Search results for: finite differences
5668 Effect of Ginger, Red Pepper, and Their Mixture in Diet on Growth Performance and Body Composition of Oscar, Astronotus ocellatus
Authors: Sarah Jorjani, Afshin Ghelichi, Mazyar Kamali
Abstract:
The aim of this study was to estimate the effect of addition of ginger and red pepper and their mixture in diet on growth performance, survival rate and body composition of Astronotus ocellatus (Oscar fish). This study had been carried out for 8 weeks. For this reason 132 oscar fishes with intial weight of 2.44±0.26 (gr) were divided into 4 treatments with three replicate as compeletly randomize design test and fed by 100% Biomar diet (T1), Biomar + red pepper (55 mg/kg) (T2), Biomar + ginger (1%) (T3) and Biomar + mixture of red pepper and ginger (T4).The fish were fed in 5% of their body weight. The results showed T2 have significant differences in most of growth parameters in compare with other treatments, such as PBWI, SGR, PER and SR (P < 0.05), but there were no significant differences between treatments in FCR and FE (P > 0.05).Keywords: red pepper, ginger, oscar fish, growth performance, body composition
Procedia PDF Downloads 4225667 A Comparative Study of School Choice: China and the United States
Authors: Huizi Zeng
Abstract:
This paper delineates the historical retrospective and current status of school choice in China. Focusing on analyzing the similarities and differences in origin, evolution, public dispute, policy dynamics between China and the United States, the article depicts a panorama and explores possible causes. Both China and the United States continue to learn from historical legacy and invent new programs to perfect school choice policy but the outcomes are so different. On the one hand, the percentage of public schools in China remains high all along, while there is a considerably significant reduction in the United States. On the other hand, there is more governmental intervention in the United States with continuous and constant policy updates and adjustment. Finally, this article adopts public-private partnerships (PPP) to seek to provide insights into differences between the two countries and argue that school choice is not only the production of education marketization and corporation but also driven by political mechanism.Keywords: China, United States, school choice, comparative analysis, policy, public private partnerships
Procedia PDF Downloads 1895666 The Effect of Three-Dimensional Morphology on Vulnerability Assessment of Atherosclerotic Plaque
Authors: M. Zareh, H. Mohammadi, B. Naser
Abstract:
Atherosclerotic plaque rupture is the main trigger of heart attack and brain stroke which are the leading cause of death in developed countries. Better understanding of rupture-prone plaque can help clinicians detect vulnerable plaques- rupture prone or instable plaques- and apply immediate medical treatment to prevent these life-threatening cardiovascular events. Therefore, there are plenty of studies addressing disclosure of vulnerable plaques properties. Necrotic core and fibrous tissue are two major tissues constituting atherosclerotic plaque; using histopathological and numerical approaches, many studies have demonstrated that plaque rupture is strongly associated with a large necrotic core and a thin fibrous cap, two morphological characteristic which can be acquired by two-dimensional imaging of atherosclerotic plaque present in coronary and carotid arteries. Plaque rupture is widely considered as a mechanical failure inside plaque tissue; this failure occurs when the stress within plaque excesses the strength of tissue material; hence, finite element method, a strong numerical approach, has been extensively applied to estimate stress distribution within plaques with different compositions which is then used for assessment of various vulnerability characteristics including plaque morphology, material properties and blood pressure. This study aims to evaluate significance of three-dimensional morphology on vulnerability degree of atherosclerotic plaque. To reach this end, different two-dimensional geometrical models of atherosclerotic plaques are considered based on available data and named Main 2D Models (M2M). Then, for each of these M2Ms, two three-dimensional idealistic models are created. These two 3D models represent two possible three-dimensional morphologies which might exist for a plaque with similar 2D morphology to one of M2Ms. Finite element method is employed to estimate stress, von-Mises stress, within each 3D models. Results indicate that for each M2Ms stress can significantly varies due to possible 3D morphological changes in that plaque. Also, our results show that an atherosclerotic plaque with thick cap may experience rupture if it has a critical 3D morphology. This study highlights the effect of 3D geometry of plaque on its instability degree and suggests that 3D morphology of plaque might be necessary to more effectively and accurately assess atherosclerotic plaque vulnerability.Keywords: atherosclerotic plaque, plaque rupture, finite element method, 3D model
Procedia PDF Downloads 3085665 Numerical Calculation and Analysis of Fine Echo Characteristics of Underwater Hemispherical Cylindrical Shell
Authors: Hongjian Jia
Abstract:
A finite-length cylindrical shell with a spherical cap is a typical engineering approximation model of actual underwater targets. The research on the omni-directional acoustic scattering characteristics of this target model can provide a favorable basis for the detection and identification of actual underwater targets. The elastic resonance characteristics of the target are the results of the comprehensive effect of the target length, shell-thickness ratio and materials. Under the conditions of different materials and geometric dimensions, the coincidence resonance characteristics of the target have obvious differences. Aiming at this problem, this paper obtains the omni-directional acoustic scattering field of the underwater hemispherical cylindrical shell by numerical calculation and studies the influence of target geometric parameters (length, shell-thickness ratio) and material parameters on the coincidence resonance characteristics of the target in turn. The study found that the formant interval is not a stable value and changes with the incident angle. Among them, the formant interval is less affected by the target length and shell-thickness ratio and is significantly affected by the material properties, which is an effective feature for classifying and identifying targets of different materials. The quadratic polynomial is utilized to fully fit the change relationship between the formant interval and the angle. The results show that the three fitting coefficients of the stainless steel and aluminum targets are significantly different, which can be used as an effective feature parameter to characterize the target materials.Keywords: hemispherical cylindrical shell;, fine echo characteristics;, geometric and material parameters;, formant interval
Procedia PDF Downloads 1095664 Experimental and Finite Element Analysis of Large Deformation Characteristics of Magnetic Responsive Hydrogel Nanocomposites Membranes
Authors: Mallikarjunachari Gangapuram
Abstract:
Stimuli-responsive hydrogel nanocomposite membranes are gaining significant attention these days due to their potential applications in various engineering fields. For example, sensors, soft actuators, drug delivery, remote controlled therapy, water treatment, shape morphing, and magnetic refrigeration are few advanced applications of hydrogel nanocomposite membranes. In this work, hydrogel nanocomposite membranes are synthesized by embedding nanometer-sized (diameter - 300 nm) Fe₃O₄ magnetic particles into the polyvinyl alcohol (PVA) polymer. To understand the large deformation characteristics of these membranes, a well-known experimental method ball indentation technique is used. Different designing parameters such as membrane thickness, the concentration of magnetic particles and ball diameter on the viscoelastic properties are studied. All the experiments are carried out without and with a static magnetic field. Finite element simulations are carried out to validate the experimental results. It is observed, the creep response decreases and Young’s modulus increases as the thickness and concentration of magnetic particles increases. Image analysis revealed the hydrogel membranes are undergone global deformation for ball diameter 18 mm and local deformation when the diameter decreases from 18 mm to 0.5 mm.Keywords: ball indentation, hydrogel membranes, nanocomposites, Young's modulus
Procedia PDF Downloads 1285663 Unstructured Learning: Development of Free Form Construction in Waldorf and Normative Preschools
Authors: Salam Kodsi
Abstract:
In this research, we sought to focus on constructive play and examine its components in the context of two different educational approaches: Waldorf and normative schools. When they are free to choose, construction is one of the forms of play most favored by children. Its short-term and long-term cognitive contributions are apparent in various areas of development. The lack of empirical studies about play in Waldorf schools, which addresses the possibility of this incidental learning inspired the need to enrich the body of existing knowledge. 90 children (4-6 yrs.old) four preschools ( two normative, two Waldorf) participated in a small homogeneous city. Naturalistic observations documented the time frame, physical space, and construction materials related to the freeform building; processes of construction among focal representative children and its products. The study’s main finding with respect to the construction output points to a connection between educational approach and level of construction sophistication. Higher levels of sophistication were found at the Waldorf preschools than at the mainstream preschools. This finding emerged due to the differences in the level of sophistication among the older children in the two types of preschools, while practically no differences emerged among the younger children. Discussion of the research findings considered the differences between the play environments in terms of time, physical space, and construction materials. The construction processes were characterized according to the design model stages. The construction output was characterized according to the sophistication scale dimensions and the connections between approach, age and gender, and sophistication level.Keywords: constructive play, preschool, design process model, complexity
Procedia PDF Downloads 1185662 Visualization of Wave Propagation in Monocoupled System with Effective Negative Stiffness, Effective Negative Mass, and Inertial Amplifier
Authors: Abhigna Bhatt, Arnab Banerjee
Abstract:
A periodic system with only a single coupling degree of freedom is called a monocoupled system. Monocoupled systems with mechanisms like mass in the mass system generates effective negative mass, mass connected with rigid links generates inertial amplification, and spring-mass connected with a rigid link generateseffective negative stiffness. In this paper, the representative unit cell is introduced, considering all three mechanisms combined. Further, the dynamic stiffness matrix of the unit cell is constructed, and the dispersion relation is obtained by applying the Bloch theorem. The frequency response function is also calculated for the finite length of periodic unit cells. Moreover, the input displacement signal is given to the finite length of periodic structure and using inverse Fourier transform to visualize the wave propagation in the time domain. This visualization explains the sudden attenuation in metamaterial due to energy dissipation by an embedded resonator at the resonance frequency. The visualization created for wave propagation is found necessary to understand the insights of physics behind the attenuation characteristics of the system.Keywords: mono coupled system, negative effective mass, negative effective stiffness, inertial amplifier, fourier transform
Procedia PDF Downloads 1265661 Effect of Infill’s in Influencing the Dynamic Responses of Multistoried Structures
Authors: Rahmathulla Noufal E.
Abstract:
Investigating the dynamic responses of high rise structures under the effect of siesmic ground motion is extremely important for the proper analysis and design of multitoried structures. Since the presence of infilled walls strongly influences the behaviour of frame systems in multistoried buildings, there is an increased need for developing guidelines for the analysis and design of infilled frames under the effect of dynamic loads for safe and proper design of buildings. In this manuscript, we evaluate the natural frequencies and natural periods of single bay single storey frames considering the effect of infill walls by using the Eigen value analysis and validating with SAP 2000 (free vibration analysis). Various parameters obtained from the diagonal strut model followed for the free vibration analysis is then compared with the Finite Element model, where infill is modeled as shell elements (four noded). We also evaluated the effect of various parameters on the natural periods of vibration obtained by free vibration analysis in SAP 2000 comparing them with those obtained by the empirical expressions presented in I.S. 1893(Part I)-2002.Keywords: infilled frame, eigen value analysis, free vibration analysis, diagonal strut model, finite element model, SAP 2000, natural period
Procedia PDF Downloads 3305660 Evaluation and Comparison of Seismic Performance of Structural Trusses under Cyclic Loading with Finite Element Method
Authors: Masoud Mahdavi
Abstract:
The structure is made using different members and combining them with each other. These members are basically based on technical and engineering principles and are combined in different ways and have their own unique effects on the building. Trusses are one of the most common and important members of the structure, accounting for a large percentage of the power transmission structure in the building. Different types of trusses are based on structural needs and evaluating and making complete comparisons between them is one of the most important engineering analyses. In the present study, four types of trusses have been studied; 1) Hawe truss, 2) Pratt truss, 3) k truss, and 4) warren truss, under cyclic loading for 80 seconds. The trusses are modeled in 3d using st37 steel. The results showed that Hawe trusses had higher values than all other trusses (k, Pratt and Warren) in all the studied indicators. Indicators examined in the study include; 1) von Mises stresses, 2) displacement, 3) support force, 4) velocity, 5) acceleration, 6) capacity (hysteresis curve) and 7) energy diagram. Pratt truss in indicators; Mises stress, displacement, energy have the least amount compared to other trusses. K truss in indicators; support force, speed and acceleration are the lowest compared to other trusses.Keywords: hawe truss, pratt truss, K truss, warren truss, cyclic loading, finite element method
Procedia PDF Downloads 1455659 Numerical Pricing of Financial Options under Irrational Exercise Times and Regime-Switching Models
Authors: Mohammad Saber Rohi, Saghar Heidari
Abstract:
In this paper, we studied the pricing problem of American options under a regime-switching model with the possibility of a non-optimal exercise policy (early or late exercise time) which is called an irrational strategy. For this, we consider a Markovmodulated model for the dynamic of the underlying asset as an alternative model to the classical Balck-Scholes-Merton model (BSM) and an intensity-based model for the irrational strategy, to provide more realistic results for American option prices under the irrational behavior in real financial markets. Applying a partial differential equation (PDE) approach, the pricing problem of American options under regime-switching models can be formulated as coupled PDEs. To solve the resulting systems of PDEs in this model, we apply a finite element method as the numerical solving procedure to the resulting variational inequality. Under some appropriate assumptions, we establish the stability of the method and compare its accuracy to some recent works to illustrate the suitability of the proposed model and the accuracy of the applied numerical method for the pricing problem of American options under the regime-switching model with irrational behaviors.Keywords: irrational exercise strategy, rationality parameter, regime-switching model, American option, finite element method, variational inequality
Procedia PDF Downloads 735658 Comparison between the Quadratic and the Cubic Linked Interpolation on the Mindlin Plate Four-Node Quadrilateral Finite Elements
Authors: Dragan Ribarić
Abstract:
We employ the so-called problem-dependent linked interpolation concept to develop two cubic 4-node quadrilateral Mindlin plate finite elements with 12 external degrees of freedom. In the problem-independent linked interpolation, the interpolation functions are independent of any problem material parameters and the rotation fields are not expressed in terms of the nodal displacement parameters. On the contrary, in the problem-dependent linked interpolation, the interpolation functions depend on the material parameters and the rotation fields are expressed in terms of the nodal displacement parameters. Two cubic 4-node quadrilateral plate elements are presented, named Q4-U3 and Q4-U3R5. The first one is modelled with one displacement and two rotation degrees of freedom in every of the four element nodes and the second element has five additional internal degrees of freedom to get polynomial completeness of the cubic form and which can be statically condensed within the element. Both elements are able to pass the constant-bending patch test exactly as well as the non-zero constant-shear patch test on the oriented regular mesh geometry in the case of cylindrical bending. In any mesh shape, the elements have the correct rank and only the three eigenvalues, corresponding to the solid body motions are zero. There are no additional spurious zero modes responsible for instability of the finite element models. In comparison with the problem-independent cubic linked interpolation implemented in Q9-U3, the nine-node plate element, significantly less degrees of freedom are employed in the model while retaining the interpolation conformity between adjacent elements. The presented elements are also compared to the existing problem-independent quadratic linked-interpolation element Q4-U2 and to the other known elements that also use the quadratic or the cubic linked interpolation, by testing them on several benchmark examples. Simple functional upgrading from the quadratic to the cubic linked interpolation, implemented in Q4-U3 element, showed no significant improvement compared to the quadratic linked form of the Q4-U2 element. Only when the additional bubble terms are incorporated in the displacement and rotation function fields, which complete the full cubic linked interpolation form, qualitative improvement is fulfilled in the Q4-U3R5 element. Nevertheless, the locking problem exists even for the both presented elements, like in all pure displacement elements when applied to very thin plates modelled by coarse meshes. But good and even slightly better performance can be noticed for the Q4-U3R5 element when compared with elements from the literature, if the model meshes are moderately dense and the plate thickness not extremely thin. In some cases, it is comparable to or even better than Q9-U3 element which has as many as 12 more external degrees of freedom. A significant improvement can be noticed in particular when modeling very skew plates and models with singularities in the stress fields as well as circular plates with distorted meshes.Keywords: Mindlin plate theory, problem-independent linked interpolation, problem-dependent interpolation, quadrilateral displacement-based plate finite elements
Procedia PDF Downloads 3125657 Quantification of the Erosion Effect on Small Caliber Guns: Experimental and Numerical Analysis
Authors: Dhouibi Mohamed, Stirbu Bogdan, Chabotier André, Pirlot Marc
Abstract:
Effects of erosion and wear on the performance of small caliber guns have been analyzed throughout numerical and experimental studies. Mainly, qualitative observations were performed. Correlations between the volume change of the chamber and the maximum pressure are limited. This paper focuses on the development of a numerical model to predict the maximum pressure evolution when the interior shape of the chamber changes in the different weapon’s life phases. To fulfill this goal, an experimental campaign, followed by a numerical simulation study, is carried out. Two test barrels, « 5.56x45mm NATO » and « 7.62x51mm NATO,» are considered. First, a Coordinate Measuring Machine (CMM) with a contact scanning probe is used to measure the interior profile of the barrels after each 300-shots cycle until their worn out. Simultaneously, the EPVAT (Electronic Pressure Velocity and Action Time) method with a special WEIBEL radar are used to measure: (i) the chamber pressure, (ii) the action time, (iii) and the bullet velocity in each barrel. Second, a numerical simulation study is carried out. Thus, a coupled interior ballistic model is developed using the dynamic finite element program LS-DYNA. In this work, two different models are elaborated: (i) coupled Eularien Lagrangian method using fluid-structure interaction (FSI) techniques and a coupled thermo-mechanical finite element using a lumped parameter model (LPM) as a subroutine. Those numerical models are validated and checked through three experimental results, such as (i) the muzzle velocity, (ii) the chamber pressure, and (iii) the surface morphology of fired projectiles. Results show a good agreement between experiments and numerical simulations. Next, a comparison between the two models is conducted. The projectile motions, the dynamic engraving resistances and the maximum pressures are compared and analyzed. Finally, using this obtained database, a statistical correlation between the muzzle velocity, the maximum pressure and the chamber volume is established.Keywords: engraving process, finite element analysis, gun barrel erosion, interior ballistics, statistical correlation
Procedia PDF Downloads 2155656 A New Low Cost Seismic Response Controlling Structures with Semi Base Isolation Devices
Authors: M. Ezati Kooshki, A. Abbaszadeh Shahri
Abstract:
A number of devices used to control seismic structures have been developed during the past decades. One of the effective ways to reduce seismic forces transmitted to the buildings is through the base isolation systems, but the use of these devices is currently limited to large and expensive buildings. This study was an attempt to introduce an effective and low cost way to protect of structures against grand motions by a semi base isolation system. In this new way, structures were not completely decoupled of bases and the natural frequency of structures was changed due to earthquake by changing the horizontal stiffness; therefore, ground excitation energy was dissipated before entering the structures. For analyzing the dynamic behavior, the new method used finite element software (ABAQUS 6-10-1). This investigation introduced a new package of semi base isolation devices with a new material constitutive, but common in automobile industries, seeking to evaluate the effects of additional new devices on the seismic response when compared with structures without additional devises for different ground motions. The proposed semi base isolation devices were applied to a one story frame and the time history analysis was conducted on the record of Kobe earthquake (1995). The results showed that the efficiency reduced the floor acceleration and displacement, as well as velocity.Keywords: semi base isolation system, finite element, natural frequency, horizontal stiffness
Procedia PDF Downloads 3965655 Investigation of Leakage, Cracking and Warpage Issues Observed on Composite Valve Cover in Development Phase through FEA Simulation
Authors: Ashwini Shripatwar, Mayur Biyani, Nikhil Rao, Rajendra Bodake, Sachin Sane
Abstract:
This paper documents the correlation of valve cover sealing, cracking, and warpage Finite Element Modelling with observations on engine test development. The valve cover is a component mounted on engine head with a gasket which provides sealing against oil which flows around camshaft, valves, rockers, and other overhead components. Material nonlinearity and contact nonlinearity characteristics are taken into consideration because the valve cover is made of a composite material having temperature dependent elastic-plastic properties and because the gasket load-deformation curve is also nonlinear. The leakage is observed between the valve cover and the engine head due to the insufficient contact pressure. The crack is observed on the valve cover due to force application at a region with insufficient stiffness and with elevated temperature. The valve cover shrinkage is observed during the disassembly process on hot exhaust side bolt holes after the engine has been running. In this paper, an analytical approach is developed to correlate a Finite Element Model with the observed failures and to address the design issues associated with the failure modes in question by making design changes in the model.Keywords: cracking issue, gasket sealing analysis, nonlinearity of contact and material, valve cover
Procedia PDF Downloads 1435654 Modelling Tyre Rubber Materials for High Frequency FE Analysis
Authors: Bharath Anantharamaiah, Tomas Bouda, Elke Deckers, Stijn Jonckheere, Wim Desmet, Juan J. Garcia
Abstract:
Automotive tyres are gaining importance recently in terms of their noise emission, not only with respect to reduction in noise, but also their perception and detection. Tyres exhibit a mechanical noise generation mechanism up to 1 kHz. However, owing to the fact that tyre is a composite of several materials, it has been difficult to model it using finite elements to predict noise at high frequencies. The currently available FE models have a reliability of about 500 Hz, the limit which, however, is not enough to perceive the roughness or sharpness of noise from tyre. These noise components are important in order to alert pedestrians on the street about passing by slow, especially electric vehicles. In order to model tyre noise behaviour up to 1 kHz, its dynamic behaviour must be accurately developed up to a 1 kHz limit using finite elements. Materials play a vital role in modelling the dynamic tyre behaviour precisely. Since tyre is a composition of several components, their precise definition in finite element simulations is necessary. However, during the tyre manufacturing process, these components are subjected to various pressures and temperatures, due to which these properties could change. Hence, material definitions are better described based on the tyre responses. In this work, the hyperelasticity of tyre component rubbers is calibrated, using the design of experiments technique from the tyre characteristic responses that are measured on a stiffness measurement machine. The viscoelasticity of rubbers are defined by the Prony series for rubbers, which are determined from the loss factor relationship between the loss and storage moduli, assuming that the rubbers are excited within the linear viscoelasticity ranges. These values of loss factor are measured and theoretically expressed as a function of rubber shore hardness or hyperelasticities. From the results of the work, there exists a good correlation between test and simulation vibrational transfer function up to 1 kHz. The model also allows flexibility, i.e., the frequency limit can also be extended, if required, by calibrating the Prony parameters of rubbers corresponding to the frequency of interest. As future work, these tyre models are used for noise generation at high frequencies and thus for tyre noise perception.Keywords: tyre dynamics, rubber materials, prony series, hyperelasticity
Procedia PDF Downloads 1945653 The Effectiveness of a Six-Week Yoga Intervention on Body Awareness, Warnings of Relapse, and Emotion Regulation among Incarcerated Females
Authors: James Beauchemin
Abstract:
Introduction: The incarceration of people with mental illness and substance use disorders is a major public health issue, with social, clinical, and economic implications. Yoga participation has been associated with numerous psychological benefits; however, there is a paucity of research examining impacts of yoga with incarcerated populations. The purpose of this study was to evaluate effectiveness of a six-week yoga intervention on several mental health-related variables, including emotion regulation, body awareness, and warnings of substance relapse among incarcerated females. Methods: This study utilized a pre-post, three-arm design, with participants assigned to intervention, therapeutic community, or general population groups. A between-groups analysis of covariance (ANCOVA) was conducted across groups to assess intervention effectiveness using the Difficulties in Emotion Regulation Scale (DERS), Scale of Body Connection (SBC), and Warnings of Relapse (AWARE) Questionnaire. Results: ANCOVA results for warnings of relapse (AWARE) revealed significant between-group differences F(2, 80) = 7.15, p = .001; np2 = .152), with significant pairwise comparisons between the intervention group and both the therapeutic community (p = .001) and the general population (p = .005) groups. Similarly, significant differences were found for emotional regulation (DERS) F(2, 83) = 10.521, p = .000; np2 = .278). Pairwise comparisons indicated a significant difference between the intervention and general population (p = .01). Finally, significant differences between the intervention and control groups were found for body awareness (SBC) F(2, 84) = 3.69, p = .029; np2 = .081). Between-group differences were clarified via pairwise comparisons, indicating significant differences between the intervention group and both the therapeutic community (p = .028) and general population groups (p = .020). Implications: Study results suggest that yoga may be an effective addition to integrative mental health and substance use treatment for incarcerated women, and contributes to increasing evidence that holistic interventions may be an important component for treatment with this population. Specifically, given the prevalence of mental health and substance use disorders, findings revealed that changes in body awareness and emotion regulation may be particularly beneficial for incarcerated populations with substance use challenges as a result of yoga participation. From a systemic perspective, this proactive approach may have long-term implications for both physical and psychological well-being for the incarcerated population as a whole, thereby decreasing the need for traditional treatment. By integrating a more holistic, salutogenic model that emphasizes prevention, interventions like yoga may work to improve the wellness of this population, while providing an alternative or complementary treatment option for those with current symptoms.Keywords: yoga, mental health, incarceration, wellness
Procedia PDF Downloads 1385652 The Tracking and Hedging Performances of Gold ETF Relative to Some Other Instruments in the UK
Authors: Abimbola Adedeji, Ahmad Shauqi Zubir
Abstract:
This paper examines the profitability and risk between investing in gold exchange traded funds (ETFs) and gold mutual funds compares to gold prices. The main focus in determining whether there are similarities or differences between those financial products is the tracking error. The importance of understanding the similarities or differences between the gold ETFs, gold mutual funds and gold prices is derived from the fact that gold ETFs and gold mutual funds are used as substitutions for investors who are looking to profit from gold prices although they are short in capital. 10 hypotheses were tested. There are 3 types of tracking error used. Tracking error 1 and 3 gives results that differentiate between types of ETFs and mutual funds, hence yielding the answers in answering the hypotheses that were developed. However, tracking error 2 failed to give the answer that could shed light on the questions raised in this study. All of the results in tracking error 2 technique only telling us that the difference between the ups and downs of the financial instruments are similar, statistically to the physical gold prices movement.Keywords: gold etf, gold mutual funds, tracking error
Procedia PDF Downloads 4225651 Parametric Study on the Behavior of Reinforced Concrete Continuous Beams Flexurally Strengthened with FRP Plates
Authors: Mohammed A. Sakr, Tarek M. Khalifa, Walid N. Mansour
Abstract:
External bonding of fiber reinforced polymer (FRP) plates to reinforced concrete (RC) beams is an effective technique for flexural strengthening. This paper presents an analytical parametric study on the behavior of RC continuous beams flexurally strengthened with externally bonded FRP plates on the upper and lower fibers, conducted using simple uniaxial nonlinear finite element model (UNFEM). UNFEM is able to estimate the load-carrying capacity, different failure modes and the interfacial stresses of RC continuous beams flexurally strengthened with externally bonded FRP plates on the upper and lower fibers. The study investigated the effect of five key parameters on the behavior and moment redistribution of FRP-reinforced continuous beams. The investigated parameters were the length of the FRP plate, the width and the thickness of the FRP plate, the ratio between the area of the FRP plate to the concrete area, the cohesive shear strength of the adhesive layer, and the concrete compressive strength. The investigation resulted in a number of important conclusions reflecting the effects of the studied parameters on the behavior of RC continuous beams flexurally strengthened with externally bonded FRP plates.Keywords: continuous beams, parametric study, finite element, fiber reinforced polymer
Procedia PDF Downloads 3715650 A Study on Improvement of the Electromagnetic Vibration of a Polygon Mirror Scanner Motor
Authors: Yongmin You
Abstract:
Electric machines for office automation device such as printer and scanner have been required the low noise and vibration performance. Many researches about the low noise and vibration of polygon mirror scanner motor have been also progressed. The noise and vibration of polygon mirror scanner motor can be classified by aerodynamic, structural and electromagnetic. Electromagnetic noise and vibration can be occurred by high cogging torque and nonsinusoidal back EMF. To improve the cogging torque and back EMF characteristic, we apply unequal air-gap. To analyze characteristic of a polygon mirror scanner motor, two dimensional finite element method is used. To minimize the cogging torque of a polygon mirror motor, Kriging based on latin hypercube sampling (LHS) is utilized. Compared to the initial model, the torque ripple of the optimized unequal air-gap model was reduced by 23.4 % while maintaining the back EMF and average torque. To verify the optimal design results, the experiment was performed. We measured the vibration in motors at 23,600 rpm which is the rated velocity. The radial and axial gravitational acceleration of the optimal model were declined more than seven times and three times, respectively. From these results, a shape optimized unequal polygon mirror scanner motor has shown the usefulness of an improvement in the torque ripple and electromagnetic vibration characteristic.Keywords: polygon mirror scanner motor, optimal design, finite element method, vibration
Procedia PDF Downloads 3425649 Analysis of the Premature In-Service Failure of Engine Mounting Towers of an Industrial Generator
Authors: Stephen J Futter, Michael I Okereke
Abstract:
This paper presents an investigation of the premature in-service failure of the engine mounting towers that form part of the bedframe commonly used for industrial power generation applications. The client during a routine in-service assessment of the generator set observed that the engine mounting towers had cracked. Thus, this study has investigated in detail the origin of the crack and proffered solutions to prevent a re-occurrence. Seven step problem solving methodology was followed during this paper. The study used both experimental and numerical approaches to understand, monitor and evaluate the cause and evolution of the premature failure. Findings from this study indicated that the failure resulted from a combination of varied processes from procurement of material parts, material selection, welding processes and inaptly designed load-bearing mechanics of the generating set and its mounting arrangement. These in-field observations and experimental simulations provided insights to design and validate a numerical finite element sub-model of the cracked bedframe considering thermal cycling: designed as part of these investigations. Resulting findings led to a recommendation of several procedural changes that should be adopted by the manufacturer, in order to prevent the re-occurrence of such pre-mature failure in future industrial applications.Keywords: Engine, Premature Failure, Failure Analysis, Finite Element Model
Procedia PDF Downloads 2855648 Study of Electron Cyclotron Resonance Acceleration by Cylindrical TE₀₁₁ Mode
Authors: Oswaldo Otero, Eduardo A. Orozco, Ana M. Herrera
Abstract:
In this work, we present results from analytical and numerical studies of the electron acceleration by a TE₀₁₁ cylindrical microwave mode in a static homogeneous magnetic field under electron cyclotron resonance (ECR) condition. The stability of the orbits is analyzed using the particle orbit theory. In order to get a better understanding of the interaction wave-particle, we decompose the azimuthally electric field component as the superposition of right and left-hand circular polarization standing waves. The trajectory, energy and phase-shift of the electron are found through a numerical solution of the relativistic Newton-Lorentz equation in a finite difference method by the Boris method. It is shown that an electron longitudinally injected with an energy of 7 keV in a radial position r=Rc/2, being Rc the cavity radius, is accelerated up to energy of 90 keV by an electric field strength of 14 kV/cm and frequency of 2.45 GHz. This energy can be used to produce X-ray for medical imaging. These results can be used as a starting point for study the acceleration of electrons in a magnetic field changing slowly in time (GYRAC), which has some important applications as the electron cyclotron resonance ion proton accelerator (ECR-IPAC) for cancer therapy and to control plasma bunches with relativistic electrons.Keywords: Boris method, electron cyclotron resonance, finite difference method, particle orbit theory, X-ray
Procedia PDF Downloads 1595647 Effects of Active Muscle Contraction in a Car Occupant in Whiplash Injury
Authors: Nisha Nandlal Sharma, Julaluk Carmai, Saiprasit Koetniyom, Bernd Markert
Abstract:
Whiplash Injuries are usually associated with car accidents. The sudden forward or backward jerk to head causes neck strain, which is the result of damage to the muscle or tendons. Neck pain and headaches are the two most common symptoms of whiplash. Symptoms of whiplash are commonly reported in studies but the Injury mechanism is poorly understood. Neck muscles are the most important factor to study the neck Injury. This study focuses on the development of finite element (FE) model of human neck muscle to study the whiplash injury mechanism and effect of active muscle contraction on occupant kinematics. A detailed study of Injury mechanism will promote development and evaluation of new safety systems in cars, hence reducing the occurrence of severe injuries to the occupant. In present study, an active human finite element (FE) model with 3D neck muscle model is developed. Neck muscle was modeled with a combination of solid tetrahedral elements and 1D beam elements. Muscle active properties were represented by beam elements whereas, passive properties by solid tetrahedral elements. To generate muscular force according to inputted activation levels, Hill-type muscle model was applied to beam elements. To simulate non-linear passive properties of muscle, solid elements were modeled with rubber/foam material model. Material properties were assigned from published experimental tests. Some important muscles were then inserted into THUMS (Total Human Model for Safety) 50th percentile male pedestrian model. To reduce the simulation time required, THUMS lower body parts were not included. Posterior to muscle insertion, THUMS was given a boundary conditions similar to experimental tests. The model was exposed to 4g and 7g rear impacts as these load impacts are close to low speed impacts causing whiplash. The effect of muscle activation level on occupant kinematics during whiplash was analyzed.Keywords: finite element model, muscle activation, neck muscle, whiplash injury prevention
Procedia PDF Downloads 3575646 Early versus Late Percutaneous Tracheostomy in Critically Ill Adult Mechanically Ventilated Patients
Authors: Kamel Abd Elaziz Mohamed, Ahmed Yehia Mousa, Ahmed Samir ElSawy, Adel Mohamed Saleem
Abstract:
Introduction: Critically ill patients frequently require tracheostomy to simplify long term air way management. While tracheostomy indications have remained unchanged, the timing of elective tracheostomy for the ventilated patient has been questioned. Aim of the work: This study was performed to compare the differences between early and late percutaneous dilatational tracheostomy (PDT) regarding, mechanical ventilation duration (MVD), length of ICU stay, length of hospital stay, incidence of ventilator associated pneumonia and hospital outcome. Patients and methods: Forty patients who met the inclusion criteria were randomly divided into early PDT who had the tracheostomy within the first 10 days of mechanical ventilation (MV) and the late PDT who had the tracheostomy after 10 days of MV. On admission, demographic data and Acute Physiology and Chronic ill Health II and GCS were collected. The duration of mechanical ventilation, ICU length of stay (LOS) and hospital LOS were all calculated. Results: Total of 40 patients were randomized to either early PDT (n= 20) or late PDT (n= 20). There were no significant differences between both groups regarding demographic data or the scores: APACHE II (22.75± 7 vs 24.35 ± 8) and GCS (6.10 ±2 vs 7.10 ± 2.71). An early PDT showed fewer complications vs late procedure, however it was insignificant. There were significant differences between the two groups regarding mean (MVD) which was shorter in early PDT than the late PDT group (32.2± 10.5) vs (20.6 ± 13 days; p= 0.004). Mean ICU stay was shorter in early PDT than late PDT (21 .0± 513.4) vs (40.15 ±12.7 days; p 6 0.001). Mean hospital stay was shorter in early PDT than late PDT (34.60± 18.37) vs (55.60± 25.73 days; p=0.005). Patients with early PDT suffered less sepsis and VAP than late PDT, there was no difference regarding the mortality rate between the two groups. Conclusion: Early PDT is recommended for patients who require prolonged tracheal intubation in the ICU as outcomes like the duration of mechanical ventilation length of ICU stay and hospital stay were significantly shorter in early tracheostomy.Keywords: intensive care unit, early PDT, late PDT, intubation
Procedia PDF Downloads 6005645 Non-Destructive Evaluation for Physical State Monitoring of an Angle Section Thin-Walled Curved Beam
Authors: Palash Dey, Sudip Talukdar
Abstract:
In this work, a cross-breed approach is presented for obtaining both the amount of the damage intensity and location of damage existing in thin-walled members. This cross-breed approach is developed based on response surface methodology (RSM) and genetic algorithm (GA). Theoretical finite element (FE) model of cracked angle section thin walled curved beam has been linked to the developed approach to carry out trial experiments to generate response surface functions (RSFs) of free, forced and heterogeneous dynamic response data. Subsequently, the error between the computed response surface functions and measured dynamic response data has been minimized using GA to find out the optimum damage parameters (amount of the damage intensity and location). A single crack of varying location and depth has been considered in this study. The presented approach has been found to reveal good accuracy in prediction of crack parameters and possess great potential in crack detection as it requires only the current response of a cracked beam.Keywords: damage parameters, finite element, genetic algorithm, response surface methodology, thin walled curved beam
Procedia PDF Downloads 2485644 Exploiting JPEG2000 into Reversible Information
Authors: Te-Jen Chang, I-Hui Pan, Kuang-Hsiung Tan, Shan-Jen Cheng, Chien-Wu Lan, Chih-Chan Hu
Abstract:
With the event of multimedia age in order to protect data not to be tampered, damaged, and faked, information hiding technologies are proposed. Information hiding means important secret information is hidden into cover multimedia and then camouflaged media is produced. This camouflaged media has the characteristic of natural protection. Under the undoubted situation, important secret information is transmitted out.Reversible information hiding technologies for high capacity is proposed in this paper. The gray images are as cover media in this technology. We compress gray images and compare with the original image to produce the estimated differences. By using the estimated differences, expression information hiding is used, and higher information capacity can be achieved. According to experimental results, the proposed technology can be approved. For these experiments, the whole capacity of information payload and image quality can be satisfied.Keywords: cover media, camouflaged media, reversible information hiding, gray image
Procedia PDF Downloads 3275643 Variation in Wood Anatomical Properties of Acacia seyal var. seyal Tree Species Growing in Different Zones in Sudan
Authors: Hanadi Mohamed Shawgi Gamal, Ashraf Mohamed Ahmed Abdalla
Abstract:
Sudan is endowed by a great diversity of tree species; nevertheless, the utilization of wood resources has traditionally concentrated on a few number of species. With the great variation in the climatic zones of Sudan, great variations are expected in the anatomical properties between and within species. This variation needs to be fully explored in order to suggest the best uses for the species. Modern research on wood has substantiated that the climatic condition where the species grow has significant effect on wood properties. Understanding the extent of variability of wood is important because the uses for each kind of wood are related to its characteristics; furthermore, the suitability or quality of wood for a particular purpose is determined by the variability of one or more of these characteristics. The present study demonstrates the effect of rainfall zones in some anatomical properties of Acacia seyal var. seyal growing in Sudan. For this purpose, twenty healthy trees were collected randomly from two zones (ten trees per zone). One zone with relatively low rainfall (273mm annually) which represented by North Kordofan state and White Nile state and the second with relatively high rainfall (701 mm annually) represented by Blue Nile state and South Kordofan state. From each sampled tree, a stem disc (3 cm thick) was cut at 10% from stem height. One radius was obtained in central stem dices. Two representative samples were taken from each disc, one at 10% distance from pith to bark, the second at 90% in order to represent the juvenile and mature wood. The investigated anatomical properties were fibers length, fibers and vessels diameter, lumen diameter, and wall thickness as well as cell proportions. The result of the current study reveals significant differences between zones in mature wood vessels diameter and wall thickness, as well as juvenile wood vessels, wall thickness. The higher values were detected in the drier zone. Significant differences were also observed in juvenile wood fiber length, diameter as well as wall thickness. Contrary to vessels diameter and wall thickness, the fiber length, diameter as well as wall thickness were decreased in the drier zone. No significant differences have been detected in cell proportions of juvenile and mature wood. The significant differences in some fiber and vessels dimension lead to expect significant differences in wood density. From these results, Acacia seyal var. seyal seems to be well adapted with the change in rainfall and may survive in any rainfall zone.Keywords: Acacia seyal var. seyal, anatomical properties, rainfall zones, variation
Procedia PDF Downloads 1485642 Crack Growth Life Prediction of a Fighter Aircraft Wing Splice Joint Under Spectrum Loading Using Random Forest Regression and Artificial Neural Networks with Hyperparameter Optimization
Authors: Zafer Yüce, Paşa Yayla, Alev Taşkın
Abstract:
There are heaps of analytical methods to estimate the crack growth life of a component. Soft computing methods have an increasing trend in predicting fatigue life. Their ability to build complex relationships and capability to handle huge amounts of data are motivating researchers and industry professionals to employ them for challenging problems. This study focuses on soft computing methods, especially random forest regressors and artificial neural networks with hyperparameter optimization algorithms such as grid search and random grid search, to estimate the crack growth life of an aircraft wing splice joint under variable amplitude loading. TensorFlow and Scikit-learn libraries of Python are used to build the machine learning models for this study. The material considered in this work is 7050-T7451 aluminum, which is commonly preferred as a structural element in the aerospace industry, and regarding the crack type; corner crack is used. A finite element model is built for the joint to calculate fastener loads and stresses on the structure. Since finite element model results are validated with analytical calculations, findings of the finite element model are fed to AFGROW software to calculate analytical crack growth lives. Based on Fighter Aircraft Loading Standard for Fatigue (FALSTAFF), 90 unique fatigue loading spectra are developed for various load levels, and then, these spectrums are utilized as inputs to the artificial neural network and random forest regression models for predicting crack growth life. Finally, the crack growth life predictions of the machine learning models are compared with analytical calculations. According to the findings, a good correlation is observed between analytical and predicted crack growth lives.Keywords: aircraft, fatigue, joint, life, optimization, prediction.
Procedia PDF Downloads 1755641 Millennials' Career Expectations: Exploring Attitudes and Individual Differences in Croatia
Authors: Lovorka Galetić, Maja Klindžić, Ivana Načinović Braje
Abstract:
Generation Y individuals or Millennials are known for their unique views, work values and motivational needs which implies that, in order to attract and retain those individuals, activities in the area of career management should be given special attention by HRM managers. After a theoretical background on Millennials’ life and work attitudes, an empirical research on career preferences of Millennials in Croatia was described. Empirical research was conducted among 249 members of generation Y. The data analysis revealed that respondents generally perceive promotion opportunities as the most important career aspect; however, job security and work-life balance are almost as important. Furthermore, it was shown that Generation Y is not necessarily a homogenous group. More precisely, women assign greater importance than men to work-life balance and job security. Therefore, HRM managers should adapt career planning activities not only with respect to generational preferences, but individual characteristics as well.Keywords: career, individual differences, millennials, work values
Procedia PDF Downloads 3985640 Finite Volume Method Simulations of GaN Growth Process in MOVPE Reactor
Authors: J. Skibinski, P. Caban, T. Wejrzanowski, K. J. Kurzydlowski
Abstract:
In the present study, numerical simulations of heat and mass transfer during gallium nitride growth process in Metal Organic Vapor Phase Epitaxy reactor AIX-200/4RF-S is addressed. Existing knowledge about phenomena occurring in the MOVPE process allows to produce high quality nitride based semiconductors. However, process parameters of MOVPE reactors can vary in certain ranges. Main goal of this study is optimization of the process and improvement of the quality of obtained crystal. In order to investigate this subject a series of computer simulations have been performed. Numerical simulations of heat and mass transfer in GaN epitaxial growth process have been performed to determine growth rate for various mass flow rates and pressures of reagents. According to the fact that it’s impossible to determine experimentally the exact distribution of heat and mass transfer inside the reactor during the process, modeling is the only solution to understand the process precisely. Main heat transfer mechanisms during MOVPE process are convection and radiation. Correlation of modeling results with the experiment allows to determine optimal process parameters for obtaining crystals of highest quality.Keywords: Finite Volume Method, semiconductors, epitaxial growth, metalorganic vapor phase epitaxy, gallium nitride
Procedia PDF Downloads 3995639 Strengthening Evaluation of Steel Girder Bridge under Load Rating Analysis: Case Study
Authors: Qudama Albu-Jasim, Majdi Kanaan
Abstract:
A case study about the load rating and strengthening evaluation of the six-span of steel girders bridge in Colton city of State of California is investigated. To simulate the load rating strengthening assessment for the Colton Overhead bridge, a three-dimensional finite element model built in the CSiBridge program is simulated. Three-dimensional finite-element models of the bridge are established considering the nonlinear behavior of critical bridge components to determine the feasibility and strengthening capacity under load rating analysis. The bridge was evaluated according to Caltrans Bridge Load Rating Manual 1st edition for rating the superstructure using the Load and Resistance Factor Rating (LRFR) method. The analysis for the bridge was based on load rating to determine the largest loads that can be safely placed on existing I-girder steel members and permitted to pass over the bridge. Through extensive numerical simulations, the bridge is identified to be deficient in flexural and shear capacities, and therefore strengthening for reducing the risk is needed. An in-depth parametric study is considered to evaluate the sensitivity of the bridge’s load rating response to variations in its structural parameters. The parametric analysis has exhibited that uncertainties associated with the steel’s yield strength, the superstructure’s weight, and the diaphragm configurations should be considered during the fragility analysis of the bridge system.Keywords: load rating, CSIBridge, strengthening, uncertainties, case study
Procedia PDF Downloads 211