Search results for: features extraction
4536 Speech Detection Model Based on Deep Neural Networks Classifier for Speech Emotions Recognition
Authors: A. Shoiynbek, K. Kozhakhmet, P. Menezes, D. Kuanyshbay, D. Bayazitov
Abstract:
Speech emotion recognition has received increasing research interest all through current years. There was used emotional speech that was collected under controlled conditions in most research work. Actors imitating and artificially producing emotions in front of a microphone noted those records. There are four issues related to that approach, namely, (1) emotions are not natural, and it means that machines are learning to recognize fake emotions. (2) Emotions are very limited by quantity and poor in their variety of speaking. (3) There is language dependency on SER. (4) Consequently, each time when researchers want to start work with SER, they need to find a good emotional database on their language. In this paper, we propose the approach to create an automatic tool for speech emotion extraction based on facial emotion recognition and describe the sequence of actions of the proposed approach. One of the first objectives of the sequence of actions is a speech detection issue. The paper gives a detailed description of the speech detection model based on a fully connected deep neural network for Kazakh and Russian languages. Despite the high results in speech detection for Kazakh and Russian, the described process is suitable for any language. To illustrate the working capacity of the developed model, we have performed an analysis of speech detection and extraction from real tasks.Keywords: deep neural networks, speech detection, speech emotion recognition, Mel-frequency cepstrum coefficients, collecting speech emotion corpus, collecting speech emotion dataset, Kazakh speech dataset
Procedia PDF Downloads 1014535 A Comparative Study for Various Techniques Using WEKA for Red Blood Cells Classification
Authors: Jameela Ali, Hamid A. Jalab, Loay E. George, Abdul Rahim Ahmad, Azizah Suliman, Karim Al-Jashamy
Abstract:
Red blood cells (RBC) are the most common types of blood cells and are the most intensively studied in cell biology. The lack of RBCs is a condition in which the amount of hemoglobin level is lower than normal and is referred to as “anemia”. Abnormalities in RBCs will affect the exchange of oxygen. This paper presents a comparative study for various techniques for classifyig the red blood cells as normal, or abnormal (anemic) using WEKA. WEKA is an open source consists of different machine learning algorithms for data mining applications. The algorithm tested are Radial Basis Function neural network, Support vector machine, and K-Nearest Neighbors algorithm. Two sets of combined features were utilized for classification of blood cells images. The first set, exclusively consist of geometrical features, was used to identify whether the tested blood cell has a spherical shape or non-spherical cells. While the second set, consist mainly of textural features was used to recognize the types of the spherical cells. We have provided an evaluation based on applying these classification methods to our RBCs image dataset which were obtained from Serdang Hospital-Malaysia, and measuring the accuracy of test results. The best achieved classification rates are 97%, 98%, and 79% for Support vector machines, Radial Basis Function neural network, and K-Nearest Neighbors algorithm respectivelyKeywords: red blood cells, classification, radial basis function neural networks, suport vector machine, k-nearest neighbors algorithm
Procedia PDF Downloads 4804534 Comparison of Polyphonic Profile of a Berry from Two Different Sources, Using an Optimized Extraction Method
Authors: G. Torabian, A. Fathi, P. Valtchev, F. Dehghani
Abstract:
The superior polyphenol content of Sambucus nigra berries has high health potentials for the production of nutraceutical products. Numerous factors influence the polyphenol content of the final products including the berries’ source and the subsequent processing production steps. The aim of this study is to compare the polyphenol content of berries from two different sources and also to optimise the polyphenol extraction process from elderberries. Berries from source B obtained more acceptable physical properties than source A; a single berry from source B was double in size and weight (both wet and dry weight) compared with a source A berry. Despite the appropriate physical characteristics of source B berries, their polyphenolic profile was inferior; as source A berries had 2.3 fold higher total anthocyanin content, and nearly two times greater total phenolic content and total flavonoid content compared to source B. Moreover, the result of this study showed that almost 50 percent of the phenolic content of berries are entrapped within their skin and pulp that potentially cannot be extracted by press juicing. To address this challenge and to increase the total polyphenol yield of the extract, we used cold-shock blade grinding method to break the cell walls. The result of this study showed that using cultivars with higher phenolic content as well as using the whole fruit including juice, skin and pulp can increase polyphenol yield significantly; and thus, may boost the potential of using elderberries as therapeutic products.Keywords: different sources, elderberry, grinding, juicing, polyphenols
Procedia PDF Downloads 2954533 Addressing Challenging Behaviours of Individuals with Positive Behaviour Support
Authors: Divi Sharma
Abstract:
The emergence of positive behaviour support (PBS) is directly linked to applied behaviour analysis that incorporates evidence-based approaches to addressing ethical challenges and improving autonomy, participation, and the overall quality of life of people living and learning in complex social environments. Its features include lifestyle improvement, collaboration with general caregivers, tracking progress with sound steps, comprehensive performance-based interventions, striving for contextual equality, and ensuring entry and implementation. This document aims to summarize its features with the support of case examples such as involving caregivers to play an active role in behavioural interventions, creating effective interventions within natural practices. Additionally, dealing with lifestyle changes, as well as a wide variety of behavioural changes, develop strong strategies which reduce professional dependence.Keywords: positive behaviour support, quality of life, performance-based interventions, behavioural changes, participation
Procedia PDF Downloads 1704532 Thermochemical Modelling for Extraction of Lithium from Spodumene and Prediction of Promising Reagents for the Roasting Process
Authors: Allen Yushark Fosu, Ndue Kanari, James Vaughan, Alexandre Changes
Abstract:
Spodumene is a lithium-bearing mineral of great interest due to increasing demand of lithium in emerging electric and hybrid vehicles. The conventional method of processing the mineral for the metal requires inevitable thermal transformation of α-phase to the β-phase followed by roasting with suitable reagents to produce lithium salts for downstream processes. The selection of appropriate reagent for roasting is key for the success of the process and overall lithium recovery. Several researches have been conducted to identify good reagents for the process efficiency, leading to sulfation, alkaline, chlorination, fluorination, and carbonizing as the methods of lithium recovery from the mineral.HSC Chemistry is a thermochemical software that can be used to model metallurgical process feasibility and predict possible reaction products prior to experimental investigation. The software was employed to investigate and explain the various reagent characteristics as employed in literature during spodumene roasting up to 1200°C. The simulation indicated that all used reagents for sulfation and alkaline were feasible in the direction of lithium salt production. Chlorination was only feasible when Cl2 and CaCl2 were used as chlorination agents but not NaCl nor KCl. Depending on the kind of lithium salt formed during carbonizing and fluorination, the process was either spontaneous or nonspontaneous throughout the temperature range investigated. The HSC software was further used to simulate and predict some promising reagents which may be equally good for roasting the mineral for efficient lithium extraction but have not yet been considered by researchers.Keywords: thermochemical modelling, HSC chemistry software, lithium, spodumene, roasting
Procedia PDF Downloads 1594531 Optical Flow Localisation and Appearance Mapping (OFLAAM) for Long-Term Navigation
Authors: Daniel Pastor, Hyo-Sang Shin
Abstract:
This paper presents a novel method to use optical flow navigation for long-term navigation. Unlike standard SLAM approaches for augmented reality, OFLAAM is designed for Micro Air Vehicles (MAV). It uses an optical flow camera pointing downwards, an IMU and a monocular camera pointing frontwards. That configuration avoids the expensive mapping and tracking of the 3D features. It only maps these features in a vocabulary list by a localization module to tackle the loss of the navigation estimation. That module, based on the well-established algorithm DBoW2, will be also used to close the loop and allow long-term navigation in confined areas. That combination of high-speed optical flow navigation with a low rate localization algorithm allows fully autonomous navigation for MAV, at the same time it reduces the overall computational load. This framework is implemented in ROS (Robot Operating System) and tested attached to a laptop. A representative scenarios is used to analyse the performance of the system.Keywords: vision, UAV, navigation, SLAM
Procedia PDF Downloads 6064530 Examining the Relationship between Concussion and Neurodegenerative Disorders: A Review on Amyotrophic Lateral Sclerosis and Alzheimer’s Disease
Authors: Edward Poluyi, Eghosa Morgan, Charles Poluyi, Chibuikem Ikwuegbuenyi, Grace Imaguezegie
Abstract:
Background: Current epidemiological studies have examined the associations between moderate and severe traumatic brain injury (TBI) and their risks of developing neurodegenerative diseases. Concussion, also known as mild TBI (mTBI), is however quite distinct from moderate or severe TBIs. Only few studies in this burgeoning area have examined concussion—especially repetitive episodes—and neurodegenerative diseases. Thus, no definite relationship has been established between them. Objectives : This review will discuss the available literature linking concussion and amyotrophic lateral sclerosis (ALS) and Alzheimer’s disease (AD). Materials and Methods: Given the complexity of this subject, a realistic review methodology was selected which includes clarifying the scope and developing a theoretical framework, developing a search strategy, selection and appraisal, data extraction, and synthesis. A detailed literature matrix was set out in order to get relevant and recent findings on this topic. Results: Presently, there is no objective clinical test for the diagnosis of concussion because the features are less obvious on physical examination. Absence of an objective test in diagnosing concussion sometimes leads to skepticism when confirming the presence or absence of concussion. Intriguingly, several possible explanations have been proposed in the pathological mechanisms that lead to the development of some neurodegenerative disorders (such as ALS and AD) and concussion but the two major events are deposition of tau proteins (abnormal microtubule proteins) and neuroinflammation, which ranges from glutamate excitotoxicity pathways and inflammatory pathways (which leads to a rise in the metabolic demands of microglia cells and neurons), to mitochondrial function via the oxidative pathways.Keywords: amyotrophic lateral sclerosis, Alzheimer's disease, mild traumatic brain injury, neurodegeneration
Procedia PDF Downloads 894529 Novel Fluorescent High Density Polyethylene Composites for Fused Deposition Modeling 3D Printing in Packaging Security Features
Authors: Youssef R. Hassan, Mohamed S. Hasanin, Reda M. Abdelhameed
Abstract:
Recently, innovations in packaging security features become more important to see the originality of packaging in industrial application. Luminescent 3d printing materials have been a promising property which can provides a unique opportunity for the design and application of 3D printing. Lack emission of terbium ions, as a source of green emission, in salt form prevent its uses in industrial applications, so searching about stable and highly emitter material become essential. Nowadays, metal organic frameworks (MOFs) play an important role in designing light emitter material. In this work, fluorescent high density polyethylene (FHDPE) composite filament with Tb-benzene 1,3,5-tricarboxylate (Tb-BTC) MOFs for 3D printing have been successfully developed.HDPE pellets were mixed with Tb-BTC and melting extrustion with single screw extruders. It was found that Tb-BTCuniformly dispersed in the HDPE matrix and significantly increased the crystallinity of PE, which not only maintained the good thermal property but also improved the mechanical properties of Tb-BTC@HDPE composites. Notably, the composite filaments emitted ultra-bright green light under UV lamp, and the fluorescence intensity increased as the content of Tb-BTC increased. Finally, several brightly luminescent exquisite articles could be manufactured by fused deposition modeling (FDM) 3D printer with these new fluorescent filaments. In this context, the development of novel fluorescent Tb-BTC@HDPE composites was combined with 3D printing technology to amplified the packaging Security Features.Keywords: 3D printing, fluorescent, packaging, security
Procedia PDF Downloads 1014528 Simulation and Experimental Study on Dual Dense Medium Fluidization Features of Air Dense Medium Fluidized Bed
Authors: Cheng Sheng, Yuemin Zhao, Chenlong Duan
Abstract:
Air dense medium fluidized bed is a typical application of fluidization techniques for coal particle separation in arid areas, where it is costly to implement wet coal preparation technologies. In the last three decades, air dense medium fluidized bed, as an efficient dry coal separation technique, has been studied in many aspects, including energy and mass transfer, hydrodynamics, bubbling behaviors, etc. Despite numerous researches have been published, the fluidization features, especially dual dense medium fluidization features have been rarely reported. In dual dense medium fluidized beds, different combinations of different dense mediums play a significant role in fluidization quality variation, thus influencing coal separation efficiency. Moreover, to what extent different dense mediums mix and to what extent the two-component particulate mixture affects the fluidization performance and quality have been in suspense. The proposed work attempts to reveal underlying mechanisms of generation and evolution of two-component particulate mixture in the fluidization process. Based on computational fluid dynamics methods and discrete particle modelling, movement and evolution of dual dense mediums in air dense medium fluidized bed have been simulated. Dual dense medium fluidization experiments have been conducted. Electrical capacitance tomography was employed to investigate the distribution of two-component mixture in experiments. Underlying mechanisms involving two-component particulate fluidization are projected to be demonstrated with the analysis and comparison of simulation and experimental results.Keywords: air dense medium fluidized bed, particle separation, computational fluid dynamics, discrete particle modelling
Procedia PDF Downloads 3824527 Learning Dynamic Representations of Nodes in Temporally Variant Graphs
Authors: Sandra Mitrovic, Gaurav Singh
Abstract:
In many industries, including telecommunications, churn prediction has been a topic of active research. A lot of attention has been drawn on devising the most informative features, and this area of research has gained even more focus with spread of (social) network analytics. The call detail records (CDRs) have been used to construct customer networks and extract potentially useful features. However, to the best of our knowledge, no studies including network features have yet proposed a generic way of representing network information. Instead, ad-hoc and dataset dependent solutions have been suggested. In this work, we build upon a recently presented method (node2vec) to obtain representations for nodes in observed network. The proposed approach is generic and applicable to any network and domain. Unlike node2vec, which assumes a static network, we consider a dynamic and time-evolving network. To account for this, we propose an approach that constructs the feature representation of each node by generating its node2vec representations at different timestamps, concatenating them and finally compressing using an auto-encoder-like method in order to retain reasonably long and informative feature vectors. We test the proposed method on churn prediction task in telco domain. To predict churners at timestamp ts+1, we construct training and testing datasets consisting of feature vectors from time intervals [t1, ts-1] and [t2, ts] respectively, and use traditional supervised classification models like SVM and Logistic Regression. Observed results show the effectiveness of proposed approach as compared to ad-hoc feature selection based approaches and static node2vec.Keywords: churn prediction, dynamic networks, node2vec, auto-encoders
Procedia PDF Downloads 3154526 Multi-Temporal Mapping of Built-up Areas Using Daytime and Nighttime Satellite Images Based on Google Earth Engine Platform
Authors: S. Hutasavi, D. Chen
Abstract:
The built-up area is a significant proxy to measure regional economic growth and reflects the Gross Provincial Product (GPP). However, an up-to-date and reliable database of built-up areas is not always available, especially in developing countries. The cloud-based geospatial analysis platform such as Google Earth Engine (GEE) provides an opportunity with accessibility and computational power for those countries to generate the built-up data. Therefore, this study aims to extract the built-up areas in Eastern Economic Corridor (EEC), Thailand using day and nighttime satellite imagery based on GEE facilities. The normalized indices were generated from Landsat 8 surface reflectance dataset, including Normalized Difference Built-up Index (NDBI), Built-up Index (BUI), and Modified Built-up Index (MBUI). These indices were applied to identify built-up areas in EEC. The result shows that MBUI performs better than BUI and NDBI, with the highest accuracy of 0.85 and Kappa of 0.82. Moreover, the overall accuracy of classification was improved from 79% to 90%, and error of total built-up area was decreased from 29% to 0.7%, after night-time light data from the Visible and Infrared Imaging Suite (VIIRS) Day Night Band (DNB). The results suggest that MBUI with night-time light imagery is appropriate for built-up area extraction and be utilize for further study of socioeconomic impacts of regional development policy over the EEC region.Keywords: built-up area extraction, google earth engine, adaptive thresholding method, rapid mapping
Procedia PDF Downloads 1264525 Solventless C−C Coupling of Low Carbon Furanics to High Carbon Fuel Precursors Using an Improved Graphene Oxide Carbocatalyst
Authors: Ashish Bohre, Blaž Likozar, Saikat Dutta, Dionisios G. Vlachos, Basudeb Saha
Abstract:
Graphene oxide, decorated with surface oxygen functionalities, has emerged as a sustainable alternative to precious metal catalysts for many reactions. Herein, we report for the first time that graphene oxide becomes super active for C-C coupling upon incorporation of multilayer crystalline features, highly oxidized surface, Brønsted acidic functionalities and defect sites on the surface and edges via modified oxidation. The resulting improved graphene oxide (IGO) demonstrates superior activity to commonly used framework zeolites for upgrading of low carbon biomass furanics to long carbon chain aviation fuel precursors. A maximum 95% yield of C15 fuel precursor with high selectivity is obtained at low temperature (60 C) and neat conditions via hydroxyalkylation/alkylation (HAA) of 2-methylfuran (2-MF) and furfural. The coupling of 2-MF with carbonyl molecules ranging from C3 to C6 produced the precursors of carbon numbers 12 to 21. The catalyst becomes inactive in the 4th cycle due to the loss of oxygen functionalities, defect sites and multilayer features; however, regains comparable activity upon regeneration. Extensive microscopic and spectroscopic characterization of the fresh and reused IGO is presented to elucidate high activity of IGO and to establish a correlation between activity and surface and structural properties. Kinetic Monte Carlo (KMC) and density functional theory (DFT) calculations are presented to further illustrate the surface features and the reaction mechanism.Keywords: methacrylic acid, itaconic acid, biomass, monomer, solid base catalyst
Procedia PDF Downloads 1744524 Orthosis and Finite Elements: A Study for Development of New Designs through Additive Manufacturing
Authors: M. Volpini, D. Alves, A. Horta, M. Borges, P. Reis
Abstract:
The gait pattern in people that present motor limitations foment the demand for auxiliary locomotion devices. These artifacts for movement assistance vary according to its shape, size and functional features, following the clinical applications desired. Among the ortheses of lower limbs, the ankle-foot orthesis aims to improve the ability to walk in people with different neuromuscular limitations, although they do not always answer patients' expectations for their aesthetic and functional characteristics. The purpose of this study is to explore the possibility of using new design in additive manufacturer to reproduce the shape and functional features of a ankle-foot orthesis in an efficient and modern way. Therefore, this work presents a study about the performance of the mechanical forces through the analysis of finite elements in an ankle-foot orthesis. It will be demonstrated a study of distribution of the stress on the orthopedic device in orthostatism and during the movement in the course of patient's walk.Keywords: additive manufacture, new designs, orthoses, finite elements
Procedia PDF Downloads 2114523 Feature Selection for Production Schedule Optimization in Transition Mines
Authors: Angelina Anani, Ignacio Ortiz Flores, Haitao Li
Abstract:
The use of underground mining methods have increased significantly over the past decades. This increase has also been spared on by several mines transitioning from surface to underground mining. However, determining the transition depth can be a challenging task, especially when coupled with production schedule optimization. Several researchers have simplified the problem by excluding operational features relevant to production schedule optimization. Our research objective is to investigate the extent to which operational features of transition mines accounted for affect the optimal production schedule. We also provide a framework for factors to consider in production schedule optimization for transition mines. An integrated mixed-integer linear programming (MILP) model is developed that maximizes the NPV as a function of production schedule and transition depth. A case study is performed to validate the model, with a comparative sensitivity analysis to obtain operational insights.Keywords: underground mining, transition mines, mixed-integer linear programming, production schedule
Procedia PDF Downloads 1694522 Effect of Extraction Methods on the Fatty Acids and Physicochemical Properties of Serendipity Berry Seed Oil
Authors: Olufunmilola A. Abiodun, Adegbola O. Dauda, Ayobami Ojo, Samson A. Oyeyinka
Abstract:
Serendipity berry (Dioscoreophyllum cumminsii diel) is a tropical dioecious rainforest vine and native to tropical Africa. The vine grows during the raining season and is used mainly as sweetener. The sweetener in the berry is known as monellin which is sweeter than sucrose. The sweetener is extracted from the fruits and the seed is discarded. The discarded seeds contain bitter principles but had high yield of oil. Serendipity oil was extracted using three methods (N-hexane, expression and expression/n-hexane). Fatty acids and physicochemical properties of the oil obtained were determined. The oil obtained was clear, liquid and have odour similar to hydrocarbon. The percentage oil yield was 38.59, 12.34 and 49.57% for hexane, expression and expression-hexane method respectively. The seed contained high percentage of oil especially using combination of expression and hexane. Low percentage of oil was obtained using expression method. The refractive index values obtained were 1.443, 1.442 and 1.478 for hexane, expression and expression-hexane methods respectively. Peroxide value obtained for expression-hexane was higher than those for hexane and expression. The viscosities of the oil were 125.8, 128.76 and 126.87 cm³/s for hexane, expression and expression-hexane methods respectively which showed that the oil from expression method was more viscous than the other oils. The major fatty acids in serendipity seed oil were oleic acid (62.81%), linoleic acid (22.65%), linolenic (6.11%), palmitic acid (5.67%), stearic acid (2.21%) in decreasing order. Oleic acid which is monounsaturated fatty acid had the highest value. Total unsaturated fatty acids were 91.574, 92.256 and 90.426% for hexane, expression, and expression-hexane respectively. Combination of expression and hexane for extraction of serendipity oil produced high yield of oil. The oil could be refined for food and non-food application.Keywords: serendipity seed oil, expression method, fatty acid, hexane
Procedia PDF Downloads 2734521 An Unsupervised Domain-Knowledge Discovery Framework for Fake News Detection
Authors: Yulan Wu
Abstract:
With the rapid development of social media, the issue of fake news has gained considerable prominence, drawing the attention of both the public and governments. The widespread dissemination of false information poses a tangible threat across multiple domains of society, including politics, economy, and health. However, much research has concentrated on supervised training models within specific domains, their effectiveness diminishes when applied to identify fake news across multiple domains. To solve this problem, some approaches based on domain labels have been proposed. By segmenting news to their specific area in advance, judges in the corresponding field may be more accurate on fake news. However, these approaches disregard the fact that news records can pertain to multiple domains, resulting in a significant loss of valuable information. In addition, the datasets used for training must all be domain-labeled, which creates unnecessary complexity. To solve these problems, an unsupervised domain knowledge discovery framework for fake news detection is proposed. Firstly, to effectively retain the multidomain knowledge of the text, a low-dimensional vector for each news text to capture domain embeddings is generated. Subsequently, a feature extraction module utilizing the unsupervisedly discovered domain embeddings is used to extract the comprehensive features of news. Finally, a classifier is employed to determine the authenticity of the news. To verify the proposed framework, a test is conducted on the existing widely used datasets, and the experimental results demonstrate that this method is able to improve the detection performance for fake news across multiple domains. Moreover, even in datasets that lack domain labels, this method can still effectively transfer domain knowledge, which can educe the time consumed by tagging without sacrificing the detection accuracy.Keywords: fake news, deep learning, natural language processing, multiple domains
Procedia PDF Downloads 984520 Cervical Cell Classification Using Random Forests
Authors: Dalwinder Singh, Amandeep Verma, Manpreet Kaur, Birmohan Singh
Abstract:
The detection of pre-cancerous changes using a Pap smear test of cervical cell is the important step for the early diagnosis of cervical cancer. The Pap smear test consists of a sample of human cells taken from the cervix which are analysed to detect cancerous and pre-cancerous stage of the given subject. The manual analysis of these cells is labor intensive and time consuming process which relies on expert cytotechnologist. In this paper, a computer assisted system for the automated analysis of the cervical cells has been proposed. We propose a morphology based approach to the nucleus detection and segmentation of the cytoplasmic region of the given single or multiple overlapped cell. Further, various texture and region based features are calculated from these cells to classify these into normal and abnormal cell. Experimental results on public available dataset show that our system has achieved satisfactory success rate.Keywords: cervical cancer, cervical tissue, mathematical morphology, texture features
Procedia PDF Downloads 5274519 Time-Frequency Modelling and Analysis of Faulty Rotor
Authors: B. X. Tchomeni, A. A. Alugongo, T. B. Tengen
Abstract:
In this paper, de Laval rotor system has been characterized by a hinge model and its transient response numerically treated for a dynamic solution. The effect of the ensuing non-linear disturbances namely rub and breathing crack is numerically simulated. Subsequently, three analysis methods: Orbit Analysis, Fast Fourier Transform (FFT) and Wavelet Transform (WT) are employed to extract features of the vibration signal of the faulty system. An analysis of the system response orbits clearly indicates the perturbations due to the rotor-to-stator contact. The sensitivities of WT to the variation in system speed have been investigated by Continuous Wavelet Transform (CWT). The analysis reveals that features of crack, rubs and unbalance in vibration response can be useful for condition monitoring. WT reveals its ability to detect non-linear signal, and obtained results provide a useful tool method for detecting machinery faults.Keywords: Continuous wavelet, crack, discrete wavelet, high acceleration, low acceleration, nonlinear, rotor-stator, rub
Procedia PDF Downloads 3494518 Urban Neighborhood Center Location Evaluating Method Based On UNA the GIS Spatial Analysis Tools: Kerman's Neighborhood in Tehran Case
Authors: Sepideh Jabbari Behnam, Shadabeh Gashtasbi Iraei, Elnaz Mohsenin, MohammadAli Aghajani
Abstract:
Urban neighborhoods, as important urban forming cells, play a key role in creating urban texture and integrated form. Nowadays, most of neighborhood divisions are based on urban management systems but without considering social issues and the other aspects of urban life. This can cause problems such as providing inappropriate services for city dwellers, the loss of local identity and etc. In this regard for regenerating of such neighborhoods, it is essential to locate neighborhood centers with appropriate access and services for all residents. The main objective of this article is reaching to the location of neighborhood centers in a way that, most of issues relating to the physical features (such as the form of access network and texture permeability and etc.) and other qualities such as land uses, densities and social and economic features can be done simultaneously. This paper attempts to use methods of spatial analysis in order to surveying spatial structure and space syntax of urban textures and Urban Network Analysis Systems. This can be done by one of GIS toolbars which is named UNA (Urban Network Analysis) with the use of its five functions (include: Reach, Betweenness, Gravity, Closeness, Straightness).These functions were written according to space syntax theory and offer its relating output. This paper tries to locate and evaluate the optimal location of neighborhood centers in order to create local centers. This is done through weighing of each of these functions and taking into account of spatial features.Keywords: evaluate optimal location, Local centers, location of neighborhood centers, Spatial analysis, Urban network
Procedia PDF Downloads 4634517 Pattern of Valvular Involvement and Demographic Features of Patients on Benzathine Penicillin at Dhulikhel Hospital
Authors: Sanjaya Humagain, Rajendra Koju
Abstract:
Background: Rheumatic heart disease (RHD) is the most common cardiovascular disease in children and young adults. Though declined and almost non-existent in developed nations, RHD is still one of the leading cause for premature death and disability in developing countries. Prevalence of RHD is high in both rural as well as urban area of Nepal. Present study is designed to look at the pattern of valvular involvement and demographic features in RHD. Methods: 326 patients indicated for inj. Benzathine penicillin were selected and echocardiograph performed to see the pattern of vavular involvement. Data analysis was done using SPSS 17. Result: The most common type of lesion was mixed type with mitral valve involvement. MR was the most common isolated lesion. MS was more commonly seen in females whereas AS was more common in males. Secondary prophylaxis was more common than primary prophylaxis. Conclusion: RHD still being a major problem and a preventable disease so extensive screening program is required to identify them early and prevent the complication.Keywords: acute rheumatic fever, RHD, MS, MR, AS, AR, Inj benzathine penicillin
Procedia PDF Downloads 3174516 Machine Learning Approach for Anomaly Detection in the Simulated Iec-60870-5-104 Traffic
Authors: Stepan Grebeniuk, Ersi Hodo, Henri Ruotsalainen, Paul Tavolato
Abstract:
Substation security plays an important role in the power delivery system. During the past years, there has been an increase in number of attacks on automation networks of the substations. In spite of that, there hasn’t been enough focus dedicated to the protection of such networks. Aiming to design a specialized anomaly detection system based on machine learning, in this paper we will discuss the IEC 60870-5-104 protocol that is used for communication between substation and control station and focus on the simulation of the substation traffic. Firstly, we will simulate the communication between substation slave and server. Secondly, we will compare the system's normal behavior and its behavior under the attack, in order to extract the right features which will be needed for building an anomaly detection system. Lastly, based on the features we will suggest the anomaly detection system for the asynchronous protocol IEC 60870-5-104.Keywords: Anomaly detection, IEC-60870-5-104, Machine learning, Man-in-the-Middle attacks, Substation security
Procedia PDF Downloads 3694515 Modeling Activity Pattern Using XGBoost for Mining Smart Card Data
Authors: Eui-Jin Kim, Hasik Lee, Su-Jin Park, Dong-Kyu Kim
Abstract:
Smart-card data are expected to provide information on activity pattern as an alternative to conventional person trip surveys. The focus of this study is to propose a method for training the person trip surveys to supplement the smart-card data that does not contain the purpose of each trip. We selected only available features from smart card data such as spatiotemporal information on the trip and geographic information system (GIS) data near the stations to train the survey data. XGboost, which is state-of-the-art tree-based ensemble classifier, was used to train data from multiple sources. This classifier uses a more regularized model formalization to control the over-fitting and show very fast execution time with well-performance. The validation results showed that proposed method efficiently estimated the trip purpose. GIS data of station and duration of stay at the destination were significant features in modeling trip purpose.Keywords: activity pattern, data fusion, smart-card, XGboost
Procedia PDF Downloads 2474514 A Context-Sensitive Algorithm for Media Similarity Search
Authors: Guang-Ho Cha
Abstract:
This paper presents a context-sensitive media similarity search algorithm. One of the central problems regarding media search is the semantic gap between the low-level features computed automatically from media data and the human interpretation of them. This is because the notion of similarity is usually based on high-level abstraction but the low-level features do not sometimes reflect the human perception. Many media search algorithms have used the Minkowski metric to measure similarity between image pairs. However those functions cannot adequately capture the aspects of the characteristics of the human visual system as well as the nonlinear relationships in contextual information given by images in a collection. Our search algorithm tackles this problem by employing a similarity measure and a ranking strategy that reflect the nonlinearity of human perception and contextual information in a dataset. Similarity search in an image database based on this contextual information shows encouraging experimental results.Keywords: context-sensitive search, image search, similarity ranking, similarity search
Procedia PDF Downloads 3654513 A Constructivist Grounded Theory Study on the Impact of Automation on People and Gardening
Authors: Hamilton V. Niculescu
Abstract:
Following a three year study conducted on eighteen Irish people that are involved in growing vegetables in various community gardens around Dublin, Republic of Ireland, it was revealed that addition of some automated features aimed at improving agricultural practices represented a process which was regarded as potentially beneficial, and as a great tool to closely monitor climate conditions inside the greenhouses. The participants were provided with a free custom-built mobile app through which they could remotely monitor and control features such as irrigation, air ventilation, and windows to ensure optimal growing conditions for vegetables growing inside purpose-built greenhouses. While the initial interest was generally high, within weeks, the participants' level of interaction with the enclosures slowly declined. By employing a constructivist grounded theory methodology, following focus group discussions, in-depth semi-structured interviews, and observations, it was revealed that participants' trust in newer technologies, and renewables, in particular, was low. There are various reasons for this, but because the participants in this study consist of mainly working-class people, it can be argued that lack of education and knowledge are the main barriers acting against the adoption of innovations. Consequently, it was revealed that most participants eventually decided to "set and forget" the systems in automatic working mode, indicating that the immediate effect of introducing people to assisting technologies also introduced some unintended consequences into their lifestyle. It is argued that this occurrence also indicates the fact that people initially "read" newer technologies and only adopt those features that they find useful and less intrusive in regards to their current lifestyle.Keywords: automation, communication, greenhouse, sustainable
Procedia PDF Downloads 1194512 Computer Aide Discrimination of Benign and Malignant Thyroid Nodules by Ultrasound Imaging
Authors: Akbar Gharbali, Ali Abbasian Ardekani, Afshin Mohammadi
Abstract:
Introduction: Thyroid nodules have an incidence of 33-68% in the general population. More than 5-15% of these nodules are malignant. Early detection and treatment of thyroid nodules increase the cure rate and provide optimal treatment. Between the medical imaging methods, Ultrasound is the chosen imaging technique for assessment of thyroid nodules. The confirming of the diagnosis usually demands repeated fine-needle aspiration biopsy (FNAB). So, current management has morbidity and non-zero mortality. Objective: To explore diagnostic potential of automatic texture analysis (TA) methods in differentiation benign and malignant thyroid nodules by ultrasound imaging in order to help for reliable diagnosis and monitoring of the thyroid nodules in their early stages with no need biopsy. Material and Methods: The thyroid US image database consists of 70 patients (26 benign and 44 malignant) which were reported by Radiologist and proven by the biopsy. Two slices per patient were loaded in Mazda Software version 4.6 for automatic texture analysis. Regions of interests (ROIs) were defined within the abnormal part of the thyroid nodules ultrasound images. Gray levels within an ROI normalized according to three normalization schemes: N1: default or original gray levels, N2: +/- 3 Sigma or dynamic intensity limited to µ+/- 3σ, and N3: present intensity limited to 1% - 99%. Up to 270 multiscale texture features parameters per ROIs per each normalization schemes were computed from well-known statistical methods employed in Mazda software. From the statistical point of view, all calculated texture features parameters are not useful for texture analysis. So, the features based on maximum Fisher coefficient and the minimum probability of classification error and average correlation coefficients (POE+ACC) eliminated to 10 best and most effective features per normalization schemes. We analyze this feature under two standardization states (standard (S) and non-standard (NS)) with Principle Component Analysis (PCA), Linear Discriminant Analysis (LDA) and Non-Linear Discriminant Analysis (NDA). The 1NN classifier was performed to distinguish between benign and malignant tumors. The confusion matrix and Receiver operating characteristic (ROC) curve analysis were used for the formulation of more reliable criteria of the performance of employed texture analysis methods. Results: The results demonstrated the influence of the normalization schemes and reduction methods on the effectiveness of the obtained features as a descriptor on discrimination power and classification results. The selected subset features under 1%-99% normalization, POE+ACC reduction and NDA texture analysis yielded a high discrimination performance with the area under the ROC curve (Az) of 0.9722, in distinguishing Benign from Malignant Thyroid Nodules which correspond to sensitivity of 94.45%, specificity of 100%, and accuracy of 97.14%. Conclusions: Our results indicate computer-aided diagnosis is a reliable method, and can provide useful information to help radiologists in the detection and classification of benign and malignant thyroid nodules.Keywords: ultrasound imaging, thyroid nodules, computer aided diagnosis, texture analysis, PCA, LDA, NDA
Procedia PDF Downloads 2804511 Techno-Economic Analysis (TEA) of Circular Economy Approach in the Valorisation of Pig Meat Processing Wastes
Authors: Ribeiro A., Vilarinho C., Luisa A., Carvalho J
Abstract:
The pig meat industry generates large volumes of by- and co-products like blood, bones, skin, trimmings, organs, viscera, and skulls, among others, during slaughtering and meat processing and must be treated and disposed of ecologically. The yield of these by-products has been reported to account for about 10% to 15% of the value of the live animal in developed countries, although animal by-products account for about two-thirds of the animal after slaughter. It was selected for further valorization of the principal wastes produced throughout the value chain of pig meat production: Pig Manure, Pig Bones, Fats, Skins, Pig Hair, Wastewater, Wastewater sludges, and other animal subproducts type III. According to the potential valorization options, these wastes will be converted into Biomethane, Fertilizers (phosphorus and digestate), Hydroxyapatite, and protein hydrolysates (Keratin and Collagen). This work includes comprehensive technical and economic analyses (TEA) for each valorization route or applied technology. Metrics such as Net Present Value (NPV), Internal Rate of Return (IRR), and payback periods were used to evaluate economic feasibility. From this analysis, it can be concluded that, for Biogas Production, the scenarios using pig manure, wastewater sludges and mixed grass and leguminous wastes presented a remarkably high economic feasibility. Scenarios showed high economic feasibility with a positive payback period, NPV, and IRR. The optimal scenario combining pig manure with mixed grass and leguminous wastes had a payback period of 1.2 years and produced 427,6269 m³ of biomethane annually. Regarding the Chemical Extraction of Phosphorous and Nitrogen, results proved that the process is economically unviable due to negative cash flows despite high recovery rates. The TEA of Hydrolysis and Extraction of Keratin Hydrolysates indicate that a unit processing and valorizing 10 tons of pig hair per year for the production of keratin hydrolysate has an NPV of 907,940 €, an IRR of 13.07%, and a Payback period of 5.41 years. All of these indicators suggest a highly potential project to explore in the future. On the opposite, the results of Hydrolysis and Extraction of Collagen Hydrolysates showed a process economically unviable with negative cash flows in all scenarios due to the high-fat content in raw materials. In fact, the results from the valorization of 10 tons of pig skin had a negative cash flow of 453 743,88 €. TEA results of Extraction and purification of Hydroxyapatite from Pig Bones with Pyrolysis indicate that unit processing and valorizing 10 tons of pig bones per year for the production of hydroxyapatite has an NPV of 1 274 819,00 €, an IRR of 65.43%, and a Payback period of 1,5 years over a timeline of 10 years with a discount rate of 10%. These valorization routes, circular economy and bio-refinery approach offer significant contributions to sustainable bio-based operations within the agri-food industry. This approach transforms waste into valuable resources, enhancing both environmental and economic outcomes and contributing to a more sustainable and circular bioeconomy.Keywords: techno-economic analysis (TEA), pig meat processing wastes, circular economy, bio-refinery
Procedia PDF Downloads 154510 Composite Electrospun Aligned PLGA/Curcumin/Heparin Nanofibrous Membranes for Wound Dressing Application
Authors: Jyh-Ping Chen, Yu-Tin Lai
Abstract:
Wound healing is a complicated process involving overlapping hemostasis, inflammation, proliferation, and maturation phases. Ideal wound dressings can replace native skin functions in full thickness skin wounds through faster healing rate and also by reducing scar formation. Poly(lactic-co-glycolic acid) (PLGA) is an U.S. FDA approved biodegradable polymer to be used as ideal wound dressing material. Several in vitro and in vivo studies have demonstrated the effectiveness of curcumin in decreasing the release of inflammatory cytokines, inhibiting enzymes associated with inflammations, and scavenging free radicals that are the major cause of inflammation during wound healing. Heparin has binding affinities to various growth factors. With the unique and beneficial features offered by those molecules toward the complex process of wound healing, we postulate a composite wound dressing constructed from PLGA, curcumin and heparin would be a good candidate to accelerate scarless wound healing. In this work, we use electrospinning to prepare curcumin-loaded aligned PLGA nanofibrous membranes (PC NFMs). PC NFMs were further subject to oxygen plasma modification and surfaced-grafted with heparin through carbodiimide-mediated covalent bond formation to prepare curcumin-loaded PLGA-g-heparin (PCH) NFMs. The nanofibrous membranes could act as three-dimensional scaffolds to attract fibroblast migration, reduce inflammation, and increase wound-healing related growth factors concentrations at wound sites. From scanning electron microscopy analysis, the nanofibers in each NFM are with diameters ranging from 456 to 479 nm and with alignment angles within 0.5°. The NFMs show high tensile strength and good water absorptivity and provide suitable pore size for nutrients/wastes transport. Exposure of human dermal fibroblasts to the extraction medium of PC or PCH NFM showed significant protective effects against hydrogen peroxide than PLGA NFM. In vitro wound healing assays also showed that the extraction medium of PCH NFM showed significantly better migration ability toward fibroblasts than PC NFM, which is further better than PLGA NFM. The in vivo healing efficiency of the NFMs was further evaluated by a full thickness excisional wound healing diabetic rat model. After 14 days, PCH NFMs exhibits 86% wound closure rate, which is significantly different from other groups (79% for PC and 73% for PLGA NFM). Real-time PCR analysis indicated PC and PCH NFMs down regulated anti-oxidative enzymes like glutathione peroxidase (GPx) and superoxide dismutase (SOD), which are well-known transcription factors involved in cellular inflammatory responses to stimuli. From histology, the wound area treated with PCH NFMs showed more vascular lumen formation from immunohistochemistry of α-smooth muscle actin. The wound site also had more collagen type III (65.8%) expression and less collagen type I (3.5%) expression, indicating scar-less wound healing. From Western blot analysis, the PCH NFM showed good affinity toward growth factors from increased concentration of transforming growth factor-β (TGF-β) and fibroblast growth factor-2 (FGF-2) at the wound site to accelerate wound healing. From the results, we suggest PCH NFM as a promising candidate for wound dressing applications.Keywords: Curcumin, heparin, nanofibrous membrane, poly(lactic-co-glycolic acid) (PLGA), wound dressing
Procedia PDF Downloads 1554509 A Development of English Pronunciation Using Principles of Phonetics for English Major Students at Loei Rajabhat University
Authors: Pongthep Bunrueng
Abstract:
This action research accentuates the outcome of a development in English pronunciation, using principles of phonetics for English major students at Loei Rajabhat University. The research is split into 5 separate modules: 1) Organs of Speech and How to Produce Sounds, 2) Monopthongs, 3) Diphthongs, 4) Consonant sounds, and 5) Suprasegmental Features. Each module followed a 4 step action research process, 1) Planning, 2) Acting, 3) Observing, and 4) Reflecting. The research targeted 2nd year students who were majoring in English Education at Loei Rajabhat University during the academic year of 2011. A mixed methodology employing both quantitative and qualitative research was used, which put theory into action, taking segmental features up to suprasegmental features. Multiple tools were employed which included the following documents: pre-test and post-test papers, evaluation and assessment papers, group work assessment forms, a presentation grading form, an observation of participants form and a participant self-reflection form. All 5 modules for the target group showed that results from the post-tests were higher than those of the pre-tests, with 0.01 statistical significance. All target groups attained results ranging from low to moderate and from moderate to high performance. The participants who attained low to moderate results had to re-sit the second round. During the first development stage, participants attended classes with group participation, in which they addressed planning through mutual co-operation and sharing of responsibility. Analytic induction of strong points for this operation illustrated that learner cognition, comprehension, application, and group practices were all present whereas the participants with weak results could be attributed to biological differences, differences in life and learning, or individual differences in responsiveness and self-discipline. Participants who were required to be re-treated in Spiral 2 received the same treatment again. Results of tests from the 5 modules after the 2nd treatment were that the participants attained higher scores than those attained in the pre-test. Their assessment and development stages also showed improved results. They showed greater confidence at participating in activities, produced higher quality work, and correctly followed instructions for each activity. Analytic induction of strong and weak points for this operation remains the same as for Spiral 1, though there were improvements to problems which existed prior to undertaking the second treatment.Keywords: action research, English pronunciation, phonetics, segmental features, suprasegmental features
Procedia PDF Downloads 2994508 Software Development to Empowering Digital Libraries with Effortless Digital Cataloging and Access
Authors: Abdul Basit Kiani
Abstract:
The software for the digital library system is a cutting-edge solution designed to revolutionize the way libraries manage and provide access to their vast collections of digital content. This advanced software leverages the power of technology to offer a seamless and user-friendly experience for both library staff and patrons. By implementing this software, libraries can efficiently organize, store, and retrieve digital resources, including e-books, audiobooks, journals, articles, and multimedia content. Its intuitive interface allows library staff to effortlessly manage cataloging, metadata extraction, and content enrichment, ensuring accurate and comprehensive access to digital materials. For patrons, the software offers a personalized and immersive digital library experience. They can easily browse the digital catalog, search for specific items, and explore related content through intelligent recommendation algorithms. The software also facilitates seamless borrowing, lending, and preservation of digital items, enabling users to access their favorite resources anytime, anywhere, on multiple devices. With robust security features, the software ensures the protection of intellectual property rights and enforces access controls to safeguard sensitive content. Integration with external authentication systems and user management tools streamlines the library's administration processes, while advanced analytics provide valuable insights into patron behavior and content usage. Overall, this software for the digital library system empowers libraries to embrace the digital era, offering enhanced access, convenience, and discoverability of their vast collections. It paves the way for a more inclusive and engaging library experience, catering to the evolving needs of tech-savvy patrons.Keywords: software development, empowering digital libraries, digital cataloging and access, management system
Procedia PDF Downloads 834507 DMBR-Net: Deep Multiple-Resolution Bilateral Networks for Real-Time and Accurate Semantic Segmentation
Authors: Pengfei Meng, Shuangcheng Jia, Qian Li
Abstract:
We proposed a real-time high-precision semantic segmentation network based on a multi-resolution feature fusion module, the auxiliary feature extracting module, upsampling module, and atrous spatial pyramid pooling (ASPP) module. We designed a feature fusion structure, which is integrated with sufficient features of different resolutions. We also studied the effect of side-branch structure on the network and made discoveries. Based on the discoveries about the side-branch of the network structure, we used a side-branch auxiliary feature extraction layer in the network to improve the effectiveness of the network. We also designed upsampling module, which has better results than the original upsampling module. In addition, we also re-considered the locations and number of atrous spatial pyramid pooling (ASPP) modules and modified the network structure according to the experimental results to further improve the effectiveness of the network. The network presented in this paper takes the backbone network of Bisenetv2 as a basic network, based on which we constructed a network structure on which we made improvements. We named this network deep multiple-resolution bilateral networks for real-time, referred to as DMBR-Net. After experimental testing, our proposed DMBR-Net network achieved 81.2% mIoU at 119FPS on the Cityscapes validation dataset, 80.7% mIoU at 109FPS on the CamVid test dataset, 29.9% mIoU at 78FPS on the COCOStuff test dataset. Compared with all lightweight real-time semantic segmentation networks, our network achieves the highest accuracy at an appropriate speed.Keywords: multi-resolution feature fusion, atrous convolutional, bilateral networks, pyramid pooling
Procedia PDF Downloads 152