Search results for: improved sparrow search algorithm
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9454

Search results for: improved sparrow search algorithm

8434 Interpretation and Clustering Framework for Analyzing ECG Survey Data

Authors: Irum Matloob, Shoab Ahmad Khan, Fahim Arif

Abstract:

As Indo-Pak has been the victim of heart diseases since many decades. Many surveys showed that percentage of cardiac patients is increasing in Pakistan day by day, and special attention is needed to pay on this issue. The framework is proposed for performing detailed analysis of ECG survey data which is conducted for measuring prevalence of heart diseases statistics in Pakistan. The ECG survey data is evaluated or filtered by using automated Minnesota codes and only those ECGs are used for further analysis which is fulfilling the standardized conditions mentioned in the Minnesota codes. Then feature selection is performed by applying proposed algorithm based on discernibility matrix, for selecting relevant features from the database. Clustering is performed for exposing natural clusters from the ECG survey data by applying spectral clustering algorithm using fuzzy c means algorithm. The hidden patterns and interesting relationships which have been exposed after this analysis are useful for further detailed analysis and for many other multiple purposes.

Keywords: arrhythmias, centroids, ECG, clustering, discernibility matrix

Procedia PDF Downloads 470
8433 New Segmentation of Piecewise Linear Regression Models Using Reversible Jump MCMC Algorithm

Authors: Suparman

Abstract:

Piecewise linear regression models are very flexible models for modeling the data. If the piecewise linear regression models are matched against the data, then the parameters are generally not known. This paper studies the problem of parameter estimation of piecewise linear regression models. The method used to estimate the parameters of picewise linear regression models is Bayesian method. But the Bayes estimator can not be found analytically. To overcome these problems, the reversible jump MCMC algorithm is proposed. Reversible jump MCMC algorithm generates the Markov chain converges to the limit distribution of the posterior distribution of the parameters of picewise linear regression models. The resulting Markov chain is used to calculate the Bayes estimator for the parameters of picewise linear regression models.

Keywords: regression, piecewise, Bayesian, reversible Jump MCMC

Procedia PDF Downloads 521
8432 Miniaturization of I-Slot Antenna with Improved Efficiency and Gain

Authors: Mondher Labidi, Fethi Choubani

Abstract:

In this paper, novel miniaturization technique of antenna is proposed using I-slot. Using this technique, gain of antenna can increased for 4dB (antenna only) to 6.6dB for the proposed I-slot antenna and a frequency shift of about 0.45 GHz to 1 GHz is obtained. Also a reduction of the shape size of the antenna is achieved (about 38 %) to operate in the Wi-Fi (2.45 GHz) band.RF Moreover the frequency shift can be controlled by changing the place or the length of the I-slot. Finally the proposed miniature antenna with an improved radiation efficiency and gain was built and tested.

Keywords: slot antenna, miniaturization, RF, electrical equivalent circuit (EEC)

Procedia PDF Downloads 286
8431 Genetic Algorithm Optimization of a Small Scale Natural Gas Liquefaction Process

Authors: M. I. Abdelhamid, A. O. Ghallab, R. S. Ettouney, M. A. El-Rifai

Abstract:

An optimization scheme based on COM server is suggested for communication between Genetic Algorithm (GA) toolbox of MATLAB and Aspen HYSYS. The structure and details of the proposed framework are discussed. The power of the developed scheme is illustrated by its application to the optimization of a recently developed natural gas liquefaction process in which Aspen HYSYS was used for minimization of the power consumption by optimizing the values of five operating variables. In this work, optimization by coupling between the GA in MATLAB and Aspen HYSYS model of the same process using the same five decision variables enabled improvements in power consumption by 3.3%, when 77% of the natural gas feed is liquefied. Also on inclusion of the flow rates of both nitrogen and carbon dioxide refrigerants as two additional decision variables, the power consumption decreased by 6.5% for a 78% liquefaction of the natural gas feed.

Keywords: stranded gas liquefaction, genetic algorithm, COM server, single nitrogen expansion, carbon dioxide pre-cooling

Procedia PDF Downloads 449
8430 Effect of Polyethylene Glycol on Physiochemical Properties of Spherical Agglomerates of Pioglitazone Hydrochloride

Authors: S. V. Patil , S. K. Sahoo, K. Y. Chougule, S. S. Patil

Abstract:

Spherically agglomerated crystals of Pioglitazone hydrochloride (PGH) with improved flowability and compactibility were successfully prepared by emulsion solvent diffusion method. Plane agglomerates and agglomerates with additives: polyethylene glycol 6000 (PEG), polyvinyl pyrrolidone (PVP) and β cyclodextrin (β-CD) were prepared using methanol, chloroform and water as good solvent, bridging liquid and poor solvent respectively. Particle size, flowability, compactibility and packability of plane, PEG and β-CD agglomerates were preferably improved for direct tableting compared with raw crystals and PVP agglomerates of PGH. These improved properties of spherically agglomerated crystals were due to their large and spherical shape and enhanced fragmentation during compaction which was well supported by increased tensile strength and less elastic recovery of its compact. X-ray powder diffraction and differential scanning calorimetry study were indicated polymorphic transition of PGH from form II to I during recrystallization but not associated with chemical transition indicated by fourier transforms infrared spectra.

Keywords: spherical crystallization, pioglitazone hydrochloride, compactibility, packability

Procedia PDF Downloads 356
8429 Automatic Extraction of Water Bodies Using Whole-R Method

Authors: Nikhat Nawaz, S. Srinivasulu, P. Kesava Rao

Abstract:

Feature extraction plays an important role in many remote sensing applications. Automatic extraction of water bodies is of great significance in many remote sensing applications like change detection, image retrieval etc. This paper presents a procedure for automatic extraction of water information from remote sensing images. The algorithm uses the relative location of R-colour component of the chromaticity diagram. This method is then integrated with the effectiveness of the spatial scale transformation of whole method. The whole method is based on water index fitted from spectral library. Experimental results demonstrate the improved accuracy and effectiveness of the integrated method for automatic extraction of water bodies.

Keywords: feature extraction, remote sensing, image retrieval, chromaticity, water index, spectral library, integrated method

Procedia PDF Downloads 385
8428 Design and Development of High Strength Aluminium Alloy from Recycled 7xxx-Series Material Using Bayesian Optimisation

Authors: Alireza Vahid, Santu Rana, Sunil Gupta, Pratibha Vellanki, Svetha Venkatesh, Thomas Dorin

Abstract:

Aluminum is the preferred material for lightweight applications and its alloys are constantly improving. The high strength 7xxx alloys have been extensively used for structural components in aerospace and automobile industries for the past 50 years. In the next decade, a great number of airplanes will be retired, providing an obvious source of valuable used metals and great demand for cost-effective methods to re-use these alloys. The design of proper aerospace alloys is primarily based on optimizing strength and ductility, both of which can be improved by controlling the additional alloying elements as well as heat treatment conditions. In this project, we explore the design of high-performance alloys with 7xxx as a base material. These designed alloys have to be optimized and improved to compare with modern 7xxx-series alloys and to remain competitive for aircraft manufacturing. Aerospace alloys are extremely complex with multiple alloying elements and numerous processing steps making optimization often intensive and costly. In the present study, we used Bayesian optimization algorithm, a well-known adaptive design strategy, to optimize this multi-variable system. An Al alloy was proposed and the relevant heat treatment schedules were optimized, using the tensile yield strength as the output to maximize. The designed alloy has a maximum yield strength and ultimate tensile strength of more than 730 and 760 MPa, respectively, and is thus comparable to the modern high strength 7xxx-series alloys. The microstructure of this alloy is characterized by electron microscopy, indicating that the increased strength of the alloy is due to the presence of a high number density of refined precipitates.

Keywords: aluminum alloys, Bayesian optimization, heat treatment, tensile properties

Procedia PDF Downloads 119
8427 Reliable Soup: Reliable-Driven Model Weight Fusion on Ultrasound Imaging Classification

Authors: Shuge Lei, Haonan Hu, Dasheng Sun, Huabin Zhang, Kehong Yuan, Jian Dai, Yan Tong

Abstract:

It remains challenging to measure reliability from classification results from different machine learning models. This paper proposes a reliable soup optimization algorithm based on the model weight fusion algorithm Model Soup, aiming to improve reliability by using dual-channel reliability as the objective function to fuse a series of weights in the breast ultrasound classification models. Experimental results on breast ultrasound clinical datasets demonstrate that reliable soup significantly enhances the reliability of breast ultrasound image classification tasks. The effectiveness of the proposed approach was verified via multicenter trials. The results from five centers indicate that the reliability optimization algorithm can enhance the reliability of the breast ultrasound image classification model and exhibit low multicenter correlation.

Keywords: breast ultrasound image classification, feature attribution, reliability assessment, reliability optimization

Procedia PDF Downloads 85
8426 Bidirectional Dynamic Time Warping Algorithm for the Recognition of Isolated Words Impacted by Transient Noise Pulses

Authors: G. Tamulevičius, A. Serackis, T. Sledevič, D. Navakauskas

Abstract:

We consider the biggest challenge in speech recognition – noise reduction. Traditionally detected transient noise pulses are removed with the corrupted speech using pulse models. In this paper we propose to cope with the problem directly in Dynamic Time Warping domain. Bidirectional Dynamic Time Warping algorithm for the recognition of isolated words impacted by transient noise pulses is proposed. It uses simple transient noise pulse detector, employs bidirectional computation of dynamic time warping and directly manipulates with warping results. Experimental investigation with several alternative solutions confirms effectiveness of the proposed algorithm in the reduction of impact of noise on recognition process – 3.9% increase of the noisy speech recognition is achieved.

Keywords: transient noise pulses, noise reduction, dynamic time warping, speech recognition

Procedia PDF Downloads 559
8425 Problem of Services Selection in Ubiquitous Systems

Authors: Malika Yaici, Assia Arab, Betitra Yakouben, Samia Zermani

Abstract:

Ubiquitous computing is nowadays a reality through the networking of a growing number of computing devices. It allows providing users with context aware information and services in a heterogeneous environment, anywhere and anytime. Selection of the best context-aware service, between many available services and providers, is a tedious problem. In this paper, a service selection method based on Constraint Satisfaction Problem (CSP) formalism is proposed. The services are considered as variables and domains; and the user context, preferences and providers characteristics are considered as constraints. The Backtrack algorithm is used to solve the problem to find the best service and provider which matches the user requirements. Even though this algorithm has an exponential complexity, but its use guarantees that the service, that best matches the user requirements, will be found. A comparison of the proposed method with the existing solutions finishes the paper.

Keywords: ubiquitous computing, services selection, constraint satisfaction problem, backtrack algorithm

Procedia PDF Downloads 245
8424 MCDM Spectrum Handover Models for Cognitive Wireless Networks

Authors: Cesar Hernández, Diego Giral, Fernando Santa

Abstract:

The spectral handoff is important in cognitive wireless networks to ensure an adequate quality of service and performance for secondary user communications. This work proposes a benchmarking of performance of the three spectrum handoff models: VIKOR, SAW and MEW. Four evaluation metrics are used. These metrics are, accumulative average of failed handoffs, accumulative average of handoffs performed, accumulative average of transmission bandwidth and, accumulative average of the transmission delay. As a difference with related work, the performance of the three spectrum handoff models was validated with captured data of spectral occupancy in experiments realized at the GSM frequency band (824 MHz-849 MHz). These data represent the actual behavior of the licensed users for this wireless frequency band. The results of the comparative show that VIKOR Algorithm provides 15.8% performance improvement compared to a SAW Algorithm and, 12.1% better than the MEW Algorithm.

Keywords: cognitive radio, decision making, MEW, SAW, spectrum handoff, VIKOR

Procedia PDF Downloads 437
8423 Improved Wetting for Improved Solubility and Dissolution of Candesartan Cilexetil

Authors: Shilpa Bhilegaonkar, Ram Gaud

Abstract:

Candesartan cilexetil is a poorly soluble antihypertensive agent with solubility limited bioavailability (15%). To initiate process of solubilisation, it is very much necessary to displace the air at the surface and wet the drug surface with a solvent, with which drug is compatible. Present research adopts the same principle to improve solubility and dissolution of candesartan cilexetil. Solvents used here are surfactant and modified surfactant in different drug: solvent (1:1-1:9) ratio’s for preparation of adsorbates. Adsorbates were then converted into free flowing powders as liquisolid compacts and compressed to form tablets. Liquisolid compacts were evaluated for improvement in saturation solubility and dissolution of candesartan cilexetil. All systems were evaluated for improvement in saturation solubility and dissolution in different medias such as water, 0.1 N HCl, Phosphate buffer pH 6.8 and media given by office of generic drugs along with other physicochemical testing. All systems exhibited a promising advantage in terms of solubility and dissolution without affecting the drug structure as confirmed by IR and XRD. No considerable advantage was seen of increasing solvent ratio with drug.

Keywords: candesartan cilexetil, improved dissolution, solubility, liquisolid

Procedia PDF Downloads 328
8422 Optimal Placement and Sizing of Distributed Generation in Microgrid for Power Loss Reduction and Voltage Profile Improvement

Authors: Ferinar Moaidi, Mahdi Moaidi

Abstract:

Environmental issues and the ever-increasing in demand of electrical energy make it necessary to have distributed generation (DG) resources in the power system. In this research, in order to realize the goals of reducing losses and improving the voltage profile in a microgrid, the allocation and sizing of DGs have been used. The proposed Genetic Algorithm (GA) is described from the array of artificial intelligence methods for solving the problem. The algorithm is implemented on the IEEE 33 buses network. This study is presented in two scenarios, primarily to illustrate the effect of location and determination of DGs has been done to reduce losses and improve the voltage profile. On the other hand, decisions made with the one-level assumptions of load are not universally accepted for all levels of load. Therefore, in this study, load modelling is performed and the results are presented for multi-levels load state.

Keywords: distributed generation, genetic algorithm, microgrid, load modelling, loss reduction, voltage improvement

Procedia PDF Downloads 143
8421 Lego Mindstorms as a Simulation of Robotic Systems

Authors: Miroslav Popelka, Jakub Nožička

Abstract:

In this paper we deal with using Lego Mindstorms in simulation of robotic systems with respect to cost reduction. Lego Mindstorms kit contains broad variety of hardware components which are required to simulate, program and test the robotics systems in practice. Algorithm programming went in development environment supplied together with Lego kit as in programming language C# as well. Algorithm following the line, which we dealt with in this paper, uses theoretical findings from area of controlling circuits. PID controller has been chosen as controlling circuit whose individual components were experimentally adjusted for optimal motion of robot tracking the line. Data which are determined to process by algorithm are collected by sensors which scan the interface between black and white surfaces followed by robot. Based on discovered facts Lego Mindstorms can be considered for low-cost and capable kit to simulate real robotics systems.

Keywords: LEGO Mindstorms, PID controller, low-cost robotics systems, line follower, sensors, programming language C#, EV3 Home Edition Software

Procedia PDF Downloads 375
8420 Predicting Seoul Bus Ridership Using Artificial Neural Network Algorithm with Smartcard Data

Authors: Hosuk Shin, Young-Hyun Seo, Eunhak Lee, Seung-Young Kho

Abstract:

Currently, in Seoul, users have the privilege to avoid riding crowded buses with the installation of Bus Information System (BIS). BIS has three levels of on-board bus ridership level information (spacious, normal, and crowded). However, there are flaws in the system due to it being real time which could provide incomplete information to the user. For example, a bus comes to the station, and on the BIS it shows that the bus is crowded, but on the stop that the user is waiting many people get off, which would mean that this station the information should show as normal or spacious. To fix this problem, this study predicts the bus ridership level using smart card data to provide more accurate information about the passenger ridership level on the bus. An Artificial Neural Network (ANN) is an interconnected group of nodes, that was created based on the human brain. Forecasting has been one of the major applications of ANN due to the data-driven self-adaptive methods of the algorithm itself. According to the results, the ANN algorithm was stable and robust with somewhat small error ratio, so the results were rational and reasonable.

Keywords: smartcard data, ANN, bus, ridership

Procedia PDF Downloads 167
8419 A Weighted Sum Particle Swarm Approach (WPSO) Combined with a Novel Feasibility-Based Ranking Strategy for Constrained Multi-Objective Optimization of Compact Heat Exchangers

Authors: Milad Yousefi, Moslem Yousefi, Ricarpo Poley, Amer Nordin Darus

Abstract:

Design optimization of heat exchangers is a very complicated task that has been traditionally carried out based on a trial-and-error procedure. To overcome the difficulties of the conventional design approaches especially when a large number of variables, constraints and objectives are involved, a new method based on a well-stablished evolutionary algorithm, particle swarm optimization (PSO), weighted sum approach and a novel constraint handling strategy is presented in this study. Since, the conventional constraint handling strategies are not effective and easy-to-implement in multi-objective algorithms, a novel feasibility-based ranking strategy is introduced which is both extremely user-friendly and effective. A case study from industry has been investigated to illustrate the performance of the presented approach. The results show that the proposed algorithm can find the near pareto-optimal with higher accuracy when it is compared to conventional non-dominated sorting genetic algorithm II (NSGA-II). Moreover, the difficulties of a trial-and-error process for setting the penalty parameters is solved in this algorithm.

Keywords: Heat exchanger, Multi-objective optimization, Particle swarm optimization, NSGA-II Constraints handling.

Procedia PDF Downloads 555
8418 Ultra-Reliable Low Latency V2X Communication for Express Way Using Multiuser Scheduling Algorithm

Authors: Vaishali D. Khairnar

Abstract:

The main aim is to provide lower-latency and highly reliable communication facilities for vehicles in the automobile industry; vehicle-to-everything (V2X) communication basically intends to increase expressway road security and its effectiveness. The Ultra-Reliable Low-Latency Communications (URLLC) algorithm and cellular networks are applied in combination with Mobile Broadband (MBB). This is particularly used in express way safety-based driving applications. Expressway vehicle drivers (humans) will communicate in V2X systems using the sixth-generation (6G) communication systems which have very high-speed mobility features. As a result, we need to determine how to ensure reliable and consistent wireless communication links and improve the quality to increase channel gain, which is becoming a challenge that needs to be addressed. To overcome this challenge, we proposed a unique multi-user scheduling algorithm for ultra-massive multiple-input multiple-output (MIMO) systems using 6G. In wideband wireless network access in case of high traffic and also in medium traffic conditions, moreover offering quality-of-service (QoS) to distinct service groups with synchronized contemporaneous traffic on the highway like the Mumbai-Pune expressway becomes a critical problem. Opportunist MAC (OMAC) is a way of proposing communication across a wireless communication link that can change in space and time and might overcome the above-mentioned challenge. Therefore, a multi-user scheduling algorithm is proposed for MIMO systems using a cross-layered MAC protocol to achieve URLLC and high reliability in V2X communication.

Keywords: ultra-reliable low latency communications, vehicle-to-everything communication, multiple-input multiple-output systems, multi-user scheduling algorithm

Procedia PDF Downloads 88
8417 Quantitative Analysis of Multiprocessor Architectures for Radar Signal Processing

Authors: Deepak Kumar, Debasish Deb, Reena Mamgain

Abstract:

Radar signal processing requires high number crunching capability. Most often this is achieved using multiprocessor platform. Though multiprocessor platform provides the capability of meeting the real time computational challenges, the architecture of the same along with mapping of the algorithm on the architecture plays a vital role in efficiently using the platform. Towards this, along with standard performance metrics, few additional metrics are defined which helps in evaluating the multiprocessor platform along with the algorithm mapping. A generic multiprocessor architecture can not suit all the processing requirements. Depending on the system requirement and type of algorithms used, the most suitable architecture for the given problem is decided. In the paper, we study different architectures and quantify the different performance metrics which enables comparison of different architectures for their merit. We also carried out case study of different architectures and their efficiency depending on parallelism exploited on algorithm or data or both.

Keywords: radar signal processing, multiprocessor architecture, efficiency, load imbalance, buffer requirement, pipeline, parallel, hybrid, cluster of processors (COPs)

Procedia PDF Downloads 412
8416 Implications on Informed Consent of Information Available to Patients on the Internet Regarding Hip and Knee Osteoarthritis

Authors: R. W. Walker, J. M. Lynch, K. Anderson, R. G. Middleton

Abstract:

Hip and knee arthritis are two of the commonest conditions that result in elective orthopaedic outpatient referral. At clinic appointments advice given regarding lifestyle modifications or treatment options may not be fully understood by patients. The majority of patients now use the internet to research their condition and use this to inform their decision about treatments. This study assessed the quality of patient information regarding hip and knee arthritis. To assess the quality of patient information regarding knee and hip arthritis available on the internet. Two internet searches were carried out one month apart using the search terms “knee arthritis” and “hip arthritis” on Google, a search engine that accounts for over 90% or internet searches in the UK. Sites were evaluated using the DISCERN instrument, a validated tool for measuring the quality of consumer health information. The first 50 results for each search were analysed by two different observers and discrepancies in scores were reviewed by both observers together and a score was agreed upon. In total 200 search result websites were assessed, of which 84 fulfilled the inclusion criteria. 53% (n=44) were funded directly by commercial healthcare businesses and of these, 70% (n=31) were funded by a surgeon/hospital promoting end-user purchase of surgical intervention. Overall 35% (n=29) websites were “for-profit” information websites where funding was from advertising revenues from pharmaceutical and prosthesis companies. 81% (n=67) offered information about surgical treatments however only 43% (n=36) mentioned the risk of complications of surgery. 67% (n=56) did not have any reference to sources for the information they detailed and 57% (n=47) had no apparent date for the production of the information they offered. Overall 17% (n=14) of websites were judged as being of high quality, with 29% (n=24) being of moderate quality and 54% (n=45) being of low quality. The quality of health information regarding hip and knee arthritis on the internet is highly variable and the majority of websites assessed were of poor quality. A preponderance of websites were funded by a commercial surgical service offering athroplasty at consumer cost, with a further third being funded indirectly via advertising revenues from commercial businesses. The vast majority of websites only mentioned surgery as a treatment and nearly half of all websites did not mention the risks or complications of surgical intervention at all. This has implications for the consent process. As such, Clinicians should be aware of the heterogeneous nature of patient information on the internet and be prepared to advise their patients about good quality websites where further reliable information can be sought.

Keywords: hip osteoarthritis, informed consent, knee osteoarthritis, patient information

Procedia PDF Downloads 93
8415 A Soft Switching PWM DC-DC Boost Converter with Increased Efficiency by Using ZVT-ZCT Techniques

Authors: Yakup Sahin, Naim Suleyman Ting, Ismail Aksoy

Abstract:

In this paper, an improved active snubber cell is proposed on account of soft switching (SS) family of pulse width modulation (PWM) DC-DC converters. The improved snubber cell provides zero-voltage transition (ZVT) turn on and zero-current transition (ZCT) turn off for main switch. The snubber cell decreases EMI noise and operates with SS in a wide range of line and load voltages. Besides, all of the semiconductor devices in the converter operate with SS. There is no additional voltage and current stress on the main devices. Additionally, extra voltage stress does not occur on the auxiliary switch and its current stress is acceptable value. The improved converter has a low cost and simple structure. The theoretical analysis of converter is clarified and the operating states are given in detail. The experimental results of converter are obtained by prototype of 500 W and 100 kHz. It is observed that the experimental results and theoretical analysis of converter are suitable with each other perfectly.

Keywords: active snubber cells, DC-DC converters, zero-voltage transition, zero-current transition

Procedia PDF Downloads 1020
8414 Multiobjective Economic Dispatch Using Optimal Weighting Method

Authors: Mandeep Kaur, Fatehgarh Sahib

Abstract:

The purpose of economic load dispatch is to allocate the required load demand between the available generation units such that the cost of operation is minimized. It is an optimization problem to find the most economical schedule of the generating units while satisfying load demand and operational constraints. The multiobjective optimization problem in which the engineer’s goal is to maximize or minimize not a single objective function but several objective functions simultaneously. The purpose of multiobjective problems in the mathematical programming framework is to optimize the different objective functions. Many approaches and methods have been proposed in recent years to solve multiobjective optimization problems. Weighting method has been applied to convert multiobjective optimization problems into scalar optimization. MATLAB 7.10 has been used to write the code for the complete algorithm with the help of genetic algorithm (GA). The validity of the proposed method has been demonstrated on a three-unit power system.

Keywords: economic load dispatch, genetic algorithm, generating units, multiobjective optimization, weighting method

Procedia PDF Downloads 150
8413 Speech Intelligibility Improvement Using Variable Level Decomposition DWT

Authors: Samba Raju, Chiluveru, Manoj Tripathy

Abstract:

Intelligibility is an essential characteristic of a speech signal, which is used to help in the understanding of information in speech signal. Background noise in the environment can deteriorate the intelligibility of a recorded speech. In this paper, we presented a simple variance subtracted - variable level discrete wavelet transform, which improve the intelligibility of speech. The proposed algorithm does not require an explicit estimation of noise, i.e., prior knowledge of the noise; hence, it is easy to implement, and it reduces the computational burden. The proposed algorithm decides a separate decomposition level for each frame based on signal dominant and dominant noise criteria. The performance of the proposed algorithm is evaluated with speech intelligibility measure (STOI), and results obtained are compared with Universal Discrete Wavelet Transform (DWT) thresholding and Minimum Mean Square Error (MMSE) methods. The experimental results revealed that the proposed scheme outperformed competing methods

Keywords: discrete wavelet transform, speech intelligibility, STOI, standard deviation

Procedia PDF Downloads 148
8412 Meaning in Life, Hope, and Mental Health: Relation between Meaning in Life, Hope, Depression, Anxiety, and Stress among Afghan Refugees in Iran

Authors: Mustafa Jahanara

Abstract:

The present research was carried out in order to investigate the relationship between meaning in life and hope with depression, anxiety and stress in Afghan Refugees in Alborz province in Iran. In this research, method of study is a descriptive correlation type. One hundred and fifty-eight Afghan refugees (64 male, 94 female) participated in this study. All participants completed the Meaning in Life Questionnaires (MLQ), Hope Scale (HS), and The Depression Anxiety Stress Scales (DASS-21). The results revealed that Meaning in Life was positively associated with hope, presence of meaning, search of meaning, and negatively associated with depression and anxiety. Hope was positively associated with presence of meaning and search of meaning, and hope was negatively associated with depression, anxiety, and stress. Depression, anxiety, and stress were positively correlated with each other. Meaning in life and hope could influence on mental health.

Keywords: Afghan refugees, meaning of life, hope, depression, anxiety and stress

Procedia PDF Downloads 415
8411 Using Support Vector Machines for Measuring Democracy

Authors: Tommy Krieger, Klaus Gruendler

Abstract:

We present a novel approach for measuring democracy, which enables a very detailed and sensitive index. This method is based on Support Vector Machines, a mathematical algorithm for pattern recognition. Our implementation evaluates 188 countries in the period between 1981 and 2011. The Support Vector Machines Democracy Index (SVMDI) is continuously on the 0-1-Interval and robust to variations in the numerical process parameters. The algorithm introduced here can be used for every concept of democracy without additional adjustments, and due to its flexibility it is also a valuable tool for comparison studies.

Keywords: democracy, democracy index, machine learning, support vector machines

Procedia PDF Downloads 378
8410 Received Signal Strength Indicator Based Localization of Bluetooth Devices Using Trilateration: An Improved Method for the Visually Impaired People

Authors: Muhammad Irfan Aziz, Thomas Owens, Uzair Khaleeq uz Zaman

Abstract:

The instantaneous and spatial localization for visually impaired people in dynamically changing environments with unexpected hazards and obstacles, is the most demanding and challenging issue faced by the navigation systems today. Since Bluetooth cannot utilize techniques like Time Difference of Arrival (TDOA) and Time of Arrival (TOA), it uses received signal strength indicator (RSSI) to measure Receive Signal Strength (RSS). The measurements using RSSI can be improved significantly by improving the existing methodologies related to RSSI. Therefore, the current paper focuses on proposing an improved method using trilateration for localization of Bluetooth devices for visually impaired people. To validate the method, class 2 Bluetooth devices were used along with the development of a software. Experiments were then conducted to obtain surface plots that showed the signal interferences and other environmental effects. Finally, the results obtained show the surface plots for all Bluetooth modules used along with the strong and weak points depicted as per the color codes in red, yellow and blue. It was concluded that the suggested improved method of measuring RSS using trilateration helped to not only measure signal strength affectively but also highlighted how the signal strength can be influenced by atmospheric conditions such as noise, reflections, etc.

Keywords: Bluetooth, indoor/outdoor localization, received signal strength indicator, visually impaired

Procedia PDF Downloads 134
8409 State of the Science: Digital Therapies in Pediatric Mental Health

Authors: Billy Zou

Abstract:

Statement of the Problem: The burden of mental illness and problem behaviors in adolescence has risen worldwide. While less than 50% of teens have access to traditional mental health care, more than 73% have smartphones. Internet-based interventions offer advantages such as cost-effectiveness, availability, and flexibility. Methodology & Theoretical Orientation: A literature review was done using a PubMed search with the words mental health app yielding 2113 results. 103 articles that met inclusion criteria were reviewed, and findings were then described and synthesized. Findings: 1. Computer-based CBT was found to be effective for OCD, depression, social phobia, and panic disorder. 2. Web-based psychoeducation reduced problem behavior and improved parental well-being. 3. There is limited evidence for mobile-phone-based apps, but preliminary results suggest computer-based interventions are transferrable to mobile apps. 4. Adherence to app-based treatment was correlated with impressions about the user interface Conclusion & Significance: There is evidence for the effectiveness of computer-based programs in filling the significant gaps that currently exist in mental health delivery in the United States and internationally. There is also potential and theoretical validity for mobile-based apps to do the same, though more data is needed.

Keywords: children's mental health, mental health app, child and adolecent psychiatry, digital therapy

Procedia PDF Downloads 70
8408 An Algorithm Based on Control Indexes to Increase the Quality of Service on Cellular Networks

Authors: Rahman Mofidi, Sina Rahimi, Farnoosh Darban

Abstract:

Communication plays a key role in today’s world, and to support it, the quality of service has the highest priority. It is very important to differentiate between traffic based on priority level. Some traffic classes should be a higher priority than other classes. It is also necessary to give high priority to customers who have more payment for better service, however, without influence on other customers. So to realize that, we will require effective quality of service methods. To ensure the optimal performance of the network in accordance with the quality of service is an important goal for all operators in the mobile network. In this work, we propose an algorithm based on control parameters which it’s based on user feedback that aims at minimizing the access to system transmit power and thus improving the network key performance indicators and increasing the quality of service. This feedback that is known as channel quality indicator (CQI) indicates the received signal level of the user. We aim at proposing an algorithm in control parameter criterion to study improving the quality of service and throughput in a cellular network at the simulated environment. In this work we tried to parameter values have close to their actual level. Simulation results show that the proposed algorithm improves the system throughput and thus satisfies users' throughput and improves service to set up a successful call.

Keywords: quality of service, key performance indicators, control parameter, channel quality indicator

Procedia PDF Downloads 203
8407 A Multilayer Perceptron Neural Network Model Optimized by Genetic Algorithm for Significant Wave Height Prediction

Authors: Luis C. Parra

Abstract:

The significant wave height prediction is an issue of great interest in the field of coastal activities because of the non-linear behavior of the wave height and its complexity of prediction. This study aims to present a machine learning model to forecast the significant wave height of the oceanographic wave measuring buoys anchored at Mooloolaba of the Queensland Government Data. Modeling was performed by a multilayer perceptron neural network-genetic algorithm (GA-MLP), considering Relu(x) as the activation function of the MLPNN. The GA is in charge of optimized the MLPNN hyperparameters (learning rate, hidden layers, neurons, and activation functions) and wrapper feature selection for the window width size. Results are assessed using Mean Square Error (MSE), Root Mean Square Error (RMSE), and Mean Absolute Error (MAE). The GAMLPNN algorithm was performed with a population size of thirty individuals for eight generations for the prediction optimization of 5 steps forward, obtaining a performance evaluation of 0.00104 MSE, 0.03222 RMSE, 0.02338 MAE, and 0.71163% of MAPE. The results of the analysis suggest that the MLPNNGA model is effective in predicting significant wave height in a one-step forecast with distant time windows, presenting 0.00014 MSE, 0.01180 RMSE, 0.00912 MAE, and 0.52500% of MAPE with 0.99940 of correlation factor. The GA-MLP algorithm was compared with the ARIMA forecasting model, presenting better performance criteria in all performance criteria, validating the potential of this algorithm.

Keywords: significant wave height, machine learning optimization, multilayer perceptron neural networks, evolutionary algorithms

Procedia PDF Downloads 107
8406 Steepest Descent Method with New Step Sizes

Authors: Bib Paruhum Silalahi, Djihad Wungguli, Sugi Guritman

Abstract:

Steepest descent method is a simple gradient method for optimization. This method has a slow convergence in heading to the optimal solution, which occurs because of the zigzag form of the steps. Barzilai and Borwein modified this algorithm so that it performs well for problems with large dimensions. Barzilai and Borwein method results have sparked a lot of research on the method of steepest descent, including alternate minimization gradient method and Yuan method. Inspired by previous works, we modified the step size of the steepest descent method. We then compare the modification results against the Barzilai and Borwein method, alternate minimization gradient method and Yuan method for quadratic function cases in terms of the iterations number and the running time. The average results indicate that the steepest descent method with the new step sizes provide good results for small dimensions and able to compete with the results of Barzilai and Borwein method and the alternate minimization gradient method for large dimensions. The new step sizes have faster convergence compared to the other methods, especially for cases with large dimensions.

Keywords: steepest descent, line search, iteration, running time, unconstrained optimization, convergence

Procedia PDF Downloads 540
8405 A Genetic Algorithm Based Sleep-Wake up Protocol for Area Coverage in WSNs

Authors: Seyed Mahdi Jameii, Arash Nikdel, Seyed Mohsen Jameii

Abstract:

Energy efficiency is an important issue in the field of Wireless Sensor Networks (WSNs). So, minimizing the energy consumption in this kind of networks should be an essential consideration. Sleep/wake scheduling mechanism is an efficient approach to handling this issue. In this paper, we propose a Genetic Algorithm-based Sleep-Wake up Area Coverage protocol called GA-SWAC. The proposed protocol puts the minimum of nodes in active mode and adjusts the sensing radius of each active node to decrease the energy consumption while maintaining the network’s coverage. The proposed protocol is simulated. The results demonstrate the efficiency of the proposed protocol in terms of coverage ratio, number of active nodes and energy consumption.

Keywords: wireless sensor networks, genetic algorithm, coverage, connectivity

Procedia PDF Downloads 521