Search results for: neural classifier
1045 Obstacle Avoidance Using Image-Based Visual Servoing Based on Deep Reinforcement Learning
Authors: Tong He, Long Chen, Irag Mantegh, Wen-Fang Xie
Abstract:
This paper proposes an image-based obstacle avoidance and tracking target identification strategy in GPS-degraded or GPS-denied environment for an Unmanned Aerial Vehicle (UAV). The traditional force algorithm for obstacle avoidance could produce local minima area, in which UAV cannot get away obstacle effectively. In order to eliminate it, an artificial potential approach based on harmonic potential is proposed to guide the UAV to avoid the obstacle by using the vision system. And image-based visual servoing scheme (IBVS) has been adopted to implement the proposed obstacle avoidance approach. In IBVS, the pixel accuracy is a key factor to realize the obstacle avoidance. In this paper, the deep reinforcement learning framework has been applied by reducing pixel errors through constant interaction between the environment and the agent. In addition, the combination of OpenTLD and Tensorflow based on neural network is used to identify the type of tracking target. Numerical simulation in Matlab and ROS GAZEBO show the satisfactory result in target identification and obstacle avoidance.Keywords: image-based visual servoing, obstacle avoidance, tracking target identification, deep reinforcement learning, artificial potential approach, neural network
Procedia PDF Downloads 1431044 Neural Networks Models for Measuring Hotel Users Satisfaction
Authors: Asma Ameur, Dhafer Malouche
Abstract:
Nowadays, user comments on the Internet have an important impact on hotel bookings. This confirms that the e-reputation issue can influence the likelihood of customer loyalty to a hotel. In this way, e-reputation has become a real differentiator between hotels. For this reason, we have a unique opportunity in the opinion mining field to analyze the comments. In fact, this field provides the possibility of extracting information related to the polarity of user reviews. This sentimental study (Opinion Mining) represents a new line of research for analyzing the unstructured textual data. Knowing the score of e-reputation helps the hotelier to better manage his marketing strategy. The score we then obtain is translated into the image of hotels to differentiate between them. Therefore, this present research highlights the importance of hotel satisfaction ‘scoring. To calculate the satisfaction score, the sentimental analysis can be manipulated by several techniques of machine learning. In fact, this study treats the extracted textual data by using the Artificial Neural Networks Approach (ANNs). In this context, we adopt the aforementioned technique to extract information from the comments available in the ‘Trip Advisor’ website. This actual paper details the description and the modeling of the ANNs approach for the scoring of online hotel reviews. In summary, the validation of this used method provides a significant model for hotel sentiment analysis. So, it provides the possibility to determine precisely the polarity of the hotel users reviews. The empirical results show that the ANNs are an accurate approach for sentiment analysis. The obtained results show also that this proposed approach serves to the dimensionality reduction for textual data’ clustering. Thus, this study provides researchers with a useful exploration of this technique. Finally, we outline guidelines for future research in the hotel e-reputation field as comparing the ANNs with other technique.Keywords: clustering, consumer behavior, data mining, e-reputation, machine learning, neural network, online hotel ‘reviews, opinion mining, scoring
Procedia PDF Downloads 1371043 Competition between Regression Technique and Statistical Learning Models for Predicting Credit Risk Management
Authors: Chokri Slim
Abstract:
The objective of this research is attempting to respond to this question: Is there a significant difference between the regression model and statistical learning models in predicting credit risk management? A Multiple Linear Regression (MLR) model was compared with neural networks including Multi-Layer Perceptron (MLP), and a Support vector regression (SVR). The population of this study includes 50 listed Banks in Tunis Stock Exchange (TSE) market from 2000 to 2016. Firstly, we show the factors that have significant effect on the quality of loan portfolios of banks in Tunisia. Secondly, it attempts to establish that the systematic use of objective techniques and methods designed to apprehend and assess risk when considering applications for granting credit, has a positive effect on the quality of loan portfolios of banks and their future collectability. Finally, we will try to show that the bank governance has an impact on the choice of methods and techniques for analyzing and measuring the risks inherent in the banking business, including the risk of non-repayment. The results of empirical tests confirm our claims.Keywords: credit risk management, multiple linear regression, principal components analysis, artificial neural networks, support vector machines
Procedia PDF Downloads 1521042 Mixed Effects Models for Short-Term Load Forecasting for the Spanish Regions: Castilla-Leon, Castilla-La Mancha and Andalucia
Authors: C. Senabre, S. Valero, M. Lopez, E. Velasco, M. Sanchez
Abstract:
This paper focuses on an application of linear mixed models to short-term load forecasting. The challenge of this research is to improve a currently working model at the Spanish Transport System Operator, programmed by us, and based on linear autoregressive techniques and neural networks. The forecasting system currently forecasts each of the regions within the Spanish grid separately, even though the behavior of the load in each region is affected by the same factors in a similar way. A load forecasting system has been verified in this work by using the real data from a utility. In this research it has been used an integration of several regions into a linear mixed model as starting point to obtain the information from other regions. Firstly, the systems to learn general behaviors present in all regions, and secondly, it is identified individual deviation in each regions. The technique can be especially useful when modeling the effect of special days with scarce information from the past. The three most relevant regions of the system have been used to test the model, focusing on special day and improving the performance of both currently working models used as benchmark. A range of comparisons with different forecasting models has been conducted. The forecasting results demonstrate the superiority of the proposed methodology.Keywords: short-term load forecasting, mixed effects models, neural networks, mixed effects models
Procedia PDF Downloads 1921041 Computational Linguistic Implications of Gender Bias: Machines Reflect Misogyny in Society
Authors: Irene Yi
Abstract:
Machine learning, natural language processing, and neural network models of language are becoming more and more prevalent in the fields of technology and linguistics today. Training data for machines are at best, large corpora of human literature and at worst, a reflection of the ugliness in society. Computational linguistics is a growing field dealing with such issues of data collection for technological development. Machines have been trained on millions of human books, only to find that in the course of human history, derogatory and sexist adjectives are used significantly more frequently when describing females in history and literature than when describing males. This is extremely problematic, both as training data, and as the outcome of natural language processing. As machines start to handle more responsibilities, it is crucial to ensure that they do not take with them historical sexist and misogynistic notions. This paper gathers data and algorithms from neural network models of language having to deal with syntax, semantics, sociolinguistics, and text classification. Computational analysis on such linguistic data is used to find patterns of misogyny. Results are significant in showing the existing intentional and unintentional misogynistic notions used to train machines, as well as in developing better technologies that take into account the semantics and syntax of text to be more mindful and reflect gender equality. Further, this paper deals with the idea of non-binary gender pronouns and how machines can process these pronouns correctly, given its semantic and syntactic context. This paper also delves into the implications of gendered grammar and its effect, cross-linguistically, on natural language processing. Languages such as French or Spanish not only have rigid gendered grammar rules, but also historically patriarchal societies. The progression of society comes hand in hand with not only its language, but how machines process those natural languages. These ideas are all extremely vital to the development of natural language models in technology, and they must be taken into account immediately.Keywords: computational analysis, gendered grammar, misogynistic language, neural networks
Procedia PDF Downloads 1221040 Solar Radiation Time Series Prediction
Authors: Cameron Hamilton, Walter Potter, Gerrit Hoogenboom, Ronald McClendon, Will Hobbs
Abstract:
A model was constructed to predict the amount of solar radiation that will make contact with the surface of the earth in a given location an hour into the future. This project was supported by the Southern Company to determine at what specific times during a given day of the year solar panels could be relied upon to produce energy in sufficient quantities. Due to their ability as universal function approximators, an artificial neural network was used to estimate the nonlinear pattern of solar radiation, which utilized measurements of weather conditions collected at the Griffin, Georgia weather station as inputs. A number of network configurations and training strategies were utilized, though a multilayer perceptron with a variety of hidden nodes trained with the resilient propagation algorithm consistently yielded the most accurate predictions. In addition, a modeled DNI field and adjacent weather station data were used to bolster prediction accuracy. In later trials, the solar radiation field was preprocessed with a discrete wavelet transform with the aim of removing noise from the measurements. The current model provides predictions of solar radiation with a mean square error of 0.0042, though ongoing efforts are being made to further improve the model’s accuracy.Keywords: artificial neural networks, resilient propagation, solar radiation, time series forecasting
Procedia PDF Downloads 3851039 Features Dimensionality Reduction and Multi-Dimensional Voice-Processing Program to Parkinson Disease Discrimination
Authors: Djamila Meghraoui, Bachir Boudraa, Thouraya Meksen, M.Boudraa
Abstract:
Parkinson's disease is a pathology that involves characteristic perturbations in patients’ voices. This paper describes a proposed method that aims to diagnose persons with Parkinson (PWP) by analyzing on line their voices signals. First, Thresholds signals alterations are determined by the Multi-Dimensional Voice Program (MDVP). Principal Analysis (PCA) is exploited to select the main voice principal componentsthat are significantly affected in a patient. The decision phase is realized by a Mul-tinomial Bayes (MNB) Classifier that categorizes an analyzed voice in one of the two resulting classes: healthy or PWP. The prediction accuracy achieved reaching 98.8% is very promising.Keywords: Parkinson’s disease recognition, PCA, MDVP, multinomial Naive Bayes
Procedia PDF Downloads 2791038 Physics-Informed Neural Network for Predicting Strain Demand in Inelastic Pipes under Ground Movement with Geometric and Soil Resistance Nonlinearities
Authors: Pouya Taraghi, Yong Li, Nader Yoosef-Ghodsi, Muntaseer Kainat, Samer Adeeb
Abstract:
Buried pipelines play a crucial role in the transportation of energy products such as oil, gas, and various chemical fluids, ensuring their efficient and safe distribution. However, these pipelines are often susceptible to ground movements caused by geohazards like landslides, fault movements, lateral spreading, and more. Such ground movements can lead to strain-induced failures in pipes, resulting in leaks or explosions, leading to fires, financial losses, environmental contamination, and even loss of human life. Therefore, it is essential to study how buried pipelines respond when traversing geohazard-prone areas to assess the potential impact of ground movement on pipeline design. As such, this study introduces an approach called the Physics-Informed Neural Network (PINN) to predict the strain demand in inelastic pipes subjected to permanent ground displacement (PGD). This method uses a deep learning framework that does not require training data and makes it feasible to consider more realistic assumptions regarding existing nonlinearities. It leverages the underlying physics described by differential equations to approximate the solution. The study analyzes various scenarios involving different geohazard types, PGD values, and crossing angles, comparing the predictions with results obtained from finite element methods. The findings demonstrate a good agreement between the results of the proposed method and the finite element method, highlighting its potential as a simulation-free, data-free, and meshless alternative. This study paves the way for further advancements, such as the simulation-free reliability assessment of pipes subjected to PGD, as part of ongoing research that leverages the proposed method.Keywords: strain demand, inelastic pipe, permanent ground displacement, machine learning, physics-informed neural network
Procedia PDF Downloads 611037 Development of PCI Prediction Models for Distress Evaluation of Asphalt Pavements
Authors: Hamid Noori
Abstract:
A scientific approach is essential for evaluating pavement surface conditions at the network level. The Pavement Condition Index (PCI) is widely used to assess surface conditions and determine appropriate treatments. This study examines three national highways using a network survey vehicle to collect distress data. The first two corridors were used for evaluation and comparison, while the third corridor validated the predicted PCI values. Multiple linear regression (MLR) initially modeled the relationship between PCI and distress variables but showed poor predictive accuracy. Therefore, K-nearest neighbors (KNN) and artificial neural network (ANN) models were developed, providing better results. A methodology for prioritizing pavement sections was introduced, and the pavement sections were based on PCI, IRI, and rut values through Combined Index Rankings (CIR). In addition, a methodology has been proposed for the selection of appropriate treatment of the ranked candidate pavement section. The proposed treatment selection process considers PCI, IRI, rutting, and FWD test results, aligning with a customized PCI rating scale. A Decision Tree was developed to recommend suitable treatments based on these criteria.Keywords: pavement distresses, pavement condition index, multiple linear regression, artificial neural network, k-nearest neighbors, combined index ranking
Procedia PDF Downloads 01036 Predictive Analysis of the Stock Price Market Trends with Deep Learning
Authors: Suraj Mehrotra
Abstract:
The stock market is a volatile, bustling marketplace that is a cornerstone of economics. It defines whether companies are successful or in spiral. A thorough understanding of it is important - many companies have whole divisions dedicated to analysis of both their stock and of rivaling companies. Linking the world of finance and artificial intelligence (AI), especially the stock market, has been a relatively recent development. Predicting how stocks will do considering all external factors and previous data has always been a human task. With the help of AI, however, machine learning models can help us make more complete predictions in financial trends. Taking a look at the stock market specifically, predicting the open, closing, high, and low prices for the next day is very hard to do. Machine learning makes this task a lot easier. A model that builds upon itself that takes in external factors as weights can predict trends far into the future. When used effectively, new doors can be opened up in the business and finance world, and companies can make better and more complete decisions. This paper explores the various techniques used in the prediction of stock prices, from traditional statistical methods to deep learning and neural networks based approaches, among other methods. It provides a detailed analysis of the techniques and also explores the challenges in predictive analysis. For the accuracy of the testing set, taking a look at four different models - linear regression, neural network, decision tree, and naïve Bayes - on the different stocks, Apple, Google, Tesla, Amazon, United Healthcare, Exxon Mobil, J.P. Morgan & Chase, and Johnson & Johnson, the naïve Bayes model and linear regression models worked best. For the testing set, the naïve Bayes model had the highest accuracy along with the linear regression model, followed by the neural network model and then the decision tree model. The training set had similar results except for the fact that the decision tree model was perfect with complete accuracy in its predictions, which makes sense. This means that the decision tree model likely overfitted the training set when used for the testing set.Keywords: machine learning, testing set, artificial intelligence, stock analysis
Procedia PDF Downloads 961035 Effect of Papaverine on Developmental Neurotoxicity: Neurosphere as in vitro Model
Authors: Mohammed Y. Elsherbeny, Mohamed Salama, Ahmed Lotfy, Hossam Fareed, Nora Mohammed
Abstract:
Background: Developmental neurotoxicity (DNT) entails the toxic effects imparted by various chemicals on brain during the early childhood when human brains are vulnerable during this period. DNT study in vivo cannot determine the effect of the neurotoxins, as it is not applicable, so using the neurosphere cells of lab animals as an alternative is applicable and time saving. Methods: Cell culture: Rat neural progenitor cells were isolated from rat embryos’ brain. The cortices were aseptically dissected out and the tissues were triturated. The dispersed tissues were allowed to settle. The supernatant was then transferred to a fresh tube and centrifuged. The pellet was placed in Hank’s balanced salt solution and cultured as free-floating neurospheres in proliferation medium. Differentiation was initiated by growth factor withdrawal in differentiation medium and plating onto a poly-d-lysine/ laminin matrix. Chemical Exposure: Neurospheres were treated for 2 weeks with papaverine in proliferation medium. Proliferation analyses: Spheres were cultured. After 0, 4, 5, 11 and 14 days, sphere size was determined by software analyses (CellProfiler, version 2.1; Broad Institute). Diameter of each neurosphere was measured and exported to excel file further to statistical analysis. Viability test: Trypsin-EDTA solution was added to neurospheres to dissociate neurospheres into single cells suspension, then viability evaluated by the Trypan Blue exclusion test. Result: As regards proliferation analysis and percentage of viable cells of papaverin treated groups: There was no significant change in cells proliferation compared to control at 0, 4, 5, 11 and 14 days with concentrations 1, 5 and 10 µM of papaverine, but there is a significant change in cell viability compared to control after 1 week and 2 weeks with the same concentrations of papaverine. Conclusion: Papaverine has toxic effect on viability of neural cell, not on their proliferation, so it may produce focal neural lesions not growth morphological changes.Keywords: developmental neurotoxicity, neurotoxin, papaverine, neuroshperes
Procedia PDF Downloads 3861034 ‘BEST BARK’ Dog Care and Owner Consultation System
Authors: Shalitha Jayasekara, Saluk Bawantha, Dinithi Anupama, Isuru Gunarathne, Pradeepa Bandara, Hansi De Silva
Abstract:
Dogs have been known as "man's best friend" for generations, providing friendship and loyalty to their human counterparts. However, due to people's busy lives, they are unaware of the ailments that can affect their pets. However, in recent years, mobile technologies have had a significant impact on our lives, and with technological improvements, a rule-based expert system allows the end-user to enable new types of healthcare systems. The advent of Android OS-based smartphones with more user-friendly interfaces and lower pricing opens new possibilities for continuous monitoring of pets' health conditions, such as healthy dogs, dangerous ingestions, and swallowed objects. The proposed ‘Best Bark’ Dog care and owner consultation system is a mobile application for dog owners. Four main components for dog owners were implemented after a questionnaire was distributed to the target group of audience and the findings were evaluated. The proposed applications are widely used to provide health and clinical support to dog owners, including suggesting exercise and diet plans and answering queries about their dogs. Additionally, after the owner uploads a photo of the dog, the application provides immediate feedback and a description of the dog's skin disease.Keywords: Convolution Neural Networks, Artificial Neural Networks, Knowledgebase, Sentimental Analysis.
Procedia PDF Downloads 1541033 Deep Learning to Improve the 5G NR Uplink Control Channel
Authors: Ahmed Krobba, Meriem Touzene, Mohamed Debeyche
Abstract:
The wireless communications system (5G) will provide more diverse applications and higher quality services for users compared to the long-term evolution 4G (LTE). 5G uses a higher carrier frequency, which suffers from information loss in 5G coverage. Most 5G users often cannot obtain high-quality communications due to transmission channel noise and channel complexity. Physical Uplink Control Channel (PUCCH-NR: Physical Uplink Control Channel New Radio) plays a crucial role in 5G NR telecommunication technology, which is mainly used to transmit link control information uplink (UCI: Uplink Control Information. This study based of evaluating the performance of channel physical uplink control PUCCH-NR under low Signal-to-Noise Ratios with various antenna numbers reception. We propose the artificial intelligence approach based on deep neural networks (Deep Learning) to estimate the PUCCH-NR channel in comparison with this approach with different conventional methods such as least-square (LS) and minimum-mean-square-error (MMSE). To evaluate the channel performance we use the block error rate (BLER) as an evaluation criterion of the communication system. The results show that the deep neural networks method gives best performance compared with MMSE and LSKeywords: 5G network, uplink (Uplink), PUCCH channel, NR-PUCCH channel, deep learning
Procedia PDF Downloads 881032 Groundwater Potential Delineation Using Geodetector Based Convolutional Neural Network in the Gunabay Watershed of Ethiopia
Authors: Asnakew Mulualem Tegegne, Tarun Kumar Lohani, Abunu Atlabachew Eshete
Abstract:
Groundwater potential delineation is essential for efficient water resource utilization and long-term development. The scarcity of potable and irrigation water has become a critical issue due to natural and anthropogenic activities in meeting the demands of human survival and productivity. With these constraints, groundwater resources are now being used extensively in Ethiopia. Therefore, an innovative convolutional neural network (CNN) is successfully applied in the Gunabay watershed to delineate groundwater potential based on the selected major influencing factors. Groundwater recharge, lithology, drainage density, lineament density, transmissivity, and geomorphology were selected as major influencing factors during the groundwater potential of the study area. For dataset training, 70% of samples were selected and 30% were used for serving out of the total 128 samples. The spatial distribution of groundwater potential has been classified into five groups: very low (10.72%), low (25.67%), moderate (31.62%), high (19.93%), and very high (12.06%). The area obtains high rainfall but has a very low amount of recharge due to a lack of proper soil and water conservation structures. The major outcome of the study showed that moderate and low potential is dominant. Geodetoctor results revealed that the magnitude influences on groundwater potential have been ranked as transmissivity (0.48), recharge (0.26), lineament density (0.26), lithology (0.13), drainage density (0.12), and geomorphology (0.06). The model results showed that using a convolutional neural network (CNN), groundwater potentiality can be delineated with higher predictive capability and accuracy. CNN-based AUC validation platform showed that 81.58% and 86.84% were accrued from the accuracy of training and testing values, respectively. Based on the findings, the local government can receive technical assistance for groundwater exploration and sustainable water resource development in the Gunabay watershed. Finally, the use of a detector-based deep learning algorithm can provide a new platform for industrial sectors, groundwater experts, scholars, and decision-makers.Keywords: CNN, geodetector, groundwater influencing factors, Groundwater potential, Gunabay watershed
Procedia PDF Downloads 231031 Analysis of Cardiovascular Diseases Using Artificial Neural Network
Authors: Jyotismita Talukdar
Abstract:
In this paper, a study has been made on the possibility and accuracy of early prediction of several Heart Disease using Artificial Neural Network. (ANN). The study has been made in both noise free environment and noisy environment. The data collected for this analysis are from five Hospitals. Around 1500 heart patient’s data has been collected and studied. The data is analysed and the results have been compared with the Doctor’s diagnosis. It is found that, in noise free environment, the accuracy varies from 74% to 92%and in noisy environment (2dB), the results of accuracy varies from 62% to 82%. In the present study, four basic attributes considered are Blood Pressure (BP), Fasting Blood Sugar (FBS), Thalach (THAL) and Cholesterol (CHOL.). It has been found that highest accuracy(93%), has been achieved in case of PPI( Post-Permanent-Pacemaker Implementation ), around 79% in case of CAD(Coronary Artery disease), 87% in DCM (Dilated Cardiomyopathy), 89% in case of RHD&MS(Rheumatic heart disease with Mitral Stenosis), 75 % in case of RBBB +LAFB (Right Bundle Branch Block + Left Anterior Fascicular Block), 72% for CHB(Complete Heart Block) etc. The lowest accuracy has been obtained in case of ICMP (Ischemic Cardiomyopathy), about 38% and AF( Atrial Fibrillation), about 60 to 62%.Keywords: coronary heart disease, chronic stable angina, sick sinus syndrome, cardiovascular disease, cholesterol, Thalach
Procedia PDF Downloads 1761030 Multi-Modality Brain Stimulation: A Treatment Protocol for Tinnitus
Authors: Prajakta Patil, Yash Huzurbazar, Abhijeet Shinde
Abstract:
Aim: To develop a treatment protocol for the management of tinnitus through multi-modality brain stimulation. Methodology: Present study included 33 adults with unilateral (31 subjects) and bilateral (2 subjects) chronic tinnitus with and/or without hearing loss independent of their etiology. The Treatment protocol included 5 consecutive sessions with follow-up of 6 months. Each session was divided into 3 parts: • Pre-treatment: a) Informed consent b) Pitch and loudness matching. • Treatment: Bimanual paper pen task with tinnitus masking for 30 minutes. • Post-treatment: a) Pitch and loudness matching b) Directive counseling and obtaining feedback. Paper-pen task is to be performed bimanually that included carrying out two different writing activities in different context. The level of difficulty of the activities was increased in successive sessions. Narrowband noise of a frequency same as that of tinnitus was presented at 10 dBSL of tinnitus for 30 minutes simultaneously in the ear with tinnitus. Result: The perception of tinnitus was no longer present in 4 subjects while in remaining subjects it reduced to an intensity that its perception no longer troubled them without causing residual facilitation. In all subjects, the intensity of tinnitus decreased by an extent of 45 dB at an average. However, in few subjects, the intensity of tinnitus also decreased by more than 45 dB. The approach resulted in statistically significant reductions in Tinnitus Functional Index and Tinnitus Handicap Inventory scores. The results correlate with pre and post treatment score of Tinnitus Handicap Inventory that dropped from 90% to 0%. Discussion: Brain mapping(qEEG) Studies report that there is multiple parallel overlapping of neural subnetworks in the non-auditory areas of the brain which exhibits abnormal, constant and spontaneous neural activity involved in the perception of tinnitus with each subnetwork and area reflecting a specific aspect of tinnitus percept. The paper pen task and directive counseling are designed and delivered respectively in a way that is assumed to induce normal, rhythmically constant and premeditated neural activity and mask the abnormal, constant and spontaneous neural activity in the above-mentioned subnetworks and the specific non-auditory area. Counseling was focused on breaking the vicious cycle causing and maintaining the presence of tinnitus. Diverting auditory attention alone is insufficient to reduce the perception of tinnitus. Conscious awareness of tinnitus can be suppressed when individuals engage in cognitively demanding tasks of non-auditory nature as the paper pen task used in the present study. To carry out this task selective, divided, sustained, simultaneous and split attention act cumulatively. Bimanual paper pen task represents a top-down activity which underlies brain’s ability to selectively attend to the bimanual written activity as a relevant stimulus and to ignore tinnitus that is the irrelevant stimuli in the present study. Conclusion: The study suggests that this novel treatment approach is cost effective, time saving and efficient to vanish the tinnitus or to reduce the intensity of tinnitus to a negligible level and thereby eliminating the negative reactions towards tinnitus.Keywords: multi-modality brain stimulation, neural subnetworks, non-auditory areas, paper-pen task, top-down activity
Procedia PDF Downloads 1471029 Statistical Analysis with Prediction Models of User Satisfaction in Software Project Factors
Authors: Katawut Kaewbanjong
Abstract:
We analyzed a volume of data and found significant user satisfaction in software project factors. A statistical significance analysis (logistic regression) and collinearity analysis determined the significance factors from a group of 71 pre-defined factors from 191 software projects in ISBSG Release 12. The eight prediction models used for testing the prediction potential of these factors were Neural network, k-NN, Naïve Bayes, Random forest, Decision tree, Gradient boosted tree, linear regression and logistic regression prediction model. Fifteen pre-defined factors were truly significant in predicting user satisfaction, and they provided 82.71% prediction accuracy when used with a neural network prediction model. These factors were client-server, personnel changes, total defects delivered, project inactive time, industry sector, application type, development type, how methodology was acquired, development techniques, decision making process, intended market, size estimate approach, size estimate method, cost recording method, and effort estimate method. These findings may benefit software development managers considerably.Keywords: prediction model, statistical analysis, software project, user satisfaction factor
Procedia PDF Downloads 1241028 Logic Programming and Artificial Neural Networks in Pharmacological Screening of Schinus Essential Oils
Authors: José Neves, M. Rosário Martins, Fátima Candeias, Diana Ferreira, Sílvia Arantes, Júlio Cruz-Morais, Guida Gomes, Joaquim Macedo, António Abelha, Henrique Vicente
Abstract:
Some plants of genus Schinus have been used in the folk medicine as topical antiseptic, digestive, purgative, diuretic, analgesic or antidepressant, and also for respiratory and urinary infections. Chemical composition of essential oils of S. molle and S. terebinthifolius had been evaluated and presented high variability according with the part of the plant studied and with the geographic and climatic regions. The pharmacological properties, namely antimicrobial, anti-tumoural and anti-inflammatory activities are conditioned by chemical composition of essential oils. Taking into account the difficulty to infer the pharmacological properties of Schinus essential oils without hard experimental approach, this work will focus on the development of a decision support system, in terms of its knowledge representation and reasoning procedures, under a formal framework based on Logic Programming, complemented with an approach to computing centered on Artificial Neural Networks and the respective Degree-of-Confidence that one has on such an occurrence.Keywords: artificial neuronal networks, essential oils, knowledge representation and reasoning, logic programming, Schinus molle L., Schinus terebinthifolius Raddi
Procedia PDF Downloads 5451027 Robust Noisy Speech Identification Using Frame Classifier Derived Features
Authors: Punnoose A. K.
Abstract:
This paper presents an approach for identifying noisy speech recording using a multi-layer perception (MLP) trained to predict phonemes from acoustic features. Characteristics of the MLP posteriors are explored for clean speech and noisy speech at the frame level. Appropriate density functions are used to fit the softmax probability of the clean and noisy speech. A function that takes into account the ratio of the softmax probability density of noisy speech to clean speech is formulated. These phoneme independent scoring is weighted using a phoneme-specific weightage to make the scoring more robust. Simple thresholding is used to identify the noisy speech recording from the clean speech recordings. The approach is benchmarked on standard databases, with a focus on precision.Keywords: noisy speech identification, speech pre-processing, noise robustness, feature engineering
Procedia PDF Downloads 1281026 Defective Autophagy Disturbs Neural Migration and Network Activity in hiPSC-Derived Cockayne Syndrome B Disease Models
Authors: Julia Kapr, Andrea Rossi, Haribaskar Ramachandran, Marius Pollet, Ilka Egger, Selina Dangeleit, Katharina Koch, Jean Krutmann, Ellen Fritsche
Abstract:
It is widely acknowledged that animal models do not always represent human disease. Especially human brain development is difficult to model in animals due to a variety of structural and functional species-specificities. This causes significant discrepancies between predicted and apparent drug efficacies in clinical trials and their subsequent failure. Emerging alternatives based on 3D in vitro approaches, such as human brain spheres or organoids, may in the future reduce and ultimately replace animal models. Here, we present a human induced pluripotent stem cell (hiPSC)-based 3D neural in a vitro disease model for the Cockayne Syndrome B (CSB). CSB is a rare hereditary disease and is accompanied by severe neurologic defects, such as microcephaly, ataxia and intellectual disability, with currently no treatment options. Therefore, the aim of this study is to investigate the molecular and cellular defects found in neural hiPSC-derived CSB models. Understanding the underlying pathology of CSB enables the development of treatment options. The two CSB models used in this study comprise a patient-derived hiPSC line and its isogenic control as well as a CSB-deficient cell line based on a healthy hiPSC line (IMR90-4) background thereby excluding genetic background-related effects. Neurally induced and differentiated brain sphere cultures were characterized via RNA Sequencing, western blot (WB), immunocytochemistry (ICC) and multielectrode arrays (MEAs). CSB-deficiency leads to an altered gene expression of markers for autophagy, focal adhesion and neural network formation. Cell migration was significantly reduced and electrical activity was significantly increased in the disease cell lines. These data hint that the cellular pathologies is possibly underlying CSB. By induction of autophagy, the migration phenotype could be partially rescued, suggesting a crucial role of disturbed autophagy in defective neural migration of the disease lines. Altered autophagy may also lead to inefficient mitophagy. Accordingly, disease cell lines were shown to have a lower mitochondrial base activity and a higher susceptibility to mitochondrial stress induced by rotenone. Since mitochondria play an important role in neurotransmitter cycling, we suggest that defective mitochondria may lead to altered electrical activity in the disease cell lines. Failure to clear the defective mitochondria by mitophagy and thus missing initiation cues for new mitochondrial production could potentiate this problem. With our data, we aim at establishing a disease adverse outcome pathway (AOP), thereby adding to the in-depth understanding of this multi-faced disorder and subsequently contributing to alternative drug development.Keywords: autophagy, disease modeling, in vitro, pluripotent stem cells
Procedia PDF Downloads 1201025 A Comparative Study on ANN, ANFIS and SVM Methods for Computing Resonant Frequency of A-Shaped Compact Microstrip Antennas
Authors: Ahmet Kayabasi, Ali Akdagli
Abstract:
In this study, three robust predicting methods, namely artificial neural network (ANN), adaptive neuro fuzzy inference system (ANFIS) and support vector machine (SVM) were used for computing the resonant frequency of A-shaped compact microstrip antennas (ACMAs) operating at UHF band. Firstly, the resonant frequencies of 144 ACMAs with various dimensions and electrical parameters were simulated with the help of IE3D™ based on method of moment (MoM). The ANN, ANFIS and SVM models for computing the resonant frequency were then built by considering the simulation data. 124 simulated ACMAs were utilized for training and the remaining 20 ACMAs were used for testing the ANN, ANFIS and SVM models. The performance of the ANN, ANFIS and SVM models are compared in the training and test process. The average percentage errors (APE) regarding the computed resonant frequencies for training of the ANN, ANFIS and SVM were obtained as 0.457%, 0.399% and 0.600%, respectively. The constructed models were then tested and APE values as 0.601% for ANN, 0.744% for ANFIS and 0.623% for SVM were achieved. The results obtained here show that ANN, ANFIS and SVM methods can be successfully applied to compute the resonant frequency of ACMAs, since they are useful and versatile methods that yield accurate results.Keywords: a-shaped compact microstrip antenna, artificial neural network (ANN), adaptive neuro-fuzzy inference system (ANFIS), support vector machine (SVM)
Procedia PDF Downloads 4431024 A Multidimensional Exploration of Narcissistic Personality Disorder Through Psycholinguistic Analysis and Neuroscientific Correlates
Authors: Dalia Elleuch
Abstract:
Narcissistic Personality Disorder (NPD) manifests as a personality disorder marked by inflated self-importance, heightened sensitivity to criticism, a lack of empathy, a preoccupation with appearance over substance, and features such as arrogance, grandiosity, a constant need for admiration, a tendency to exploit others, and an inclination towards demanding special treatment due to a sense of excessive entitlement (APA, 2013). This interdisciplinary study delves into NPD through the systematic synthesis of psycholinguistic analysis and neuroscientific correlates. The cognitive and emotional dimensions of NPD reveal linguistic patterns, including grandiosity, entitlement, and manipulative communication. Neuroscientific investigations reveal structural brain differences and alterations in functional connectivity, further explaining the neural underpinnings of social cognition deficits observed in individuals with NPD. Genetic predispositions and neurotransmitter imbalances add a layer of complexity to the understanding of NPD. The necessity for linguistic intervention in diagnosing and treating Narcissistic Personality Disorder is underscored by an interdisciplinary study that intricately synthesizes psycholinguistic analysis and neuroscientific correlates, offering a comprehensive understanding of NPD’s cognitive, emotional, and neural dimensions and paving the way for future practical, theoretical, and pedagogical approaches to address the complexities of this personality disorder.Keywords: Narcissistic Personality Disorder (NPD), psycholinguistic analysis, neuroscientific correlates, interpersonal dysfunction, cognitive empathy
Procedia PDF Downloads 651023 On the Role of Cutting Conditions on Surface Roughness in High-Speed Thread Milling of Brass C3600
Authors: Amir Mahyar Khorasani, Ian Gibson, Moshe Goldberg, Mohammad Masoud Movahedi, Guy Littlefair
Abstract:
One of the important factors in manufacturing processes especially machining operations is surface quality. Improving this parameter results in improving fatigue strength, corrosion resistance, creep life and surface friction. The reliability and clearance of removable joints such as thread and nuts are highly related to the surface roughness. In this work, the effect of different cutting parameters such as cutting fluid pressure, feed rate and cutting speed on the surface quality of the crest of thread in the high-speed milling of Brass C3600 have been determined. Two popular neural networks containing MLP and RBF coupling with Taguchi L32 have been used to model surface roughness which was shown to be highly adept for such tasks. The contribution of this work is modelling surface roughness on the crest of the thread by using precise profilometer with nanoscale resolution. Experimental tests have been carried out for validation and approved suitable accuracy of the proposed model. Also analysing the interaction of parameters two by two showed that the most effective cutting parameter on the surface value is feed rate followed by cutting speed and cutting fluid pressure.Keywords: artificial neural networks, cutting conditions, high-speed machining, surface roughness, thread milling
Procedia PDF Downloads 3801022 Enhancing Patch Time Series Transformer with Wavelet Transform for Improved Stock Prediction
Authors: Cheng-yu Hsieh, Bo Zhang, Ahmed Hambaba
Abstract:
Stock market prediction has long been an area of interest for both expert analysts and investors, driven by its complexity and the noisy, volatile conditions it operates under. This research examines the efficacy of combining the Patch Time Series Transformer (PatchTST) with wavelet transforms, specifically focusing on Haar and Daubechies wavelets, in forecasting the adjusted closing price of the S&P 500 index for the following day. By comparing the performance of the augmented PatchTST models with traditional predictive models such as Recurrent Neural Networks (RNNs), Convolutional Neural Networks (CNNs), Long Short-Term Memory (LSTM) networks, and Transformers, this study highlights significant enhancements in prediction accuracy. The integration of the Daubechies wavelet with PatchTST notably excels, surpassing other configurations and conventional models in terms of Mean Absolute Error (MAE) and Mean Squared Error (MSE). The success of the PatchTST model paired with Daubechies wavelet is attributed to its superior capability in extracting detailed signal information and eliminating irrelevant noise, thus proving to be an effective approach for financial time series forecasting.Keywords: deep learning, financial forecasting, stock market prediction, patch time series transformer, wavelet transform
Procedia PDF Downloads 551021 Non-Targeted Adversarial Object Detection Attack: Fast Gradient Sign Method
Authors: Bandar Alahmadi, Manohar Mareboyana, Lethia Jackson
Abstract:
Today, there are many applications that are using computer vision models, such as face recognition, image classification, and object detection. The accuracy of these models is very important for the performance of these applications. One challenge that facing the computer vision models is the adversarial examples attack. In computer vision, the adversarial example is an image that is intentionally designed to cause the machine learning model to misclassify it. One of very well-known method that is used to attack the Convolution Neural Network (CNN) is Fast Gradient Sign Method (FGSM). The goal of this method is to find the perturbation that can fool the CNN using the gradient of the cost function of CNN. In this paper, we introduce a novel model that can attack Regional-Convolution Neural Network (R-CNN) that use FGSM. We first extract the regions that are detected by R-CNN, and then we resize these regions into the size of regular images. Then, we find the best perturbation of the regions that can fool CNN using FGSM. Next, we add the resulted perturbation to the attacked region to get a new region image that looks similar to the original image to human eyes. Finally, we placed the regions back to the original image and test the R-CNN with the attacked images. Our model could drop the accuracy of the R-CNN when we tested with Pascal VOC 2012 dataset.Keywords: adversarial examples, attack, computer vision, image processing
Procedia PDF Downloads 1931020 JaCoText: A Pretrained Model for Java Code-Text Generation
Authors: Jessica Lopez Espejel, Mahaman Sanoussi Yahaya Alassan, Walid Dahhane, El Hassane Ettifouri
Abstract:
Pretrained transformer-based models have shown high performance in natural language generation tasks. However, a new wave of interest has surged: automatic programming language code generation. This task consists of translating natural language instructions to a source code. Despite the fact that well-known pre-trained models on language generation have achieved good performance in learning programming languages, effort is still needed in automatic code generation. In this paper, we introduce JaCoText, a model based on Transformer neural network. It aims to generate java source code from natural language text. JaCoText leverages the advantages of both natural language and code generation models. More specifically, we study some findings from state of the art and use them to (1) initialize our model from powerful pre-trained models, (2) explore additional pretraining on our java dataset, (3) lead experiments combining the unimodal and bimodal data in training, and (4) scale the input and output length during the fine-tuning of the model. Conducted experiments on CONCODE dataset show that JaCoText achieves new state-of-the-art results.Keywords: java code generation, natural language processing, sequence-to-sequence models, transformer neural networks
Procedia PDF Downloads 2881019 Reed: An Approach Towards Quickly Bootstrapping Multilingual Acoustic Models
Authors: Bipasha Sen, Aditya Agarwal
Abstract:
Multilingual automatic speech recognition (ASR) system is a single entity capable of transcribing multiple languages sharing a common phone space. Performance of such a system is highly dependent on the compatibility of the languages. State of the art speech recognition systems are built using sequential architectures based on recurrent neural networks (RNN) limiting the computational parallelization in training. This poses a significant challenge in terms of time taken to bootstrap and validate the compatibility of multiple languages for building a robust multilingual system. Complex architectural choices based on self-attention networks are made to improve the parallelization thereby reducing the training time. In this work, we propose Reed, a simple system based on 1D convolutions which uses very short context to improve the training time. To improve the performance of our system, we use raw time-domain speech signals directly as input. This enables the convolutional layers to learn feature representations rather than relying on handcrafted features such as MFCC. We report improvement on training and inference times by atleast a factor of 4x and 7.4x respectively with comparable WERs against standard RNN based baseline systems on SpeechOcean's multilingual low resource dataset.Keywords: convolutional neural networks, language compatibility, low resource languages, multilingual automatic speech recognition
Procedia PDF Downloads 1241018 Neural Network Modelling for Turkey Railway Load Carrying Demand
Authors: Humeyra Bolakar Tosun
Abstract:
The transport sector has an undisputed place in human life. People need transport access to continuous increase day by day with growing population. The number of rail network, urban transport planning, infrastructure improvements, transportation management and other related areas is a key factor affecting our country made it quite necessary to improve the work of transportation. In this context, it plays an important role in domestic rail freight demand planning. Alternatives that the increase in the transportation field and has made it mandatory requirements such as the demand for improving transport quality. In this study generally is known and used in studies by the definition, rail freight transport, railway line length, population, energy consumption. In this study, Iron Road Load Net Demand was modeled by multiple regression and ANN methods. In this study, model dependent variable (Output) is Iron Road Load Net demand and 6 entries variable was determined. These outcome values extracted from the model using ANN and regression model results. In the regression model, some parameters are considered as determinative parameters, and the coefficients of the determinants give meaningful results. As a result, ANN model has been shown to be more successful than traditional regression model.Keywords: railway load carrying, neural network, modelling transport, transportation
Procedia PDF Downloads 1441017 Recommender Systems Using Ensemble Techniques
Authors: Yeonjeong Lee, Kyoung-jae Kim, Youngtae Kim
Abstract:
This study proposes a novel recommender system that uses data mining and multi-model ensemble techniques to enhance the recommendation performance through reflecting the precise user’s preference. The proposed model consists of two steps. In the first step, this study uses logistic regression, decision trees, and artificial neural networks to predict customers who have high likelihood to purchase products in each product group. Then, this study combines the results of each predictor using the multi-model ensemble techniques such as bagging and bumping. In the second step, this study uses the market basket analysis to extract association rules for co-purchased products. Finally, the system selects customers who have high likelihood to purchase products in each product group and recommends proper products from same or different product groups to them through above two steps. We test the usability of the proposed system by using prototype and real-world transaction and profile data. In addition, we survey about user satisfaction for the recommended product list from the proposed system and the randomly selected product lists. The results also show that the proposed system may be useful in real-world online shopping store.Keywords: product recommender system, ensemble technique, association rules, decision tree, artificial neural networks
Procedia PDF Downloads 2951016 Design an Algorithm for Software Development in CBSE Envrionment Using Feed Forward Neural Network
Authors: Amit Verma, Pardeep Kaur
Abstract:
In software development organizations, Component based Software engineering (CBSE) is emerging paradigm for software development and gained wide acceptance as it often results in increase quality of software product within development time and budget. In component reusability, main challenges are the right component identification from large repositories at right time. The major objective of this work is to provide efficient algorithm for storage and effective retrieval of components using neural network and parameters based on user choice through clustering. This research paper aims to propose an algorithm that provides error free and automatic process (for retrieval of the components) while reuse of the component. In this algorithm, keywords (or components) are extracted from software document, after by applying k mean clustering algorithm. Then weights assigned to those keywords based on their frequency and after assigning weights, ANN predicts whether correct weight is assigned to keywords (or components) or not, otherwise it back propagates in to initial step (re-assign the weights). In last, store those all keywords into repositories for effective retrieval. Proposed algorithm is very effective in the error correction and detection with user base choice while choice of component for reusability for efficient retrieval is there.Keywords: component based development, clustering, back propagation algorithm, keyword based retrieval
Procedia PDF Downloads 379