Search results for: hazard of noise
747 Apolipoprotein A1 -75 G to a Substitution and Its Relationship with Serum ApoA1 Levels among Indian Punjabi Population
Authors: Savjot Kaur, Mridula Mahajan, AJS Bhanwer, Santokh Singh, Kawaljit Matharoo
Abstract:
Background: Disorders of lipid metabolism and genetic predisposition are CAD risk factors. ApoA1 is the apolipoprotein component of anti-atherogenic high density lipoprotein (HDL) particles. The protective action of HDL and ApoA1 is attributed to their central role in reverse cholesterol transport (RCT). Aim: This study was aimed at identifying sequence variations in ApoA1 (-75G>A) and its association with serum ApoA1 levels. Methods: A total of 300 CAD patients and 300 Normal individuals (controls) were analyzed. PCR-RFLP method was used to determine the DNA polymorphism in the ApoA1 gene, PCR products digested with restriction enzyme MspI, followed by Agarose Gel Electrophoresis. Serum apolipoprotein A1 concentration was estimated with immunoturbidimetric method. Results: Deviation from Hardy- Weinberg Equilibrium (HWE) was observed for this gene variant. The A- allele frequency was higher among Coronary Artery disease patients (53.8) compared to controls (45.5), p= 0.004, O.R= 1.38(1.11-1.75). Under recessive model analysis (AA vs. GG+GA) AA genotype of ApoA1 G>A substitution conferred ~1 fold increased risk towards CAD susceptibility (p= 0.002, OR= 1.72(1.2-2.43). With serum ApoA1 levels < 107 A allele frequency was higher among CAD cases (50) as compared to controls (43.4) [p=0.23, OR= 1.2(0.84-2)] and there was zero % occurrence of A allele frequency in individuals with ApoA1 levels > 177. Conclusion: Serum ApoA1 levels were associated with ApoA1 promoter region variation and influence CAD risk. The individuals with the APOA1 -75 A allele confer excess hazard of developing CAD as a result of its effect on low serum concentrations of ApoA1.Keywords: apolipoprotein A1 (G>A) gene polymorphism, coronary artery disease (CAD), reverse cholesterol transport (RCT)
Procedia PDF Downloads 317746 Software Verification of Systematic Resampling for Optimization of Particle Filters
Authors: Osiris Terry, Kenneth Hopkinson, Laura Humphrey
Abstract:
Systematic resampling is the most popularly used resampling method in particle filters. This paper seeks to further the understanding of systematic resampling by defining a formula made up of variables from the sampling equation and the particle weights. The formula is then verified via SPARK, a software verification language. The verified systematic resampling formula states that the minimum/maximum number of possible samples taken of a particle is equal to the floor/ceiling value of particle weight divided by the sampling interval, respectively. This allows for the creation of a randomness spectrum that each resampling method can fall within. Methods on the lower end, e.g., systematic resampling, have less randomness and, thus, are quicker to reach an estimate. Although lower randomness allows for error by having a larger bias towards the size of the weight, having this bias creates vulnerabilities to the noise in the environment, e.g., jamming. Conclusively, this is the first step in characterizing each resampling method. This will allow target-tracking engineers to pick the best resampling method for their environment instead of choosing the most popularly used one.Keywords: SPARK, software verification, resampling, systematic resampling, particle filter, tracking
Procedia PDF Downloads 84745 Numerical Implementation and Testing of Fractioning Estimator Method for the Box-Counting Dimension of Fractal Objects
Authors: Abraham Terán Salcedo, Didier Samayoa Ochoa
Abstract:
This work presents a numerical implementation of a method for estimating the box-counting dimension of self-avoiding curves on a planar space, fractal objects captured on digital images; this method is named fractioning estimator. Classical methods of digital image processing, such as noise filtering, contrast manipulation, and thresholding, among others, are used in order to obtain binary images that are suitable for performing the necessary computations of the fractioning estimator. A user interface is developed for performing the image processing operations and testing the fractioning estimator on different captured images of real-life fractal objects. To analyze the results, the estimations obtained through the fractioning estimator are compared to the results obtained through other methods that are already implemented on different available software for computing and estimating the box-counting dimension.Keywords: box-counting, digital image processing, fractal dimension, numerical method
Procedia PDF Downloads 83744 Implementation of MPPT Algorithm for Grid Connected PV Module with IC and P&O Method
Authors: Arvind Kumar, Manoj Kumar, Dattatraya H. Nagaraj, Amanpreet Singh, Jayanthi Prattapati
Abstract:
In recent years, the use of renewable energy resources instead of pollutant fossil fuels and other forms has increased. Photovoltaic generation is becoming increasingly important as a renewable resource since it does not cause in fuel costs, pollution, maintenance, and emitting noise compared with other alternatives used in power applications. In this paper, Perturb and Observe and Incremental Conductance methods are used to improve energy conversion efficiency under different environmental conditions. PI controllers are used to control easily DC-link voltage, active and reactive currents. The whole system is simulated under standard climatic conditions (1000 W/m2, 250C) in MATLAB and the irradiance is varied from 1000 W/m2 to 300 W/m2. The use of PI controller makes it easy to directly control the power of the grid connected PV system. Finally the validity of the system will be verified through the simulations in MATLAB/Simulink environment.Keywords: incremental conductance algorithm, modeling of PV panel, perturb and observe algorithm, photovoltaic system and simulation results
Procedia PDF Downloads 509743 Modification of the Risk for Incident Cancer with Changes in the Metabolic Syndrome Status: A Prospective Cohort Study in Taiwan
Authors: Yung-Feng Yen, Yun-Ju Lai
Abstract:
Background: Metabolic syndrome (MetS) is reversible; however, the effect of changes in MetS status on the risk of incident cancer has not been extensively studied. We aimed to investigate the effects of changes in MetS status on incident cancer risk. Methods: This prospective, longitudinal study used data from Taiwan’s MJ cohort of 157,915 adults recruited from 2002–2016 who had repeated MetS measurements 5.2 (±3.5) years apart and were followed up for the new onset of cancer over 8.2 (±4.5) years. A new diagnosis of incident cancer in study individuals was confirmed by their pathohistological reports. The participants’ MetS status included MetS-free (n=119,331), MetS-developed (n=14,272), MetS-recovered (n=7,914), and MetS-persistent (n=16,398). We used the Fine-Gray sub-distribution method, with death as the competing risk, to determine the association between MetS changes and the risk of incident cancer. Results: During the follow-up period, 7,486 individuals had new development of cancer. Compared with the MetS-free group, MetS-persistent individuals had a significantly higher risk of incident cancer (adjusted hazard ratio [aHR], 1.10; 95% confidence interval [CI], 1.03-1.18). Considering the effect of dynamic changes in MetS status on the risk of specific cancer types, MetS persistence was significantly associated with a higher risk of incident colon and rectum, kidney, pancreas, uterus, and thyroid cancer. The risk of kidney, uterus, and thyroid cancer in MetS-recovered individuals was higher than in those who remained MetS but lower than MetS-persistent individuals. Conclusions: Persistent MetS is associated with a higher risk of incident cancer, and recovery from MetS may reduce the risk. The findings of our study suggest that it is imperative for individuals with pre-existing MetS to seek treatment for this condition to reduce the cancer risk.Keywords: metabolic syndrome change, cancer, risk factor, cohort study
Procedia PDF Downloads 78742 Utilizing Minecraft Java Edition for the Application of Fire Disaster Procedures to Establish Fire Disaster Readiness for Grade 12 STEM students of DLSU-IS
Authors: Aravella Flores, Jose Rafael E. Sotelo, Luis Romulus Phillippe R. Javier, Josh Christian V. Nunez
Abstract:
This study focuses on analyzing the performance of Grade 12 STEM students of De La Salle University - Integrated School that has completed the Disaster Readiness and Risk Reduction course in handling fire hazards through Minecraft Java Edition. This platform is suitable because fire DRRR is challenging to learn in a practical setting as well as questionable with regard to supplementing the successful implementation of textbook knowledge into actual practice. The purpose of this study is to acknowledge whether Minecraft can be a suitable environment to familiarize oneself to fire DRRR. The objectives are achieved through utilizing Minecraft in simulating fire scenarios which allows the participants to freely act upon and practice fire DRRR. The experiment was divided into the grounding and validation phase, where researchers observed the performance of the participants in the simulation. A pre-simulation and post-simulation survey was given to acknowledge the change in participants’ perception of being able to utilize fire DRRR procedures and their vulnerabilities. The paired t-test was utilized, showing significant differences in the pre-simulation and post-simulation survey scores, thus, insinuating improved judgment of DRRR, lessening their vulnerabilities in the possibility of encountering a fire hazard. This research poses a model for future research which can gather more participants and dwell on more complex codes outside just command blocks and into the code lines of Minecraft itself.Keywords: minecraft, DRRR, fire, disaster, simulation
Procedia PDF Downloads 137741 First Order Moment Bounds on DMRL and IMRL Classes of Life Distributions
Authors: Debasis Sengupta, Sudipta Das
Abstract:
The class of life distributions with decreasing mean residual life (DMRL) is well known in the field of reliability modeling. It contains the IFR class of distributions and is contained in the NBUE class of distributions. While upper and lower bounds of the reliability distribution function of aging classes such as IFR, IFRA, NBU, NBUE, and HNBUE have discussed in the literature for a long time, there is no analogous result available for the DMRL class. We obtain the upper and lower bounds for the reliability function of the DMRL class in terms of first order finite moment. The lower bound is obtained by showing that for any fixed time, the minimization of the reliability function over the class of all DMRL distributions with a fixed mean is equivalent to its minimization over a smaller class of distribution with a special form. Optimization over this restricted set can be made algebraically. Likewise, the maximization of the reliability function over the class of all DMRL distributions with a fixed mean turns out to be a parametric optimization problem over the class of DMRL distributions of a special form. The constructive proofs also establish that both the upper and lower bounds are sharp. Further, the DMRL upper bound coincides with the HNBUE upper bound and the lower bound coincides with the IFR lower bound. We also prove that a pair of sharp upper and lower bounds for the reliability function when the distribution is increasing mean residual life (IMRL) with a fixed mean. This result is proved in a similar way. These inequalities fill a long-standing void in the literature of the life distribution modeling.Keywords: DMRL, IMRL, reliability bounds, hazard functions
Procedia PDF Downloads 397740 Optimization of Process Parameters in Wire Electrical Discharge Machining of Inconel X-750 for Dimensional Deviation Using Taguchi Technique
Authors: Mandeep Kumar, Hari Singh
Abstract:
The effective optimization of machining process parameters affects dramatically the cost and production time of machined components as well as the quality of the final products. This paper presents the optimization aspects of a Wire Electrical Discharge Machining operation using Inconel X-750 as work material. The objective considered in this study is minimization of the dimensional deviation. Six input process parameters of WEDM namely spark gap voltage, pulse-on time, pulse-off time, wire feed rate, peak current and wire tension, were chosen as variables to study the process performance. Taguchi's design of experiments methodology has been used for planning and designing the experiments. The analysis of variance was carried out for raw data as well as for signal to noise ratio. Four input parameters and one two-factor interaction have been found to be statistically significant for their effects on the response of interest. The confirmation experiments were also performed for validating the predicted results.Keywords: ANOVA, DOE, inconel, machining, optimization
Procedia PDF Downloads 205739 Process Data-Driven Representation of Abnormalities for Efficient Process Control
Authors: Hyun-Woo Cho
Abstract:
Unexpected operational events or abnormalities of industrial processes have a serious impact on the quality of final product of interest. In terms of statistical process control, fault detection and diagnosis of processes is one of the essential tasks needed to run the process safely. In this work, nonlinear representation of process measurement data is presented and evaluated using a simulation process. The effect of using different representation methods on the diagnosis performance is tested in terms of computational efficiency and data handling. The results have shown that the nonlinear representation technique produced more reliable diagnosis results and outperforms linear methods. The use of data filtering step improved computational speed and diagnosis performance for test data sets. The presented scheme is different from existing ones in that it attempts to extract the fault pattern in the reduced space, not in the original process variable space. Thus this scheme helps to reduce the sensitivity of empirical models to noise.Keywords: fault diagnosis, nonlinear technique, process data, reduced spaces
Procedia PDF Downloads 247738 Cooperative Jamming for Implantable Medical Device Security
Authors: Kim Lytle, Tim Talty, Alan Michaels, Jeff Reed
Abstract:
Implantable medical devices (IMDs) are medically necessary devices embedded in the human body that monitor chronic disorders or automatically deliver therapies. Most IMDs have wireless capabilities that allow them to share data with an offboard programming device to help medical providers monitor the patient’s health while giving the patient more insight into their condition. However, serious security concerns have arisen as researchers demonstrated these devices could be hacked to obtain sensitive information or harm the patient. Cooperative jamming can be used to prevent privileged information leaks by maintaining an adequate signal-to-noise ratio at the intended receiver while minimizing signal power elsewhere. This paper uses ray tracing to demonstrate how a low number of friendly nodes abiding by Bluetooth Low Energy (BLE) transmission regulations can enhance IMD communication security in an office environment, which in turn may inform how companies and individuals can protect their proprietary and personal information.Keywords: implantable biomedical devices, communication system security, array signal processing, ray tracing
Procedia PDF Downloads 114737 Sensor Fault-Tolerant Model Predictive Control for Linear Parameter Varying Systems
Authors: Yushuai Wang, Feng Xu, Junbo Tan, Xueqian Wang, Bin Liang
Abstract:
In this paper, a sensor fault-tolerant control (FTC) scheme using robust model predictive control (RMPC) and set theoretic fault detection and isolation (FDI) is extended to linear parameter varying (LPV) systems. First, a group of set-valued observers are designed for passive fault detection (FD) and the observer gains are obtained through minimizing the size of invariant set of state estimation-error dynamics. Second, an input set for fault isolation (FI) is designed offline through set theory for actively isolating faults after FD. Third, an RMPC controller based on state estimation for LPV systems is designed to control the system in the presence of disturbance and measurement noise and tolerate faults. Besides, an FTC algorithm is proposed to maintain the plant operate in the corresponding mode when the fault occurs. Finally, a numerical example is used to show the effectiveness of the proposed results.Keywords: fault detection, linear parameter varying, model predictive control, set theory
Procedia PDF Downloads 252736 Prediction of the Thermal Parameters of a High-Temperature Metallurgical Reactor Using Inverse Heat Transfer
Authors: Mohamed Hafid, Marcel Lacroix
Abstract:
This study presents an inverse analysis for predicting the thermal conductivities and the heat flux of a high-temperature metallurgical reactor simultaneously. Once these thermal parameters are predicted, the time-varying thickness of the protective phase-change bank that covers the inside surface of the brick walls of a metallurgical reactor can be calculated. The enthalpy method is used to solve the melting/solidification process of the protective bank. The inverse model rests on the Levenberg-Marquardt Method (LMM) combined with the Broyden method (BM). A statistical analysis for the thermal parameter estimation is carried out. The effect of the position of the temperature sensors, total number of measurements and measurement noise on the accuracy of inverse predictions is investigated. Recommendations are made concerning the location of temperature sensors.Keywords: inverse heat transfer, phase change, metallurgical reactor, Levenberg–Marquardt method, Broyden method, bank thickness
Procedia PDF Downloads 334735 Forest Risk and Vulnerability Assessment: A Case Study from East Bokaro Coal Mining Area in India
Authors: Sujata Upgupta, Prasoon Kumar Singh
Abstract:
The expansion of large scale coal mining into forest areas is a potential hazard for the local biodiversity and wildlife. The objective of this study is to provide a picture of the threat that coal mining poses to the forests of the East Bokaro landscape. The vulnerable forest areas at risk have been assessed and the priority areas for conservation have been presented. The forested areas at risk in the current scenario have been assessed and compared with the past conditions using classification and buffer based overlay approach. Forest vulnerability has been assessed using an analytical framework based on systematic indicators and composite vulnerability index values. The results indicate that more than 4 km2 of forests have been lost from 1973 to 2016. Large patches of forests have been diverted for coal mining projects. Forests in the northern part of the coal field within 1-3 km radius around the coal mines are at immediate risk. The original contiguous forests have been converted into fragmented and degraded forest patches. Most of the collieries are located within or very close to the forests thus threatening the biodiversity and hydrology of the surrounding regions. Based on the vulnerability values estimated, it was concluded that more than 90% of the forested grids in East Bokaro are highly vulnerable to mining. The forests in the sub-districts of Bermo and Chandrapura have been identified as the most vulnerable to coal mining activities. This case study would add to the capacity of the forest managers and mine managers to address the risk and vulnerability of forests at a small landscape level in order to achieve sustainable development.Keywords: forest, coal mining, indicators, vulnerability
Procedia PDF Downloads 390734 Analysis of Financial Time Series by Using Ornstein-Uhlenbeck Type Models
Authors: Md Al Masum Bhuiyan, Maria C. Mariani, Osei K. Tweneboah
Abstract:
In the present work, we develop a technique for estimating the volatility of financial time series by using stochastic differential equation. Taking the daily closing prices from developed and emergent stock markets as the basis, we argue that the incorporation of stochastic volatility into the time-varying parameter estimation significantly improves the forecasting performance via Maximum Likelihood Estimation. While using the technique, we see the long-memory behavior of data sets and one-step-ahead-predicted log-volatility with ±2 standard errors despite the variation of the observed noise from a Normal mixture distribution, because the financial data studied is not fully Gaussian. Also, the Ornstein-Uhlenbeck process followed in this work simulates well the financial time series, which aligns our estimation algorithm with large data sets due to the fact that this algorithm has good convergence properties.Keywords: financial time series, maximum likelihood estimation, Ornstein-Uhlenbeck type models, stochastic volatility model
Procedia PDF Downloads 242733 Association of Human Immunodeficiency Virus with Incident Autoimmune Hemolytic Anemia: A Population-Based Cohort Study in Taiwan
Authors: Yung-Feng Yen, I-an Jen, Yi-Ming Arthur Chen
Abstract:
The molecular mimicry between human immunodeficiency virus (HIV) protein and red blood cell (RBC) antigens could induce the production of anti-RBC autoantibodies. However, the association between HIV infection and subsequent development of autoimmune hemolytic anemia (AIHA) remains unclear. This nationwide population-based cohort study aimed to determine the association between incident AIHA and HIV in Taiwan. From 2000–2012, we identified adult people living with HIV/AIDS (PLWHA) from the Taiwan centers for disease control HIV Surveillance System. HIV-infected individuals were defined by positive HIV-1 western blot. Age- and sex-matched controls without HIV infection were selected from the Taiwan National Health Insurance Research Database for comparison. All patients were followed until Dec. 31, 2012, and observed for occurrence of AIHA. Of 171,468 subjects (19,052 PLWHA, 152,416 controls), 30 (0.02%) had incident AIHA during a mean follow-up of 5.45 years, including 23 (0.12%) PLWHA and 7 (0.01%) controls. After adjusting for potential confounders, HIV infection was found to be an independent risk factor of incident AIHA (adjusted hazard ratio [AHR], 20.9; 95% confidence interval [CI], 8.34-52.3). Moreover, PLWHA receiving HAART were more likely to develop AIHA than those not receiving HAART (AHR, 10.8; 95% CI, 2.90-40.1). Additionally, the risk of AIHA was significantly increased in those taking efavirenz (AHR, 3.15; 95% CI, 1.18-8.43) or atazanavir (AHR, 6.58; 95% CI, 1.88-22.9) component of the HAART. In conclusion, HIV infection is an independent risk factor for incident AIHA. Clinicians need to be aware of the higher risk of AIHA in PLWHA.Keywords: autoimmune disease , hemolytic anemia, HIV, highly active antiretroviral treatment
Procedia PDF Downloads 235732 Sparse Coding Based Classification of Electrocardiography Signals Using Data-Driven Complete Dictionary Learning
Authors: Fuad Noman, Sh-Hussain Salleh, Chee-Ming Ting, Hadri Hussain, Syed Rasul
Abstract:
In this paper, a data-driven dictionary approach is proposed for the automatic detection and classification of cardiovascular abnormalities. Electrocardiography (ECG) signal is represented by the trained complete dictionaries that contain prototypes or atoms to avoid the limitations of pre-defined dictionaries. The data-driven trained dictionaries simply take the ECG signal as input rather than extracting features to study the set of parameters that yield the most descriptive dictionary. The approach inherently learns the complicated morphological changes in ECG waveform, which is then used to improve the classification. The classification performance was evaluated with ECG data under two different preprocessing environments. In the first category, QT-database is baseline drift corrected with notch filter and it filters the 60 Hz power line noise. In the second category, the data are further filtered using fast moving average smoother. The experimental results on QT database confirm that our proposed algorithm shows a classification accuracy of 92%.Keywords: electrocardiogram, dictionary learning, sparse coding, classification
Procedia PDF Downloads 386731 Nexus Between Library and Information Science Education Training and Practice in Nigeria: A Critical Assessment of the Synergy
Authors: Adebayo Emmanuel Layi
Abstract:
Library and Information Science Education is about six (6) decades old in Nigeria. The first Library School was established in 1962 at the University of Ibadan, and since then, several institutions have been running the programme under various certifications, providing the manpower needs of professionals for libraries. As at June 2023, Nigeria has close to a thousand (1000) tertiary institutions and all needing the services of librarians. Apart from the tertiary institutions, several libraries exit in various establishments, both government, private and non-governmental organisations. These has underscored the enormous need for trained librarians for the libraries in these places. The Nexus between LIS Education training and Practice is like a puzzle of egg and chick, which one came first and against this background, this paper examined the roles of the colonial masters in educational development in Africa and vis-à-vis the influence of great library educators such as Melvil Dewey and other educators and the journey through Nigeria institutions. Despite the sound footing of LIS Education, Noise which seems to be a major obstacle on the practice as well as mending the broken link were all examined in the paper. Strategies and the way forward for overall development are suggested.Keywords: nexus, education, training, synergy
Procedia PDF Downloads 93730 Microstructures and Chemical Compositions of Quarry Dust As Alternative Building Material in Malaysia
Authors: Abdul Murad Zainal Abidin, Tuan Suhaimi Salleh, Siti Nor Azila Khalid, Noryati Mustapa
Abstract:
Quarry dust is a quarry end product from rock crushing processes, which is a concentrated material used as an alternative to fine aggregates for concreting purposes. In quarrying activities, the rocks are crushed into aggregates of varying sizes, from 75mm until less than 4.5 mm, the size of which is categorized as quarry dust. The quarry dust is usually considered as waste and not utilized as a recycled aggregate product. The dumping of the quarry dust at the quarry plant poses the risk of environmental pollution and health hazard. Therefore, the research is an attempt to identify the potential of quarry dust as an alternative building material that would reduce the materials and construction costs, as well as contribute effort in mitigating depletion of natural resources. The objectives are to conduct material characterization and evaluate the properties of fresh and hardened engineering brick with quarry dust mix proportion. The microstructures of quarry dust and the bricks were investigated using scanning electron microscopy (SEM), and the results suggest that the shape and surface texture of quarry dust is a combination of hard and angular formation. The chemical composition of the quarry dust was also evaluated using X-ray fluorescence (XRF) and compared against sand and concrete. The quarry dust was found to have a higher presence of alumina (Al₂O₃), indicating the possibility of an early strength effect for brick. They are utilizing quarry dust waste as replacement material has the potential of conserving non-renewable resources as well as providing a viable alternative to disposal of current quarry waste.Keywords: building materials, cement replacement, quarry microstructure, quarry product, sustainable materials
Procedia PDF Downloads 182729 Subspace Rotation Algorithm for Implementing Restricted Hopfield Network as an Auto-Associative Memory
Authors: Ci Lin, Tet Yeap, Iluju Kiringa
Abstract:
This paper introduces the subspace rotation algorithm (SRA) to train the Restricted Hopfield Network (RHN) as an auto-associative memory. Subspace rotation algorithm is a gradient-free subspace tracking approach based on the singular value decomposition (SVD). In comparison with Backpropagation Through Time (BPTT) on training RHN, it is observed that SRA could always converge to the optimal solution and BPTT could not achieve the same performance when the model becomes complex, and the number of patterns is large. The AUTS case study showed that the RHN model trained by SRA could achieve a better structure of attraction basin with larger radius(in general) than the Hopfield Network(HNN) model trained by Hebbian learning rule. Through learning 10000 patterns from MNIST dataset with RHN models with different number of hidden nodes, it is observed that an several components could be adjusted to achieve a balance between recovery accuracy and noise resistance.Keywords: hopfield neural network, restricted hopfield network, subspace rotation algorithm, hebbian learning rule
Procedia PDF Downloads 118728 A Soft Switching PWM DC-DC Boost Converter with Increased Efficiency by Using ZVT-ZCT Techniques
Authors: Yakup Sahin, Naim Suleyman Ting, Ismail Aksoy
Abstract:
In this paper, an improved active snubber cell is proposed on account of soft switching (SS) family of pulse width modulation (PWM) DC-DC converters. The improved snubber cell provides zero-voltage transition (ZVT) turn on and zero-current transition (ZCT) turn off for main switch. The snubber cell decreases EMI noise and operates with SS in a wide range of line and load voltages. Besides, all of the semiconductor devices in the converter operate with SS. There is no additional voltage and current stress on the main devices. Additionally, extra voltage stress does not occur on the auxiliary switch and its current stress is acceptable value. The improved converter has a low cost and simple structure. The theoretical analysis of converter is clarified and the operating states are given in detail. The experimental results of converter are obtained by prototype of 500 W and 100 kHz. It is observed that the experimental results and theoretical analysis of converter are suitable with each other perfectly.Keywords: active snubber cells, DC-DC converters, zero-voltage transition, zero-current transition
Procedia PDF Downloads 1020727 Phenomenon of Raveling Distress on the Flexible Pavements: An Overview
Authors: Syed Ali Shahbaz Shah
Abstract:
In the last few years, Bituminous Asphaltic roads are becoming popular day by day in the world. Plenty of research has been carried out to identify many advantages like safety, environmental effects, and comfort. Some other benefits are minimal noise and skid resistance enhancement. Besides the benefits of asphaltic roads, the permeable structure of the road also causes some distress, and raveling is one of the crucial defects. The main reason behind this distress is the failure of adhesion between bitumen mortar, specifically due to excessive load from heavy traffic. The main focus of this study is to identify the root cause and propose both the long-term and the short-term solutions of raveling on a specific road section depicting the overall road situation from the bridge of Kahuta road towards the intersection of the Islamabad express highway. The methodology adopted for this purpose is visual inspections in-situ. It was noted that there were chunks of debris on the road surface, which indicates that the asphalt binder is aged the most probably. Further laboratory testing would confirm that either asphalt binder is aged or inadequate compaction was adept during cold weather paving.Keywords: asphaltic roads, asphalt binder, distress, raveling
Procedia PDF Downloads 116726 A Novel NRIS Index to Evaluate Brain Activity in Prefrontal Regions While Listening to First and Second Languages for Long Time Periods
Authors: Kensho Takahashi, Ko Watanabe, Takashi Kaburagi, Hiroshi Tanaka, Kajiro Watanabe, Yosuke Kurihara
Abstract:
Near-infrared spectroscopy (NIRS) has been widely used as a non-invasive method to measure brain activity, but it is corrupted by baseline drift noise. Here we present a method to measure regional cerebral blood flow as a derivative of NIRS output. We investigate whether, when listening to languages, blood flow can reasonably localize and represent regional brain activity or not. The prefrontal blood flow distribution pattern when advanced second-language listeners listened to a second language (L2) was most similar to that when listening to their first language (L1) among the patterns of mean and standard deviation. In experiments with 25 healthy subjects, the maximum blood flow was localized to the left BA46 of advanced listeners. The blood flow presented is robust to baseline drift and stably localizes regional brain activity.Keywords: NIRS, oxy-hemoglobin, baseline drift, blood flow, working memory, BA46, first language, second language
Procedia PDF Downloads 559725 Space Debris: An Environmental Hazard
Authors: Anwesha Pathak
Abstract:
Space law refers to all legal provisions that may regulate or apply to space travel, as well as to space-related activity. Although there is undoubtedly a core corpus of “space law,” rather than designating a conceptually distinct single kind of law, the phrase can be seen as a label applied to a bucket that includes a variety of different laws and regulations. Similar to ‘family law' or ‘environmental law' "space law" refers to a variety of laws that are identified by the subject matter they address rather than by the logical extension of a single legal concept. The word "space law" refers to the Law of Space, which can cover anything from the specifics of an insurance agreement for a specific space launch to the most general guidelines that direct state behaviour in space. Space debris, often referred to as space junk, space pollution, space waste, space trash, or space garbage, is a term used to describe abandoned human-made objects in space, primarily in Earth orbit. These include disused spacecraft, discarded launch vehicle stages, mission-related detritus, and fragmentation material from the destruction of disused rocket bodies and spacecraft, which is particularly prevalent in Earth orbit. Other types of space debris, besides abandoned human-made objects in orbit, include pieces left over from collisions, erosion, and disintegration, or even paint specks, solidified liquids ejected from spacecraft, and unburned components from solid rocket engines. The initial action of launching or using a spacecraft in near-Earth orbit imposes an external cost on others that is typically not taken into account or fully accounted for in the cost by the launcher or payload owner.Keywords: space, outer space treaty, geostationary orbit, satellites, spacecrafts
Procedia PDF Downloads 93724 Knowledge and Preventive Practice of Occupational Health Hazards among Nurses Working in Various Hospitals in Kathmandu
Authors: Sabita Karki
Abstract:
Occupational health hazards are recognized as global problems for health care workers, it is quiet high in developing countries. It is increasing day by day due to change in science and technology. This study aimed to assess the knowledge and practice of occupational health hazards among the nurses. A descriptive, cross sectional study was carried out among 339 nurses working in three different teaching hospitals of the Kathmandu from February 28, 2016 to March 28, 2016. A self-administered questionnaire was used to collect the data. The study findings revealed that out of 339 samples of all 80.5% were below 30 years; 51.6% were married; 57.5% were graduates and above; 91.4% respondents were working as staff nurse; 56.9% were working in general ward; 56.9% have work experience of 1 to 5 years; 79.1% respondents were immunized against HBV; only 8.6% have received training/ in-service education related to OHH and 35.4% respondents have experienced health hazards. The mean knowledge score was 26.7 (SD=7.3). The level of knowledge of occupational health hazards among the nurses was 68.1% (adequate knowledge). The knowledge was statistically significant with education OR = 0.288, CI: 0.17-0.46 and p value 0.00 and immunization against HBV OR= 1.762, CI: 0.97-0.17 and p value 0.05. The mean practice score was 7.6 (SD= 3.1). The level of practice on prevention of OHH was 74.6% (poor practice). The practice was statistically significant with age having OR=0.47, CI: 0.26-0.83 and p value 0.01; designation OR= 0.32, CI: 0.14-0.70 and p value 0.004; working department OR=0.61, CI: 0.36-1.02 and p value 0.05; work experience OR=0.562, CI: 0.33-0.94 and p value 0.02; previous in-service education/ training OR=2.25; CI: 1.02-4.92 and p value 0.04. There was no association between knowledge and practice on prevention of occupational health hazards which is not statistically significant. Overall, nurses working in various teaching hospitals of Kathmandu had adequate knowledge and poor practice of occupational health hazards. Training and in-service education and availability of adequate personal protective equipments for nurses are needed to encourage them adhere to practice.Keywords: occupational health hazard, nurses, knowledge, preventive practice
Procedia PDF Downloads 357723 Analyzing On-Line Process Data for Industrial Production Quality Control
Authors: Hyun-Woo Cho
Abstract:
The monitoring of industrial production quality has to be implemented to alarm early warning for unusual operating conditions. Furthermore, identification of their assignable causes is necessary for a quality control purpose. For such tasks many multivariate statistical techniques have been applied and shown to be quite effective tools. This work presents a process data-based monitoring scheme for production processes. For more reliable results some additional steps of noise filtering and preprocessing are considered. It may lead to enhanced performance by eliminating unwanted variation of the data. The performance evaluation is executed using data sets from test processes. The proposed method is shown to provide reliable quality control results, and thus is more effective in quality monitoring in the example. For practical implementation of the method, an on-line data system must be available to gather historical and on-line data. Recently large amounts of data are collected on-line in most processes and implementation of the current scheme is feasible and does not give additional burdens to users.Keywords: detection, filtering, monitoring, process data
Procedia PDF Downloads 559722 A Three Elements Vector Valued Structure’s Ultimate Strength-Strong Motion-Intensity Measure
Authors: A. Nicknam, N. Eftekhari, A. Mazarei, M. Ganjvar
Abstract:
This article presents an alternative collapse capacity intensity measure in the three elements form which is influenced by the spectral ordinates at periods longer than that of the first mode period at near and far source sites. A parameter, denoted by β, is defined by which the spectral ordinate effects, up to the effective period (2T_1), on the intensity measure are taken into account. The methodology permits to meet the hazard-levelled target extreme event in the probabilistic and deterministic forms. A MATLAB code is developed involving OpenSees to calculate the collapse capacities of the 8 archetype RC structures having 2 to 20 stories for regression process. The incremental dynamic analysis (IDA) method is used to calculate the structure’s collapse values accounting for the element stiffness and strength deterioration. The general near field set presented by FEMA is used in a series of performing nonlinear analyses. 8 linear relationships are developed for the 8structutres leading to the correlation coefficient up to 0.93. A collapse capacity near field prediction equation is developed taking into account the results of regression processes obtained from the 8 structures. The proposed prediction equation is validated against a set of actual near field records leading to a good agreement. Implementation of the proposed equation to the four archetype RC structures demonstrated different collapse capacities at near field site compared to those of FEMA. The reasons of differences are believed to be due to accounting for the spectral shape effects.Keywords: collapse capacity, fragility analysis, spectral shape effects, IDA method
Procedia PDF Downloads 239721 Video Foreground Detection Based on Adaptive Mixture Gaussian Model for Video Surveillance Systems
Authors: M. A. Alavianmehr, A. Tashk, A. Sodagaran
Abstract:
Modeling background and moving objects are significant techniques for video surveillance and other video processing applications. This paper presents a foreground detection algorithm that is robust against illumination changes and noise based on adaptive mixture Gaussian model (GMM), and provides a novel and practical choice for intelligent video surveillance systems using static cameras. In the previous methods, the image of still objects (background image) is not significant. On the contrary, this method is based on forming a meticulous background image and exploiting it for separating moving objects from their background. The background image is specified either manually, by taking an image without vehicles, or is detected in real-time by forming a mathematical or exponential average of successive images. The proposed scheme can offer low image degradation. The simulation results demonstrate high degree of performance for the proposed method.Keywords: image processing, background models, video surveillance, foreground detection, Gaussian mixture model
Procedia PDF Downloads 516720 Environmental Consequences of Metal Concentrations in Stream Sediments of Atoyac River Basin, Central Mexico: Natural and Industrial Influences
Authors: V. C. Shruti, P. F. Rodríguez-Espinosa, D. C. Escobedo-Urías, Estefanía Martinez Tavera, M. P. Jonathan
Abstract:
Atoyac River, a major south-central river flowing through the states of Puebla and Tlaxcala in Mexico is significantly impacted by the natural volcanic inputs in addition with wastewater discharges from urban, agriculture and industrial zones. In the present study, core samples were collected from R. Atoyac and analyzed for sediment granularity, major (Al, Fe, Ca, Mg, K, P and S) and trace elemental concentrations (Ba, Cr, Cd, Mn, Pb, Sr, V, Zn, Zr). The textural studies reveal that the sediments are mostly sand sized particles exceeding 99% and with very few to no presence of mud fractions. It is observed that most of the metals like (avg: all values in μg g-1) Ca (35,528), Mg (10,789), K (7453), S (1394), Ba (203), Cr (30), Cd (4), Pb (11), Sr (435), Zn (76) and Zr (88) are enriched throughout the sediments mainly sourced from volcanic inputs, source rock composition of Atoyac River basin and industrial influences from the Puebla city region. Contamination indices, such as anthropogenic factor (AF), enrichment factor (EF) and geoaccumulation index (Igeo), were used to investigate the level of contamination and toxicity as well as quantitatively assess the influences of human activities on metal concentrations. The AF values (>1) for Ba, Ca, Mg, Na, K, P and S suggested volcanic inputs from the study region, where as Cd and Zn are attributed to the impacts of industrial inputs in this zone. The EF and Igeo values revealed an extreme enrichment of S and Cd. The ecological risks were evaluated using potential ecological risk index (RI) and the results indicate that the metals Cd and V pose a major hazard for the biological community.Keywords: Atoyac River, contamination indices, metal concentrations, Mexico, textural studies
Procedia PDF Downloads 292719 NFResNet: Multi-Scale and U-Shaped Networks for Deblurring
Authors: Tanish Mittal, Preyansh Agrawal, Esha Pahwa, Aarya Makwana
Abstract:
Multi-Scale and U-shaped Networks are widely used in various image restoration problems, including deblurring. Keeping in mind the wide range of applications, we present a comparison of these architectures and their effects on image deblurring. We also introduce a new block called as NFResblock. It consists of a Fast Fourier Transformation layer and a series of modified Non-Linear Activation Free Blocks. Based on these architectures and additions, we introduce NFResnet and NFResnet+, which are modified multi-scale and U-Net architectures, respectively. We also use three differ-ent loss functions to train these architectures: Charbonnier Loss, Edge Loss, and Frequency Reconstruction Loss. Extensive experiments on the Deep Video Deblurring dataset, along with ablation studies for each component, have been presented in this paper. The proposed architectures achieve a considerable increase in Peak Signal to Noise (PSNR) ratio and Structural Similarity Index (SSIM) value.Keywords: multi-scale, Unet, deblurring, FFT, resblock, NAF-block, nfresnet, charbonnier, edge, frequency reconstruction
Procedia PDF Downloads 136718 Developing an Advanced Algorithm Capable of Classifying News, Articles and Other Textual Documents Using Text Mining Techniques
Authors: R. B. Knudsen, O. T. Rasmussen, R. A. Alphinas
Abstract:
The reason for conducting this research is to develop an algorithm that is capable of classifying news articles from the automobile industry, according to the competitive actions that they entail, with the use of Text Mining (TM) methods. It is needed to test how to properly preprocess the data for this research by preparing pipelines which fits each algorithm the best. The pipelines are tested along with nine different classification algorithms in the realm of regression, support vector machines, and neural networks. Preliminary testing for identifying the optimal pipelines and algorithms resulted in the selection of two algorithms with two different pipelines. The two algorithms are Logistic Regression (LR) and Artificial Neural Network (ANN). These algorithms are optimized further, where several parameters of each algorithm are tested. The best result is achieved with the ANN. The final model yields an accuracy of 0.79, a precision of 0.80, a recall of 0.78, and an F1 score of 0.76. By removing three of the classes that created noise, the final algorithm is capable of reaching an accuracy of 94%.Keywords: Artificial Neural network, Competitive dynamics, Logistic Regression, Text classification, Text mining
Procedia PDF Downloads 121