Search results for: federated Learning
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7189

Search results for: federated Learning

6169 Math Rally Proposal for the Teaching-Learning of Algebra

Authors: Liliana O. Martínez, Juan E. González, Manuel Ramírez-Aranda, Ana Cervantes-Herrera

Abstract:

In this work, the use of a collection of mathematical challenges and puzzles aimed at students who are starting in algebra is proposed. The selected challenges and puzzles are intended to arouse students' interest in this area of mathematics, in addition to facilitating the teaching-learning process through challenges such as riddles, crossword puzzles, and board games, all in everyday situations that allow them to build themselves the learning. For this, it is proposed to carry out a "Math Rally: algebra" divided into four sections: mathematical reasoning, a hierarchy of operations, fractions, and algebraic equations.

Keywords: algebra, algebraic challenge, algebraic puzzle, math rally

Procedia PDF Downloads 167
6168 Machine Learning Application in Shovel Maintenance

Authors: Amir Taghizadeh Vahed, Adithya Thaduri

Abstract:

Shovels are the main components in the mining transportation system. The productivity of the mines depends on the availability of shovels due to its high capital and operating costs. The unplanned failure/shutdowns of a shovel results in higher repair costs, increase in downtime, as well as increasing indirect cost (i.e. loss of production and company’s reputation). In order to mitigate these failures, predictive maintenance can be useful approach using failure prediction. The modern mining machinery or shovels collect huge datasets automatically; it consists of reliability and maintenance data. However, the gathered datasets are useless until the information and knowledge of data are extracted. Machine learning as well as data mining, which has a major role in recent studies, has been used for the knowledge discovery process. In this study, data mining and machine learning approaches are implemented to detect not only anomalies but also patterns from a dataset and further detection of failures.

Keywords: maintenance, machine learning, shovel, conditional based monitoring

Procedia PDF Downloads 216
6167 Open Innovation Laboratory for Rapid Realization of Sensing, Smart and Sustainable Products (S3 Products) for Higher Education

Authors: J. Miranda, D. Chavarría-Barrientos, M. Ramírez-Cadena, M. E. Macías, P. Ponce, J. Noguez, R. Pérez-Rodríguez, P. K. Wright, A. Molina

Abstract:

Higher education methods need to evolve because the new generations of students are learning in different ways. One way is by adopting emergent technologies, new learning methods and promoting the maker movement. As a result, Tecnologico de Monterrey is developing Open Innovation Laboratories as an immediate response to educational challenges of the world. This paper presents an Open Innovation Laboratory for Rapid Realization of Sensing, Smart and Sustainable Products (S3 Products). The Open Innovation Laboratory is composed of a set of specific resources where students and teachers use them to provide solutions to current problems of priority sectors through the development of a new generation of products. This new generation of products considers the concepts Sensing, Smart, and Sustainable. The Open Innovation Laboratory has been implemented in different courses in the context of New Product Development (NPD) and Integrated Manufacturing Systems (IMS) at Tecnologico de Monterrey. The implementation consists of adapting this Open Innovation Laboratory within the course’s syllabus in combination with the implementation of specific methodologies for product development, learning methods (Active Learning and Blended Learning using Massive Open Online Courses MOOCs) and rapid product realization platforms. Using the concepts proposed it is possible to demonstrate that students can propose innovative and sustainable products, and demonstrate how the learning process could be improved using technological resources applied in the higher educational sector. Finally, examples of innovative S3 products developed at Tecnologico de Monterrey are presented.

Keywords: active learning, blended learning, maker movement, new product development, open innovation laboratory

Procedia PDF Downloads 394
6166 An Exploratory Sequential Design: A Mixed Methods Model for the Statistics Learning Assessment with a Bayesian Network Representation

Authors: Zhidong Zhang

Abstract:

This study established a mixed method model in assessing statistics learning with Bayesian network models. There are three variants in exploratory sequential designs. There are three linked steps in one of the designs: qualitative data collection and analysis, quantitative measure, instrument, intervention, and quantitative data collection analysis. The study used a scoring model of analysis of variance (ANOVA) as a content domain. The research study is to examine students’ learning in both semantic and performance aspects at fine grain level. The ANOVA score model, y = α+ βx1 + γx1+ ε, as a cognitive task to collect data during the student learning process. When the learning processes were decomposed into multiple steps in both semantic and performance aspects, a hierarchical Bayesian network was established. This is a theory-driven process. The hierarchical structure was gained based on qualitative cognitive analysis. The data from students’ ANOVA score model learning was used to give evidence to the hierarchical Bayesian network model from the evidential variables. Finally, the assessment results of students’ ANOVA score model learning were reported. Briefly, this was a mixed method research design applied to statistics learning assessment. The mixed methods designs expanded more possibilities for researchers to establish advanced quantitative models initially with a theory-driven qualitative mode.

Keywords: exploratory sequential design, ANOVA score model, Bayesian network model, mixed methods research design, cognitive analysis

Procedia PDF Downloads 177
6165 Using Personalized Spiking Neural Networks, Distinct Techniques for Self-Governing

Authors: Brwa Abdulrahman Abubaker

Abstract:

Recently, there has been a lot of interest in the difficult task of applying reinforcement learning to autonomous mobile robots. Conventional reinforcement learning (TRL) techniques have many drawbacks, such as lengthy computation times, intricate control frameworks, a great deal of trial and error searching, and sluggish convergence. In this paper, a modified Spiking Neural Network (SNN) is used to offer a distinct method for autonomous mobile robot learning and control in unexpected surroundings. As a learning algorithm, the suggested model combines dopamine modulation with spike-timing-dependent plasticity (STDP). In order to create more computationally efficient, biologically inspired control systems that are adaptable to changing settings, this work uses the effective and physiologically credible Izhikevich neuron model. This study is primarily focused on creating an algorithm for target tracking in the presence of obstacles. Results show that the SNN trained with three obstacles yielded an impressive 96% success rate for our proposal, with collisions happening in about 4% of the 214 simulated seconds.

Keywords: spiking neural network, spike-timing-dependent plasticity, dopamine modulation, reinforcement learning

Procedia PDF Downloads 20
6164 Deep Learning for Recommender System: Principles, Methods and Evaluation

Authors: Basiliyos Tilahun Betru, Charles Awono Onana, Bernabe Batchakui

Abstract:

Recommender systems have become increasingly popular in recent years, and are utilized in numerous areas. Nowadays many web services provide several information for users and recommender systems have been developed as critical element of these web applications to predict choice of preference and provide significant recommendations. With the help of the advantage of deep learning in modeling different types of data and due to the dynamic change of user preference, building a deep model can better understand users demand and further improve quality of recommendation. In this paper, deep neural network models for recommender system are evaluated. Most of deep neural network models in recommender system focus on the classical collaborative filtering user-item setting. Deep learning models demonstrated high level features of complex data can be learned instead of using metadata which can significantly improve accuracy of recommendation. Even though deep learning poses a great impact in various areas, applying the model to a recommender system have not been fully exploited and still a lot of improvements can be done both in collaborative and content-based approach while considering different contextual factors.

Keywords: big data, decision making, deep learning, recommender system

Procedia PDF Downloads 476
6163 Applying Augmented Reality Technology for an E-Learning System

Authors: Fetoon K. Algarawi, Wejdan A. Alslamah, Ahlam A. Alhabib, Afnan S. Alfehaid, Dina M. Ibrahim

Abstract:

Over the past 20 years, technology was rapidly developed and no one expected what will come next. Advancements in technology open new opportunities for immersive learning environments. There is a need to transmit education to a level that makes it more effective for the student. Augmented reality is one of the most popular technologies these days. This paper is an experience of applying Augmented Reality (AR) technology using a marker-based approach in E-learning system to transmitting virtual objects into the real-world scenes. We present a marker-based approach for transmitting virtual objects into real-world scenes to explain information in a better way after we developed a mobile phone application. The mobile phone application was then tested on students to determine the extent to which it encouraged them to learn and understand the subjects. In this paper, we talk about how the beginnings of AR, the fields using AR, how AR is effective in education, the spread of AR these days and the architecture of our work. Therefore, the aim of this paper is to prove how creating an interactive e-learning system using AR technology will encourage students to learn more.

Keywords: augmented reality, e-learning, marker-based, monitor-based

Procedia PDF Downloads 221
6162 Learning Resources as Determinants for Improving Teaching and Learning Process in Nigerian Universities

Authors: Abdulmutallib U. Baraya, Aishatu M. Chadi, Zainab A. Aliyu, Agatha Samson

Abstract:

Learning Resources is the field of study that investigates the process of analyzing, designing, developing, implementing, and evaluating learning materials, learners, and the learning process in order to improve teaching and learning in university-level education essential for empowering students and various sectors of Nigeria’s economy to succeed in a fast-changing global economy. Innovation in the information age of the 21st century is the use of educational technologies in the classroom for instructional delivery, it involves the use of appropriate educational technologies like smart boards, computers, projectors and other projected materials to facilitate learning and improve performance. The study examined learning resources as determinants for improving the teaching and learning process in Abubakar Tafawa Balewa University (ATBU), Bauchi, Bauchi state of Nigeria. Three objectives, three research questions and three null hypotheses guided the study. The study adopted a Survey research design. The population of the study was 880 lecturers. A sample of 260 was obtained using the research advisor table for determining sampling, and 250 from the sample was proportionately selected from the seven faculties. The instrument used for data collection was a structured questionnaire. The instrument was subjected to validation by two experts. The reliability of the instrument stood at 0.81, which is reliable. The researchers, assisted by six research assistants, distributed and collected the questionnaire with a 75% return rate. Data were analyzed using mean and standard deviation to answer the research questions, whereas simple linear regression was used to test the null hypotheses at a 0.05 level of significance. The findings revealed that physical facilities and digital technology tools significantly improved the teaching and learning process. Also, consumables, supplies and equipment do not significantly improve the teaching and learning process in the faculties. It was recommended that lecturers in the various faculties should strengthen and sustain the use of digital technology tools, and there is a need to strive and continue to properly maintain the available physical facilities. Also, the university management should, as a matter of priority, continue to adequately fund and upgrade equipment, consumables and supplies frequently to enhance the effectiveness of the teaching and learning process.

Keywords: education, facilities, learning-resources, technology-tools

Procedia PDF Downloads 21
6161 Impact of Social Distancing on the Correlation Between Adults’ Participation in Learning and Acceptance of Technology

Authors: Liu Yi Hui

Abstract:

The COVID-19 pandemic in 2020 has globally affected all aspects of life, with social distancing and quarantine orders causing turmoil and learning in community colleges being temporarily paused. In fact, this is the first time that adult education has faced such a severe challenge. It forces researchers to reflect on the impact of pandemics on adult education and ways to respond. Distance learning appears to be one of the pedagogical tools capable of dealing with interpersonal isolation and social distancing caused by the pandemic. This research aims to examine whether the impact of social distancing during COVID-19 will lead to increased acceptance of technology and, subsequently, an increase in adults ’ willingness to participate in distance learning. The hypothesis that social distancing and the desire to participate in distance learning affects learners’ tendency to accept technology is investigated. Teachers ’ participation in distance education and acceptance of technology are used as adjustment variables with the relationship to “social distancing,” “participation in distance learning,” and “acceptance of technology” of learners. A questionnaire survey was conducted over a period of twelve months for teachers and learners at all community colleges in Taiwan who enrolled in a basic unit course. Community colleges were separated using multi-stage cluster sampling, with their locations being metropolitan, non-urban, south, and east as criteria. Using the G*power software, 660 samples were selected and analyzed. The results show that through appropriate pedagogical strategies or teachers ’ own acceptance of technology, adult learners’ willingness to participate in distance learning could be influenced. A diverse model of participation can be developed, improving adult education institutions’ ability to plan curricula to be flexible to avoid the risk associated with epidemic diseases.

Keywords: social distancing, adult learning, community colleges, technology acceptance model

Procedia PDF Downloads 139
6160 Shifted Window Based Self-Attention via Swin Transformer for Zero-Shot Learning

Authors: Yasaswi Palagummi, Sareh Rowlands

Abstract:

Generalised Zero-Shot Learning, often known as GZSL, is an advanced variant of zero-shot learning in which the samples in the unseen category may be either seen or unseen. GZSL methods typically have a bias towards the seen classes because they learn a model to perform recognition for both the seen and unseen classes using data samples from the seen classes. This frequently leads to the misclassification of data from the unseen classes into the seen classes, making the task of GZSL more challenging. In this work of ours, to solve the GZSL problem, we propose an approach leveraging the Shifted Window based Self-Attention in the Swin Transformer (Swin-GZSL) to work in the inductive GSZL problem setting. We run experiments on three popular benchmark datasets: CUB, SUN, and AWA2, which are specifically used for ZSL and its other variants. The results show that our model based on Swin Transformer has achieved state-of-the-art harmonic mean for two datasets -AWA2 and SUN and near-state-of-the-art for the other dataset - CUB. More importantly, this technique has a linear computational complexity, which reduces training time significantly. We have also observed less bias than most of the existing GZSL models.

Keywords: generalised, zero-shot learning, inductive learning, shifted-window attention, Swin transformer, vision transformer

Procedia PDF Downloads 69
6159 Influence of Instructors in Engaging Online Graduate Students in Active Learning in the United States

Authors: Ehi E. Aimiuwu

Abstract:

As of 2017, many online learning professionals, institutions, and journals are still wondering how instructors can keep student engaged in the online learning environment to facilitate active learning effectively. The purpose of this qualitative single-case and narrative research is to explore whether online professors understand their role as mentors and facilitators of students’ academic success by keeping students engaged in active learning based on personalized experience in the field. Data collection tools that were used in the study included an NVivo 12 Plus qualitative software, an interview protocol, a digital audiotape, an observation sheet, and a transcription. Seven online professors in the United States from LinkedIn and residencies were interviewed for this study. Eleven online teaching techniques from previous research were used as the study framework. Data analysis process, member checking, and key themes were used to achieve saturation. About 85.7% of professors agreed on rubric as the preferred online grading technique. About 57.1% agreed on professors logging in daily, students logging in about 2-5 times weekly, knowing students to increase accountability, email as preferred communication tool, and computer access for adequate online learning. About 42.9% agreed on syllabus for clear class expectations, participation to show what has been learned, and energizing students for creativity.

Keywords: class facilitation, class management, online teaching, online education, pedagogy

Procedia PDF Downloads 114
6158 Open Education Resources a Gateway for Accessing Hospitality and Tourism Learning Materials

Authors: Isiya Shinkafi Salihu

Abstract:

Open education resources (OER) are open learning materials in different formats, course content and context to support learning globally. This study investigated the level of awareness of Hospitality and Tourism OER among students in the Department of Tourism and Hotel Management in a University. Specifically, it investigated students’ awareness, use and accessibility of OER in learning. The research design method used was the quantitative approach, using an online questionnaire. The thesis research shows that respondents frequently use OER but with little knowledge of the content and context of the material. Most of the respondents’ have little knowledge about the concept even though they use it. Information and communication technologies are tools for information gathering, social networking and knowledge sharing and transfer. OER are open education materials accessible online such as curriculum, maps, course materials, and videos that users create, adapt, reuse for learning and research. Few of the respondents that used OER in learning faced some challenges such as high cost of data, poor connectivity and lack of proper guidance. The results suggest a lack of awareness of OER among students in the faculty of tourism and the need for support from the teachers in the utilization of OER. The thesis also reveals that some of the international students are accessing the internet as beginners in their studies which require guidance. The research, however, recommends that further studies should be conducted to other faculties.

Keywords: creative commons, open education resources, open licenses, information and communication technology

Procedia PDF Downloads 176
6157 Adopt and Apply Research-Supported Standards and Practices to Ensure Quality for Online Education and Digital Learning at Course, Program, and Institutional Levels

Authors: Yaping Gao

Abstract:

With the increasing globalization of education and the continued momentum and wider adoption of online education and digital learning all over the world, post pandemic, it is crucial that best practices and extensive experience and knowledge gained from the higher education community over the past few decades be adopted and adapted to benefit the broader international communities, which can be vastly different culturally and pedagogically. Schools and institutions worldwide should consider to adopt, adapt and apply these proven practices to develop strategic plans for digital transformation at institutional levels, and to improve or develop quality online or digital learning environments at course and program levels to help all students succeed. The presenter will introduce the primary components of the US-based quality assurance process, including: 1) five sets of research-supported standards to guide the design, development and review of online and hybrid courses; 2) professional development offerings and pathways for administrators, faculty and instructional support staff; 3) a peer-review process for course/program reviews resulting in constructive recommendations for continuous improvement, certification of quality and international recognition; and 4) implementation of the quality assurance process on a continuum to program excellence, achievement of institutional goals, and facilitation of accreditation process and success. Regardless language, culture, pedagogical practices, or technological infrastructure, the core elements of quality teaching and learning remain the same across all delivery formats. What is unique is how to ensure quality of teaching and learning in online education and digital learning. No one knows all the answers to everything but no one needs to reinvent the wheel either. Together the international education community can support and learn from each other to achieve institutional goals and ensure all students succeed in the digital learning environments.

Keywords: online education, digital learning, quality standards, best practices, online teaching and learning

Procedia PDF Downloads 24
6156 The Role of Psychology in Language Teaching

Authors: Elahesadat Emrani

Abstract:

The role of psychology in language teaching has gained significant recognition and importance in recent years. This article explores the intersection of psychology and language teaching and highlights the profound impact that psychological principles and theories have on language learning and instruction. It discusses how an understanding of learners' cognitive processes, motivations, and affective factors can inform instructional strategies, curriculum design, and assessment practices. Additionally, the article sheds light on the importance of considering individual differences and diverse learning styles within the psychological framework of language teaching. This article emphasizes the significance of incorporating psychological insights into language classrooms to create a supportive and effective learning environment. Furthermore, it acknowledges the role of psychology in fostering learner autonomy, enhancing learner motivation, promoting effective communication, and facilitating language acquisition. Overall, this article underscores the necessity of integrating psychology into language teaching practices to optimize learning outcomes and nurture learners' linguistic and socio-emotional development. So far, no complete research has been done in this regard, and this article deals with this important issue for the first time. The research method is based on qualitative method and case studies, and the role of psychological principles in strengthening the learner's independence, increasing motivation, and facilitating language learning. Also, the optimization of learning results and fostering language and social development are among the findings of the research.

Keywords: language, teaching, psychology, methods

Procedia PDF Downloads 66
6155 Democratisation of Teaching and Learning in Higher Education

Authors: Jane Ebele Iloanya

Abstract:

The introduction of the learning outcome approach in contemporary curriculum design and instruction, has brought student–centered education to the fore. In teacher –centered teaching and learning, the teacher transfers knowledge to the students, who are always at the receiving end. The teacher is assumed to know it all and hardly trusts the knowledge of the students. Teacher-centered education places emphasis on the supremacy of the teacher over the students who should ideally, be able to dialogue with the teacher. The paper seeks to examine the issue of democratisation of the teaching and learning process in Institutions of Higher Learning in Botswana. Botswana is a landlocked country in Southern Africa, with a total population of about two million people. In 1977, Botswana’s First National Policy on Education was unveiled. This came eleven years after the country gained independence from Great Britain. The philosophy which informed the 1977 Education Policy was “Social Harmony”. The philosophy of social harmony has four main principles: Unity, Development, Democracy and Self- Reliance. These principles were meant to permeate all aspects of lives of the people of Botswana, including, the issue of how teaching and learning is conducted in Botswana’s institutions of higher learning. This paper will examine the practicalisation of the principle of democracy in teaching and learning at higher education level in Botswana. It will in particular, discuss the issue of students’ participation and engagement in the teaching and learning process. The following questions will be addressed: 1.Are students involved in planning the curriculum? 2.How engaged are the students in the teaching and learning process? 3.How democratic are the teachers in terms of students’ rights and privileges? A mixed–method approach will be adopted in this study. Questionnaires will be distributed to the students to elicit their views on the practicalisation of the principle of democracy at the higher education level. Semi-structured interview questions will be administered in order to collect information from the lecturers on the issue of democratisation of teaching and learning at the higher education level in Botswana. In addition, relevant and related literature will be reviewed to augment collected data. The study will focus on three tertiary institutions in Gaborone, the capital city of Botswana. Currently, there are ten tertiary institutions in Gaborone; both privately and government owned. The outcome of this study will add to the existing body of knowledge on the issue of the practicalisation of democracy at the higher education level in Botswana. This research is therefore relevant in helping to find out if democratisation of teaching and learning has been realised in Botswana’s Institutions of higher learning. It is important to examine Botswana’s national policy on education in this way to ascertain if it has been effective in giving the country’s education system that democratic element, which is essential for a student-centered approach to the teaching and learning process.

Keywords: democratisation, higher education, learning, teaching

Procedia PDF Downloads 305
6154 Methods for Enhancing Ensemble Learning or Improving Classifiers of This Technique in the Analysis and Classification of Brain Signals

Authors: Seyed Mehdi Ghezi, Hesam Hasanpoor

Abstract:

This scientific article explores enhancement methods for ensemble learning with the aim of improving the performance of classifiers in the analysis and classification of brain signals. The research approach in this field consists of two main parts, each with its own strengths and weaknesses. The choice of approach depends on the specific research question and available resources. By combining these approaches and leveraging their respective strengths, researchers can enhance the accuracy and reliability of classification results, consequently advancing our understanding of the brain and its functions. The first approach focuses on utilizing machine learning methods to identify the best features among the vast array of features present in brain signals. The selection of features varies depending on the research objective, and different techniques have been employed for this purpose. For instance, the genetic algorithm has been used in some studies to identify the best features, while optimization methods have been utilized in others to identify the most influential features. Additionally, machine learning techniques have been applied to determine the influential electrodes in classification. Ensemble learning plays a crucial role in identifying the best features that contribute to learning, thereby improving the overall results. The second approach concentrates on designing and implementing methods for selecting the best classifier or utilizing meta-classifiers to enhance the final results in ensemble learning. In a different section of the research, a single classifier is used instead of multiple classifiers, employing different sets of features to improve the results. The article provides an in-depth examination of each technique, highlighting their advantages and limitations. By integrating these techniques, researchers can enhance the performance of classifiers in the analysis and classification of brain signals. This advancement in ensemble learning methodologies contributes to a better understanding of the brain and its functions, ultimately leading to improved accuracy and reliability in brain signal analysis and classification.

Keywords: ensemble learning, brain signals, classification, feature selection, machine learning, genetic algorithm, optimization methods, influential features, influential electrodes, meta-classifiers

Procedia PDF Downloads 74
6153 Examining Motivational Dynamics and L2 Learning Transitions of Air Cadets Between Year One and Year Two: A Retrodictive Qualitative Modelling Approach

Authors: Kanyaporn Sommeechai

Abstract:

Air cadets who aspire to become military pilots upon graduation undergo rigorous training at military academies. As first-year cadets are akin to civilian freshmen, they encounter numerous challenges within the seniority-based military academy system. Imposed routines, such as mandatory morning runs and restrictions on mobile phone usage for two semesters, have the potential to impact their learning process and motivation to study, including second language (L2) acquisition. This study aims to investigate the motivational dynamics and L2 learning transitions experienced by air cadets. To achieve this, a Retrodictive Qualitative Modelling approach will be employed, coupled with the adaptation of the three-barrier structure encompassing institutional factors, situational factors, and dispositional factors. Semi-structured interviews will be conducted to gather rich qualitative data. By analyzing and interpreting the collected data, this research seeks to shed light on the motivational factors that influence air cadets' L2 learning journey. The three-barrier structure will provide a comprehensive framework to identify and understand the institutional, situational, and dispositional factors that may impede or facilitate their motivation and language learning progress. Moreover, the study will explore how these factors interact and shape cadets' motivation and learning experiences. The outcomes of this research will yield fundamental data that can inform strategies and interventions to enhance the motivation and language learning outcomes of air cadets. By better understanding their motivational dynamics and transitions, educators and institutions can create targeted initiatives, tailored pedagogical approaches, and supportive environments that effectively inspire and engage air cadets as L2 learners.

Keywords: second language, education, motivational dynamics, learning transitions

Procedia PDF Downloads 68
6152 Integration of Acoustic Solutions for Classrooms

Authors: Eyibo Ebengeobong Eddie, Halil Zafer Alibaba

Abstract:

The neglect of classroom acoustics is dominant in most educational facilities, meanwhile, hearing and listening is the learning process in this kind of facilities. A classroom should therefore be an environment that encourages listening, without an obstacles to understanding what is being taught. Although different studies have shown teachers to complain that noise is the everyday factor that causes stress in classroom, the capacity of individuals to understand speech is further affected by Echoes, Reverberation, and room modes. It is therefore necessary for classrooms to have an ideal acoustics to aid the intelligibility of students in the learning process. The influence of these acoustical parameters on learning and teaching in schools needs to be further researched upon to enhance the teaching and learning capacity of both teacher and student. For this reason, there is a strong need to provide and collect data to analyse and define the suitable quality of classrooms needed for a learning environment. Research has shown that acoustical problems are still experienced in both newer and older schools. However, recently, principle of acoustics has been analysed and room acoustics can now be measured with various technologies and sound systems to improve and solve the problem of acoustics in classrooms. These acoustic solutions, materials, construction methods and integration processes would be discussed in this paper.

Keywords: classroom, acoustics, materials, integration, speech intelligibility

Procedia PDF Downloads 415
6151 Sharing Experience in Authentic Learning for Mobile Security

Authors: Kai Qian, Lixin Tao

Abstract:

Mobile devices such as smartphones are getting more and more popular in our daily lives. The security vulnerability and threat attacks become a very emerging and important research and education topic in computing security discipline. There is a need to have an innovative mobile security hands-on laboratory to provide students with real world relevant mobile threat analysis and protection experience. This paper presents an authentic teaching and learning mobile security approach with smartphone devices which covers most important mobile threats in most aspects of mobile security. Each lab focuses on one type of mobile threats, such as mobile messaging threat, and conveys the threat analysis and protection in multiple ways, including lectures and tutorials, multimedia or app-based demonstration for threats analysis, and mobile app development for threat protections. This authentic learning approach is affordable and easily-adoptable which immerse students in a real world relevant learning environment with real devices. This approach can also be applied to many other mobile related courses such as mobile Java programming, database, network, and any security relevant courses so that can learn concepts and principles better with the hands-on authentic learning experience.

Keywords: mobile computing, Android, network, security, labware

Procedia PDF Downloads 405
6150 Student and Group Activity Level Assessment in the ELARS Recommender System

Authors: Martina Holenko Dlab, Natasa Hoic-Bozic

Abstract:

This paper presents an original approach to student and group activity level assessment that relies on certainty factors theory. Activity level is used to represent quantity and continuity of student’s contributions in individual and collaborative e‑learning activities (e‑tivities) and is calculated to assist teachers in assessing quantitative aspects of student's achievements. Calculated activity levels are also used to raise awareness and provide recommendations during the learning process. The proposed approach was implemented within the educational recommender system ELARS and validated using data obtained from e‑tivity realized during a blended learning course. The results showed that the proposed approach can be used to estimate activity level in the context of e-tivities realized using Web 2.0 tools as well as to facilitate the assessment of quantitative aspect of students’ participation in e‑tivities.

Keywords: assessment, ELARS, e-learning, recommender systems, student model

Procedia PDF Downloads 261
6149 Penetration of Social Media in Primary Education to Nurture Learning Habits in Toddlers during Covid-19

Authors: Priyadarshini Kiran, Gulshan Kumar

Abstract:

: Social media are becoming the most important tools for interaction among learners, pedagogues and parents where everybody can share, exchange, comment, discuss and create information and knowledge in a collaborative way. The present case study attempts to highlight the role of social media (WhatsApp) in nurturing learning habits in toddlers with the help of parents in primary education. The Case study is based on primary data collected from a primary school situated in a small town in the northern state of Uttar Pradesh, India. In research methodology, survey and structured interviews have been used as a tool collected from parents and pedagogues. The findings Suggest: - To nurture learning habits in toddlers, parents and pedagogues use social media site (WhatsApp) in real-time and that too is convenient and handy; - Skill enhancement on the part of Pedagogues as a result of employing innovative teaching-learning techniques; - Social media sites serve as a social connectivity tool to ward off negativity and monotony on the part of parents and pedagogues in the wake of COVID- 19

Keywords: innovative teaching-learning techniques, pedagogues, social media, nurture, toddlers

Procedia PDF Downloads 172
6148 Class-Size and Instructional Materials as Correlates of Pupils Learning and Academic Achievement in Primary School

Authors: Aanuoluwapo Olusola Adesanya, Adesina Joseph

Abstract:

This paper examined the class-size and instructional materials as correlates of pupils learning and academic achievement in primary school. The population of the study comprised 198 primary school pupils in three selected schools in Ogun State, Nigeria. Data were collected through questionnaire and were analysed with the use of multiple regression and ANOVA to analysed the correlation between class-size, instructional materials (independent variables) and learning achievement (dependent variable). The findings revealed that schools having an average class-size of 30 and below with use of instructional materials obtained better results than schools having more than 30 and above. The main score were higher in the school in schools having 30 and below than schools with 30 and above. It was therefore recommended that government, stakeholders and NGOs should provide more classrooms and supply of adequate instructional materials in all primary schools in the state to cater for small class-size.

Keywords: class-size, instructional materials, learning, academic achievement

Procedia PDF Downloads 349
6147 Effect of Cooperative Learning Strategy on Mathematics Achievement and Retention of Senior Secondary School Students of Different Ability Levels in Taraba State, Nigeria

Authors: Onesimus Bulus Shiaki

Abstract:

The study investigated the effect of cooperative learning strategy on mathematics achievement and retention among senior secondary school students of different abilities in Taraba State Nigeria. Cooperative learning strategy could hopefully contribute to students’ achievement which will spur the teachers to develop strategies for better learning. The quasi-experimental of pretest, posttest and control group design was adopted in this study. A sample of one hundred and sixty-four (164) Senior Secondary Two (SS2) students were selected from a population of twelve thousand, eight hundred and seventy-three (12,873) SS2 Students in Taraba State. Two schools with equivalent mean scores in the pre-test were randomly assigned to experimental and control groups. The experimental group students were stratified according to ability levels of low, medium and high. The experimental group was guided by the research assistants using the cooperative learning instructional package. After six weeks post-test was administered to the two groups while the retention test was administered two weeks after the post-test. The researcher developed a 50-item Mathematics Achievement Test (MAT) which was validated by experts obtaining the reliability coefficient of 0.87. Mean scores and standard deviations were used to answer the research questions while the Analysis of Co-variance (ANCOVA) was used to test the hypotheses. Major findings from the statistical analysis showed that cooperative learning strategy has a significant effect on the mean achievement of students as well as retention among students of high, medium and low ability in mathematics. However, cooperative learning strategy has no effect on the interaction of ability level and retention. Based on the results obtained, it was therefore recommended that the adoption of the use of cooperative learning strategy in the teaching and learning of mathematics in senior secondary schools be initiated, maintained and sustained for the benefit of senior secondary school students in Taraba State. Periodic Government sponsored in-service training in form of long vacation training programme, workshops, conferences and seminars on the nature, scope, and use of cooperative learning strategy should be organized for senior secondary school mathematics teachers in Taraba state.

Keywords: ability level, cooperative learning, mathematics achievement, retention

Procedia PDF Downloads 159
6146 Auditory Brainstem Response in Wave VI for the Detection of Learning Disabilities

Authors: Maria Isabel Garcia-Planas, Maria Victoria Garcia-Camba

Abstract:

The use of brain stem auditory evoked potential (BAEP) is a common way to study the auditory function of people, a way to learn the functionality of a part of the brain neuronal groups that intervene in the learning process by studying the behaviour of wave VI. The latest advances in neuroscience have revealed the existence of different brain activity in the learning process that can be highlighted through the use of innocuous, low-cost, and easy-access techniques such as, among others, the BAEP that can help us to detect early possible neurodevelopmental difficulties for their subsequent assessment and cure. To date and to the authors' best knowledge, only the latency data obtained, observing the first to V waves and mainly in the left ear, were taken into account. This work shows that it is essential to take into account both ears; with these latest data, it has been possible had diagnosed more precise some cases than with the previous data had been diagnosed as 'normal' despite showing signs of some alteration that motivated the new consultation to the specialist.

Keywords: ear, neurodevelopment, auditory evoked potentials, intervals of normality, learning disabilities

Procedia PDF Downloads 162
6145 Prediction of Disability-Adjustment Mental Illness Using Machine Learning

Authors: S. R. M. Krishna, R. Santosh Kumar, V. Kamakshi Prasad

Abstract:

Machine learning techniques are applied for the analysis of the impact of mental illness on the burden of disease. It is calculated using the disability-adjusted life year (DALY). DALYs for a disease is the sum of years of life lost due to premature mortality (YLLs) + No of years of healthy life lost due to disability (YLDs). The critical analysis is done based on the Data sources, machine learning techniques and feature extraction method. The reviewing is done based on major databases. The extracted data is examined using statistical analysis and machine learning techniques were applied. The prediction of the impact of mental illness on the population using machine learning techniques is an alternative approach to the old traditional strategies, which are time-consuming and may not be reliable. The approach makes it necessary for a comprehensive adoption, innovative algorithms, and an understanding of the limitations and challenges. The obtained prediction is a way of understanding the underlying impact of mental illness on the health of the people and it enables us to get a healthy life expectancy. The growing impact of mental illness and the challenges associated with the detection and treatment of mental disorders make it necessary for us to understand the complete effect of it on the majority of the population.

Keywords: ML, DAL, YLD, YLL

Procedia PDF Downloads 34
6144 Effective Student Engaging Strategies to Enhance Academic Learning in Middle Eastern Classrooms: An Action Research Approach

Authors: Anjum Afrooze

Abstract:

The curriculum at General Sciences department in Prince Sultan University includes ‘Physical science’ for Computer Science, Information Technology and Business courses. Students are apathetic towards Physical Science and question, as to, ‘How this course is related to their majors?’ English is not a native language for the students and also for many instructors. More than sixty percent of the students come from institutions where English is not the medium of instruction, which makes student learning and academic achievement challenging. After observing the less enthusiastic student cohort for two consecutive semesters, the instructor was keen to find effective strategies to enhance learning and further encourage deep learning by engaging students in different tasks to empower them with necessary skills and motivate them. This study is participatory action research, in which instructor designs effective tasks to engage students in their learning. The study is conducted through two semesters with a total of 200 students. The effectiveness of this approach is studied using questionnaire at the end of each semester and teacher observation. Major outcomes of this study were overall improvement in students attitude towards science learning, enhancement of multiple skills like note taking, problem solving, language proficiency and also fortifying confidence. This process transformed instructor into engaging and reflecting practitioner. Also, these strategies were implemented by other instructors teaching the course and proved effective in opening a path to changes in related areas of the course curriculum. However, refinement in the strategies could be done based on student evaluation and instructors observation.

Keywords: group activity, language proficiency, reasoning skills, science learning

Procedia PDF Downloads 143
6143 Enhancing Sustainability Awareness through Social Learning Experiences on Campuses

Authors: Rashika Sharma

Abstract:

The campuses at tertiary institutes can act as a social environment for peer to peer connections. However, socialization is not the only aspect that campuses provide. The campus can act as a learning environment that has often been termed as the campus curriculum. Many tertiary institutes have taken steps to make their campus a ‘green campus’ whereby initiatives have been taken to reduce their impact on the environment. However, as visible as these initiatives are, it is debatable whether these have any effect on students’ and their understanding of sustainable campus operations. Therefore, research was conducted to evaluate the effectiveness of sustainable campus operations in raising students’ awareness of sustainability. Students at two vocational institutes participated in this interpretive research with data collected through surveys and focus groups. The findings indicated that majority of vocational education students remained oblivious of sustainability initiatives on campuses.

Keywords: campus learning, education for sustainability, social learning, vocational education

Procedia PDF Downloads 282
6142 Improving Performance and Progression of Novice Programmers: Factors Considerations

Authors: Hala Shaari, Nuredin Ahmed

Abstract:

Teaching computer programming is recognized to be difficult and a real challenge. The biggest problem faced by novice programmers is their lack of understanding of basic programming concepts. A visualized learning tool was developed and used by volunteered first-year students for two semesters. The purposes of this paper are firstly, to emphasize factors which directly affect the performance of our students negatively. Secondly, to examine whether the proposed tool would improve their performance and learning progression. The results of adopting this tool were conducted using a pre-survey and post-survey questionnaire. As a result, students who used the learning tool showed better performance in their programming subject.

Keywords: factors, novice, programming, visualization

Procedia PDF Downloads 361
6141 A Deep Learning Approach for Optimum Shape Design

Authors: Cahit Perkgöz

Abstract:

Artificial intelligence has brought new approaches to solving problems in almost every research field in recent years. One of these topics is shape design and optimization, which has the possibility of applications in many fields, such as nanotechnology and electronics. A properly constructed cost function can eliminate the need for labeled data required in deep learning and create desired shapes. In this work, the network parameters are optimized differentially, which differs from traditional approaches. The methods are tested for physics-related structures and successful results are obtained. This work is supported by Eskişehir Technical University scientific research project (Project No: 20ADP090)

Keywords: deep learning, shape design, optimization, artificial intelligence

Procedia PDF Downloads 149
6140 Proposing an Algorithm to Cluster Ad Hoc Networks, Modulating Two Levels of Learning Automaton and Nodes Additive Weighting

Authors: Mohammad Rostami, Mohammad Reza Forghani, Elahe Neshat, Fatemeh Yaghoobi

Abstract:

An Ad Hoc network consists of wireless mobile equipment which connects to each other without any infrastructure, using connection equipment. The best way to form a hierarchical structure is clustering. Various methods of clustering can form more stable clusters according to nodes' mobility. In this research we propose an algorithm, which allocates some weight to nodes based on factors, i.e. link stability and power reduction rate. According to the allocated weight in the previous phase, the cellular learning automaton picks out in the second phase nodes which are candidates for being cluster head. In the third phase, learning automaton selects cluster head nodes, member nodes and forms the cluster. Thus, this automaton does the learning from the setting and can form optimized clusters in terms of power consumption and link stability. To simulate the proposed algorithm we have used omnet++4.2.2. Simulation results indicate that newly formed clusters have a longer lifetime than previous algorithms and decrease strongly network overload by reducing update rate.

Keywords: mobile Ad Hoc networks, clustering, learning automaton, cellular automaton, battery power

Procedia PDF Downloads 410