression as a predictor of poor prognosis and chemical resistance in CRC patients.Cas8 overexpression suppressed Cas 8 / Rip1-dependent apoptosis and activated the proliferation of tumor cells by activating necroptosis. The necroptosis pathway has also emerged as a new approach to anti-tumor in cancer treatment.

Keywords: Cas8, necroptosis, apoptosis, Real-Time PCR

Procedia PDF Downloads 55
39537 Intelligent Electric Vehicle Charging System (IEVCS)

Authors: Prateek Saxena, Sanjeev Singh, Julius Roy

Abstract:

The security of the power distribution grid remains a paramount to the utility professionals while enhancing and making it more efficient. The most serious threat to the system can be maintaining the transformers, as the load is ever increasing with the addition of elements like electric vehicles. In this paper, intelligent transformer monitoring and grid management has been proposed. The engineering is done to use the evolving data from the smart meter for grid analytics and diagnostics for preventive maintenance. The two-tier architecture for hardware and software integration is coupled to form a robust system for the smart grid. The proposal also presents interoperable meter standards for easy integration. Distribution transformer analytics based on real-time data benefits utilities preventing outages, protects the revenue loss, improves the return on asset and reduces overall maintenance cost by predictive monitoring.

Keywords: electric vehicle charging, transformer monitoring, data analytics, intelligent grid

Procedia PDF Downloads 791
39536 Correlates of Income Generation of Small-Scale Fish Processors in Abeokuta Metropolis, Ogun State, Nigeria

Authors: Ayodeji Motunrayo Omoare

Abstract:

Economically fish provides an important source of food and income for both men and women especially many households in the developing world and fishing has an important social and cultural position in river-rine communities. However, fish is highly susceptible to deterioration. Consequently, this study was carried out to correlate income generation of small-scale women fish processors in Abeokuta metropolis, Ogun State, Nigeria. Eighty small-scale women fish processors were randomly selected from five communities as the sample size for this study. Collected data were analyzed using both descriptive and inferential statistics. The results showed that the mean age of the respondents was 31.75 years with average household size of 4 people while 47.5% of the respondents had primary education. Most (86.3%) of the respondents were married and had spent more than 11 years in fish processing. The respondents were predominantly Yoruba tribe (91.2%). Majority (71.3%) of the respondents used traditional kiln for processing their fish while 23.7% of the respondents used hot vegetable oil to fry their fish. Also, the result revealed that respondents sourced capital from Personal Savings (48.8%), Cooperatives (27.5%), Friends and Family (17.5%) and Microfinance Banks (6.2%) for fish processing activities. The respondents generated an average income of ₦7,000.00 from roasted fish, ₦3,500.00 from dried fish, and ₦5,200.00 from fried fish daily. However, inadequate processing equipment (95.0%), non-availability of credit facility from microfinance banks (85.0%), poor electricity supply (77.5%), inadequate extension service support (70.0%), and fuel scarcity (68.7%) were major constraints to fish processing in the study area. Results of chi-square analysis showed that there was a significant relationship between personal characteristics (χ2 = 36.83, df = 9), processing methods (χ2 = 15.88, df = 3) and income generated at p < 0.05 level of significance. It can be concluded that significant relationship existed between processing methods and income generated. The study, therefore, recommends that modern processing equipment should be made available to the respondents at a subsidized price by the agro-allied companies.

Keywords: correlates, income, fish processors, women, small-scale

Procedia PDF Downloads 245
39535 Chern-Simons Equation in Financial Theory and Time-Series Analysis

Authors: Ognjen Vukovic

Abstract:

Chern-Simons equation represents the cornerstone of quantum physics. The question that is often asked is if the aforementioned equation can be successfully applied to the interaction in international financial markets. By analysing the time series in financial theory, it is proved that Chern-Simons equation can be successfully applied to financial time-series. The aforementioned statement is based on one important premise and that is that the financial time series follow the fractional Brownian motion. All variants of Chern-Simons equation and theory are applied and analysed. Financial theory time series movement is, firstly, topologically analysed. The main idea is that exchange rate represents two-dimensional projections of three-dimensional Brownian motion movement. Main principles of knot theory and topology are applied to financial time series and setting is created so the Chern-Simons equation can be applied. As Chern-Simons equation is based on small particles, it is multiplied by the magnifying factor to mimic the real world movement. Afterwards, the following equation is optimised using Solver. The equation is applied to n financial time series in order to see if it can capture the interaction between financial time series and consequently explain it. The aforementioned equation represents a novel approach to financial time series analysis and hopefully it will direct further research.

Keywords: Brownian motion, Chern-Simons theory, financial time series, econophysics

Procedia PDF Downloads 473
39534 Downhole Logging and Dynamics Data Resolving Lithology-Related Drilling Behavior

Authors: Christopher Viens, Steve Krase

Abstract:

Terms such as “riding a hard streak”, “formation push”, and “fighting formation” are commonly used in the directional drilling world to explain BHA behavior that causes unwanted trajectory change. Theories about downhole directional tendencies are commonly speculated from various personal experiences with little merit due to the lack of hard data to reveal the actual mechanisms behind the phenomenon, leaving interpretation of the root cause up to personal perception. Understanding and identifying in real time the lithological factors that influence the BHA to change or hold direction adds tremendous value in terms reducing sliding time and targeting zones for optimal ROP. Utilizing surface drilling parameters and employing downhole measurements of azimuthal gamma, continuous inclination, and bending moment, a direct measure of the rock related directional phenomenon have been captured and quantified. Furthermore, identifying continuous zones of like lithology with consistent bit to rock interaction has value from a reservoir characterization and completions standpoint. The paper will show specific examples of lithology related directional tendencies from the Spraberry and Wolfcamp in the Delaware Basin.

Keywords: Azimuthal gamma imaging, bending moment, continuous inclination, downhole dynamics measurements, high frequency data

Procedia PDF Downloads 290
39533 An Industrial Wastewater Management Using Cloud Based IoT System

Authors: Kaarthik K., Harshini S., Karthika M., Kripanandhini T.

Abstract:

Water is an essential part of living organisms. Major water pollution is caused due to contamination of industrial wastewater in the river. The most important step in bringing wastewater contaminants down to levels that are safe for nature is wastewater treatment. The contamination of river water harms both humans who consume it and the aquatic life that lives there. We introduce a new cloud-based industrial IoT paradigm in this work for real-time control and monitoring of wastewater. The proposed system prevents prohibited entry of industrial wastewater into the plant by monitoring temperature, hydrogen power (pH), CO₂ and turbidity factors from the wastewater input that the wastewater treatment facility will process. Real-time sensor values are collected and uploaded to the cloud by the system using an IoT Wi-Fi Module. By doing so, we can prevent the contamination of industrial wastewater entering the river earlier, and the necessary actions will be taken by the users. The proposed system's results are 90% efficient, preventing water pollution due to industry and protecting human lives.

Keywords: sensors, pH, CO₂, temperature, turbidity

Procedia PDF Downloads 110
39532 Mulberry Leave: An Efficient and Economical Adsorbent for Remediation of Arsenic (V) and Arsenic (III) Contaminated Water

Authors: Saima Q. Memon, Mazhar I. Khaskheli

Abstract:

The aim of present study was to investigate the efficiency of mulberry leaves for the removal of both arsenic (III) and arsenic (V) from aqueous medium. Batch equilibrium studies were carried out to optimize various parameters such as pH of metal ion solution, volume of sorbate, sorbent doze, and agitation speed and agitation time. Maximum sorption efficiency of mulberry leaves for As (III) and As (V) at optimum conditions were 2818 μg.g-1 and 4930 μg.g-1, respectively. The experimental data was a good fit to Freundlich and D-R adsorption isotherm. Energy of adsorption was found to be in the range of 3-6 KJ/mole suggesting the physical nature of process. Kinetic data followed the first order rate, Morris-Weber equations. Developed method was applied to remove arsenic from real water samples.

Keywords: arsenic removal, mulberry, adsorption isotherms, kinetics of adsorption

Procedia PDF Downloads 275
39531 Assessment of Pre-Processing Influence on Near-Infrared Spectra for Predicting the Mechanical Properties of Wood

Authors: Aasheesh Raturi, Vimal Kothiyal, P. D. Semalty

Abstract:

We studied mechanical properties of Eucalyptus tereticornis using FT-NIR spectroscopy. Firstly, spectra were pre-processed to eliminate useless information. Then, prediction model was constructed by partial least squares regression. To study the influence of pre-processing on prediction of mechanical properties for NIR analysis of wood samples, we applied various pretreatment methods like straight line subtraction, constant offset elimination, vector-normalization, min-max normalization, multiple scattering. Correction, first derivative, second derivatives and their combination with other treatment such as First derivative + straight line subtraction, First derivative+ vector normalization and First derivative+ multiplicative scattering correction. The data processing methods in combination of preprocessing with different NIR regions, RMSECV, RMSEP and optimum factors/rank were obtained by optimization process of model development. More than 350 combinations were obtained during optimization process. More than one pre-processing method gave good calibration/cross-validation and prediction/test models, but only the best calibration/cross-validation and prediction/test models are reported here. The results show that one can safely use NIR region between 4000 to 7500 cm-1 with straight line subtraction, constant offset elimination, first derivative and second derivative preprocessing method which were found to be most appropriate for models development.

Keywords: FT-NIR, mechanical properties, pre-processing, PLS

Procedia PDF Downloads 361
39530 Application Methodology for the Generation of 3D Thermal Models Using UAV Photogrammety and Dual Sensors for Mining/Industrial Facilities Inspection

Authors: Javier Sedano-Cibrián, Julio Manuel de Luis-Ruiz, Rubén Pérez-Álvarez, Raúl Pereda-García, Beatriz Malagón-Picón

Abstract:

Structural inspection activities are necessary to ensure the correct functioning of infrastructures. Unmanned Aerial Vehicle (UAV) techniques have become more popular than traditional techniques. Specifically, UAV Photogrammetry allows time and cost savings. The development of this technology has permitted the use of low-cost thermal sensors in UAVs. The representation of 3D thermal models with this type of equipment is in continuous evolution. The direct processing of thermal images usually leads to errors and inaccurate results. A methodology is proposed for the generation of 3D thermal models using dual sensors, which involves the application of visible Red-Blue-Green (RGB) and thermal images in parallel. Hence, the RGB images are used as the basis for the generation of the model geometry, and the thermal images are the source of the surface temperature information that is projected onto the model. Mining/industrial facilities representations that are obtained can be used for inspection activities.

Keywords: aerial thermography, data processing, drone, low-cost, point cloud

Procedia PDF Downloads 143
39529 A Review on Existing Challenges of Data Mining and Future Research Perspectives

Authors: Hema Bhardwaj, D. Srinivasa Rao

Abstract:

Technology for analysing, processing, and extracting meaningful data from enormous and complicated datasets can be termed as "big data." The technique of big data mining and big data analysis is extremely helpful for business movements such as making decisions, building organisational plans, researching the market efficiently, improving sales, etc., because typical management tools cannot handle such complicated datasets. Special computational and statistical issues, such as measurement errors, noise accumulation, spurious correlation, and storage and scalability limitations, are brought on by big data. These unique problems call for new computational and statistical paradigms. This research paper offers an overview of the literature on big data mining, its process, along with problems and difficulties, with a focus on the unique characteristics of big data. Organizations have several difficulties when undertaking data mining, which has an impact on their decision-making. Every day, terabytes of data are produced, yet only around 1% of that data is really analyzed. The idea of the mining and analysis of data and knowledge discovery techniques that have recently been created with practical application systems is presented in this study. This article's conclusion also includes a list of issues and difficulties for further research in the area. The report discusses the management's main big data and data mining challenges.

Keywords: big data, data mining, data analysis, knowledge discovery techniques, data mining challenges

Procedia PDF Downloads 110
39528 Extracting the Coupled Dynamics in Thin-Walled Beams from Numerical Data Bases

Authors: Mohammad A. Bani-Khaled

Abstract:

In this work we use the Discrete Proper Orthogonal Decomposition transform to characterize the properties of coupled dynamics in thin-walled beams by exploiting numerical simulations obtained from finite element simulations. The outcomes of the will improve our understanding of the linear and nonlinear coupled behavior of thin-walled beams structures. Thin-walled beams have widespread usage in modern engineering application in both large scale structures (aeronautical structures), as well as in nano-structures (nano-tubes). Therefore, detailed knowledge in regard to the properties of coupled vibrations and buckling in these structures are of great interest in the research community. Due to the geometric complexity in the overall structure and in particular in the cross-sections it is necessary to involve computational mechanics to numerically simulate the dynamics. In using numerical computational techniques, it is not necessary to over simplify a model in order to solve the equations of motions. Computational dynamics methods produce databases of controlled resolution in time and space. These numerical databases contain information on the properties of the coupled dynamics. In order to extract the system dynamic properties and strength of coupling among the various fields of the motion, processing techniques are required. Time- Proper Orthogonal Decomposition transform is a powerful tool for processing databases for the dynamics. It will be used to study the coupled dynamics of thin-walled basic structures. These structures are ideal to form a basis for a systematic study of coupled dynamics in structures of complex geometry.

Keywords: coupled dynamics, geometric complexity, proper orthogonal decomposition (POD), thin walled beams

Procedia PDF Downloads 418
39527 Impact of Natural Language Processing in Educational Setting: An Effective Approach towards Improved Learning

Authors: Khaled M. Alhawiti

Abstract:

Natural Language Processing (NLP) is an effective approach for bringing improvement in educational setting. This involves initiating the process of learning through the natural acquisition in the educational systems. It is based on following effective approaches for providing the solution for various problems and issues in education. Natural Language Processing provides solution in a variety of different fields associated with the social and cultural context of language learning. It is based on involving various tools and techniques such as grammar, syntax, and structure of text. It is effective approach for teachers, students, authors, and educators for providing assistance for writing, analysis, and assessment procedure. Natural Language Processing is widely integrated in the large number of educational contexts such as research, science, linguistics, e-learning, evaluations system, and various other educational settings such as schools, higher education system, and universities. Natural Language Processing is based on applying scientific approach in the educational settings. In the educational settings, NLP is an effective approach to ensure that students can learn easily in the same way as they acquired language in the natural settings.

Keywords: natural language processing, education, application, e-learning, scientific studies, educational system

Procedia PDF Downloads 503
39526 Task Scheduling and Resource Allocation in Cloud-based on AHP Method

Authors: Zahra Ahmadi, Fazlollah Adibnia

Abstract:

Scheduling of tasks and the optimal allocation of resources in the cloud are based on the dynamic nature of tasks and the heterogeneity of resources. Applications that are based on the scientific workflow are among the most widely used applications in this field, which are characterized by high processing power and storage capacity. In order to increase their efficiency, it is necessary to plan the tasks properly and select the best virtual machine in the cloud. The goals of the system are effective factors in scheduling tasks and resource selection, which depend on various criteria such as time, cost, current workload and processing power. Multi-criteria decision-making methods are a good choice in this field. In this research, a new method of work planning and resource allocation in a heterogeneous environment based on the modified AHP algorithm is proposed. In this method, the scheduling of input tasks is based on two criteria of execution time and size. Resource allocation is also a combination of the AHP algorithm and the first-input method of the first client. Resource prioritization is done with the criteria of main memory size, processor speed and bandwidth. What is considered in this system to modify the AHP algorithm Linear Max-Min and Linear Max normalization methods are the best choice for the mentioned algorithm, which have a great impact on the ranking. The simulation results show a decrease in the average response time, return time and execution time of input tasks in the proposed method compared to similar methods (basic methods).

Keywords: hierarchical analytical process, work prioritization, normalization, heterogeneous resource allocation, scientific workflow

Procedia PDF Downloads 145
39525 Continuous-Time and Discrete-Time Singular Value Decomposition of an Impulse Response Function

Authors: Rogelio Luck, Yucheng Liu

Abstract:

This paper proposes the continuous-time singular value decomposition (SVD) for the impulse response function, a special kind of Green’s functions e⁻⁽ᵗ⁻ ᵀ⁾, in order to find a set of singular functions and singular values so that the convolutions of such function with the set of singular functions on a specified domain are the solutions to the inhomogeneous differential equations for those singular functions. A numerical example was illustrated to verify the proposed method. Besides the continuous-time SVD, a discrete-time SVD is also presented for the impulse response function, which is modeled using a Toeplitz matrix in the discrete system. The proposed method has broad applications in signal processing, dynamic system analysis, acoustic analysis, thermal analysis, as well as macroeconomic modeling.

Keywords: singular value decomposition, impulse response function, Green’s function , Toeplitz matrix , Hankel matrix

Procedia PDF Downloads 156