Search results for: features engineering methods for forecasting
19900 Structural Characterization of the 3D Printed Silicon Carbon/Carbon Fibers Nanocomposites
Authors: Saja M. Nabat Al-Ajrash, Charles Browning, Rose Eckerle, Li Cao
Abstract:
A process that utilizes a combination of additive manufacturing (AM), a preceramic polymer, and a chopped carbon fiber precursorto fabricate Silicon Carbon/ Carbon fibers (SiC/C) composites have been developed. The study has shown a promising, cost-effective, and efficient route to fabricate complex SiC/C composites using additive manufacturing. A key part of this effort was the mapping of the material’s microstructure through the thickness of the composite. Microstructural features in the pyrolyzed composites through the successive AM layers, such as defects, crystal size and their distribution, interatomic spacing, chemical bonds, were investigated using high-resolution scanning and transmission electron microscopy. As a result, the microstructure developed in SiC/C composites after printing, cure, and pyrolysis has been successfully mapped through the thickness of the derived composites. Dense and nearly defect-free parts after polymer to ceramic conversion were observed. The ceramic matrix composite displayed three coexisting phases, including silicon carbide, silicon oxycarbide, and turbostratic carbon. Lattice fringes imaging and X-Ray Diffraction analysis showed well-defined SiC and turbostratic carbon features. The cross-sectional mapping of the printed-then-pyrolyzed structures has confirmed consistent structural and chemical features within the internal layers of the AM parts. Noteworthy, however, is that a crust-like area with high crystallinity has been observed in the first and last external layers. Not only do these crust-like regions have structural characteristics distinct from the internal layers, but they also have elemental distributions different than the internal layers.Keywords: SiC, preceramic polymer, additive manufacturing, ceramic
Procedia PDF Downloads 7819899 Fine-Grained Sentiment Analysis: Recent Progress
Authors: Jie Liu, Xudong Luo, Pingping Lin, Yifan Fan
Abstract:
Facebook, Twitter, Weibo, and other social media and significant e-commerce sites generate a massive amount of online texts, which can be used to analyse people’s opinions or sentiments for better decision-making. So, sentiment analysis, especially fine-grained sentiment analysis, is a very active research topic. In this paper, we survey various methods for fine-grained sentiment analysis, including traditional sentiment lexicon-based methods, machine learning-based methods, and deep learning-based methods in aspect/target/attribute-based sentiment analysis tasks. Besides, we discuss their advantages and problems worthy of careful studies in the future.Keywords: sentiment analysis, fine-grained, machine learning, deep learning
Procedia PDF Downloads 26219898 A Comprehensive Review of Axial Flux Machines and Its Applications
Authors: Shahbaz Amin, Sabir Hussain Shah, Sahib Khan
Abstract:
This paper presents a thorough review concerning the design types of axial flux permanent magnet machines (AFPM) in terms of different features such as construction, design, materials, and manufacturing. Particular emphasis is given on the design and performance analysis of AFPM machines. A comparison among different permanent magnet machines is also provided. First of all, early and modern axial flux machines are mentioned. Secondly, rotor construction of different axial flux machines is described, then different stator constructions are mentioned depending upon the presence of slots and stator back iron. Then according to the arrangement of the rotor stator structure the machines are classified into single, double and multi-stack arrangements. Advantages, disadvantages and applications of each type of rotor and stator are pointed out. Finally on the basis of the reviewed literature merits, demerits, features and application of different axial flux machines structures are explained and clarified. Thus, this paper provides connection between the machines that are currently being used in industry and the developments of AFPM throughout the years.Keywords: axial flux machines, axial flux applications, coreless machines, PM machines
Procedia PDF Downloads 21719897 Biophysical Characterization of Archaeal Cyclophilin Like Chaperone Protein
Authors: Vineeta Kaushik, Manisha Goel
Abstract:
Chaperones are proteins that help other proteins fold correctly, and are found in all domains of life i.e., prokaryotes, eukaryotes and archaea. Various comparative genomic studies have suggested that the archaeal protein folding machinery appears to be highly similar to that found in eukaryotes. In case of protein folding; slow rotation of peptide prolyl-imide bond is often the rate limiting step. Formation of the prolyl-imide bond during the folding of a protein requires the assistance of other proteins, termed as peptide prolyl cis-trans isomerases (PPIases). Cyclophilins constitute the class of peptide prolyl isomerases with a wide range of biological function like protein folding, signaling and chaperoning. Most of the cyclophilins exhibit PPIase enzymatic activity and play active role in substrate protein folding which classifies them as a category of molecular chaperones. Till date, there is not very much data available in the literature on archaeal cyclophilins. We aim to compare the structural and biochemical features of the cyclophilin protein from within the three domains to elucidate the features affecting their stability and enzyme activity. In the present study, we carry out in-silico analysis of the cyclophilin proteins to predict their conserved residues, sites under positive selection and compare these proteins to their bacterial and eukaryotic counterparts to predict functional divergence. We also aim to clone and express these proteins in heterologous system and study their biophysical characteristics in detail using techniques like CD and fluorescence spectroscopy. Overall we aim to understand the features contributing to the folding, stability and dynamics of the archaeal cyclophilin proteins.Keywords: biophysical characterization, x-ray crystallography, chaperone-like activity, cyclophilin, PPIase activity
Procedia PDF Downloads 21319896 Tapping into Debt: The Effect of Contactless Payment Methods on Overdraft Fee Occurrence
Authors: Merle Van Den Akker, Neil Stewart, Andrea Isoni
Abstract:
Contactless methods of payment referred to as tap&go, have become increasingly popular globally. However, little is known about the consequences of this payment method on spending, spending habits, personal finance management, and debt accumulation. The literature on other payment methods such as credit cards suggests that, through increased ease and reduced friction, the pain of paying in these methods is reduced, leading to higher and more frequent spending, resulting in higher debt accumulation. Within this research, we use a dataset of 300 million transactions of 165.000 individuals to see whether the onset of using contactless methods of payment increases the occurrence of overdraft fees. Using the R package MatchIt, we find, when matching people on initial overdraft occurrence and salary, that people who do start using contactless incur a significantly higher number of overdraft fees, as compared to those who do not start using contactless in the same year. Having accounted for income, opting-in, and time-of-year effects, these results show that contactless methods of payment fall within the scope of earlier theories on credit cards, such as the pain of paying, meaning that this payment method leads to increasing difficulties managing personal finance.Keywords: contactless, debt accumulation, overdraft fees, payment methods, spending
Procedia PDF Downloads 12219895 An Improved Face Recognition Algorithm Using Histogram-Based Features in Spatial and Frequency Domains
Authors: Qiu Chen, Koji Kotani, Feifei Lee, Tadahiro Ohmi
Abstract:
In this paper, we propose an improved face recognition algorithm using histogram-based features in spatial and frequency domains. For adding spatial information of the face to improve recognition performance, a region-division (RD) method is utilized. The facial area is firstly divided into several regions, then feature vectors of each facial part are generated by Binary Vector Quantization (BVQ) histogram using DCT coefficients in low frequency domains, as well as Local Binary Pattern (LBP) histogram in spatial domain. Recognition results with different regions are first obtained separately and then fused by weighted averaging. Publicly available ORL database is used for the evaluation of our proposed algorithm, which is consisted of 40 subjects with 10 images per subject containing variations in lighting, posing, and expressions. It is demonstrated that face recognition using RD method can achieve much higher recognition rate.Keywords: binary vector quantization (BVQ), DCT coefficients, face recognition, local binary patterns (LBP)
Procedia PDF Downloads 34919894 Integration of Resistivity and Seismic Refraction Using Combine Inversion for Ancient River Findings at Sungai Batu, Lembah Bujang, Malaysia
Authors: Rais Yusoh, Rosli Saad, Mokhtar Saidin, Fauzi Andika, Sabiu Bala Muhammad
Abstract:
Resistivity and seismic refraction profiling have become a common method in pre-investigations for visualizing subsurface structure. The integration of the methods could reduce an interpretation ambiguity. Both methods have their individual software packages for data inversion, but potential to combine certain geophysical methods are restricted; however, the research algorithms that have this functionality was existed and are evaluated personally. The interpretation of subsurface were improve by combining inversion data from both methods by influence each other models using closure coupling; thus, by implementing both methods to support each other which could improve the subsurface interpretation. These methods were applied on a field dataset from a pre-investigation for archeology in finding the ancient river. There were no major changes in the inverted model by combining data inversion for this archetype which probably due to complex geology. The combine data analysis provides an additional technique for interpretation such as an alluvium, which can have strong influence on the ancient river findings.Keywords: ancient river, combine inversion, resistivity, seismic refraction
Procedia PDF Downloads 33419893 Understanding Consumer Behaviors by Using Neuromarketing Tools and Methods
Authors: Tabrej Khan
Abstract:
Neuromarketing can refer to the commercial application of neuroscience technologies and insights to drive business further. On the other side, consumer neuroscience can be seen as the academic use of neuroscience to better understand marketing effects on consumer behavior. Consumer Neuroscience and Neuromarketing is a multidisciplinary effort between economics, psychology, and neuroscience and information technology. Traditional methods are using survey, interviews, focus group people are overtly and consciously reporting on their experience and thoughts. The unconscious side of customer behavior is largely unmeasured in the traditional methods. Neuroscience has a potential to understand the unconscious part. Through this paper, we are going to present specific results of selected tools and methods that are used to understand consumer behaviors.Keywords: neuromarketing, neuroscience, consumer behaviors, tools
Procedia PDF Downloads 40219892 Experimental Simulations of Aerosol Effect to Landfalling Tropical Cyclones over Philippine Coast: Virtual Seeding Using WRF Model
Authors: Bhenjamin Jordan L. Ona
Abstract:
Weather modification is an act of altering weather systems that catches interest on scientific studies. Cloud seeding is a common form of weather alteration. On the same principle, tropical cyclone mitigation experiment follows the methods of cloud seeding with intensity to account for. This study will present the effects of aerosol to tropical cyclone cloud microphysics and intensity. The framework of Weather Research and Forecasting (WRF) model incorporated with Thompson aerosol-aware scheme is the prime host to support the aerosol-cloud microphysics calculations of cloud condensation nuclei (CCN) ingested into the tropical cyclones before making landfall over the Philippine coast. The coupled microphysical and radiative effects of aerosols will be analyzed using numerical data conditions of Tropical Storm Ketsana (2009), Tropical Storm Washi (2011), and Typhoon Haiyan (2013) associated with varying CCN number concentrations per simulation per typhoon: clean maritime, polluted, and very polluted having 300 cm-3, 1000 cm-3, and 2000 cm-3 aerosol number initial concentrations, respectively. Aerosol species like sulphates, sea salts, black carbon, and organic carbon will be used as cloud nuclei and mineral dust as ice nuclei (IN). To make the study as realistic as possible, investigation during the biomass burning due to forest fire in Indonesia starting October 2015 as Typhoons Mujigae/Kabayan and Koppu/Lando had been seeded with aerosol emissions mainly comprises with black carbon and organic carbon, will be considered. Emission data that will be used is from NASA's Moderate Resolution Imaging Spectroradiometer (MODIS). The physical mechanism/s of intensification or deintensification of tropical cyclones will be determined after the seeding experiment analyses.Keywords: aerosol, CCN, IN, tropical cylone
Procedia PDF Downloads 29619891 Integrating Natural Language Processing (NLP) and Machine Learning in Lung Cancer Diagnosis
Authors: Mehrnaz Mostafavi
Abstract:
The assessment and categorization of incidental lung nodules present a considerable challenge in healthcare, often necessitating resource-intensive multiple computed tomography (CT) scans for growth confirmation. This research addresses this issue by introducing a distinct computational approach leveraging radiomics and deep-learning methods. However, understanding local services is essential before implementing these advancements. With diverse tracking methods in place, there is a need for efficient and accurate identification approaches, especially in the context of managing lung nodules alongside pre-existing cancer scenarios. This study explores the integration of text-based algorithms in medical data curation, indicating their efficacy in conjunction with machine learning and deep-learning models for identifying lung nodules. Combining medical images with text data has demonstrated superior data retrieval compared to using each modality independently. While deep learning and text analysis show potential in detecting previously missed nodules, challenges persist, such as increased false positives. The presented research introduces a Structured-Query-Language (SQL) algorithm designed for identifying pulmonary nodules in a tertiary cancer center, externally validated at another hospital. Leveraging natural language processing (NLP) and machine learning, the algorithm categorizes lung nodule reports based on sentence features, aiming to facilitate research and assess clinical pathways. The hypothesis posits that the algorithm can accurately identify lung nodule CT scans and predict concerning nodule features using machine-learning classifiers. Through a retrospective observational study spanning a decade, CT scan reports were collected, and an algorithm was developed to extract and classify data. Results underscore the complexity of lung nodule cohorts in cancer centers, emphasizing the importance of careful evaluation before assuming a metastatic origin. The SQL and NLP algorithms demonstrated high accuracy in identifying lung nodule sentences, indicating potential for local service evaluation and research dataset creation. Machine-learning models exhibited strong accuracy in predicting concerning changes in lung nodule scan reports. While limitations include variability in disease group attribution, the potential for correlation rather than causality in clinical findings, and the need for further external validation, the algorithm's accuracy and potential to support clinical decision-making and healthcare automation represent a significant stride in lung nodule management and research.Keywords: lung cancer diagnosis, structured-query-language (SQL), natural language processing (NLP), machine learning, CT scans
Procedia PDF Downloads 10119890 An Ensemble-based Method for Vehicle Color Recognition
Authors: Saeedeh Barzegar Khalilsaraei, Manoocheher Kelarestaghi, Farshad Eshghi
Abstract:
The vehicle color, as a prominent and stable feature, helps to identify a vehicle more accurately. As a result, vehicle color recognition is of great importance in intelligent transportation systems. Unlike conventional methods which use only a single Convolutional Neural Network (CNN) for feature extraction or classification, in this paper, four CNNs, with different architectures well-performing in different classes, are trained to extract various features from the input image. To take advantage of the distinct capability of each network, the multiple outputs are combined using a stack generalization algorithm as an ensemble technique. As a result, the final model performs better than each CNN individually in vehicle color identification. The evaluation results in terms of overall average accuracy and accuracy variance show the proposed method’s outperformance compared to the state-of-the-art rivals.Keywords: Vehicle Color Recognition, Ensemble Algorithm, Stack Generalization, Convolutional Neural Network
Procedia PDF Downloads 8519889 Correlation Study between Clinical and Radiological Findings in Knee Osteoarthritis
Authors: Nabil A. A. Mohamed, Alaa A. A. Balbaa, Khaled E. Ayad
Abstract:
Osteoarthritis (OA) of the knee is the most common form of arthritis and leads to more activity limitations (e.g., disability in walking and stair climbing) than any other disease, especially in the elderly. Recently, impaired proprioceptive accuracy of the knee has been proposed as a local factor in the onset and progression of radiographic knee OA (ROA). Purpose: To compare the clinical and radiological findings in healthy with that of knee OA. Also, to determine if there is a correlation between the clinical and radiological findings in patients with knee OA. Subjects: Fifty one patients diagnosed as unilateral or bilateral knee OA with age ranged between 35-70 years, from both gender without any previous history of knee trauma or surgery, and twenty one normal subjects with age ranged from 35 - 68 years. METHODS: peak torque/body weight (PT/BW) was recorded from knee extensors at isokinetic isometric mode at angle of 45 degree. Also, the Absolute Angular Error was recorded at 45O and 30O to measure joint position sense (JPS). They made anteroposterior (AP) plain X-rays from standing semiflexed knee position and their average score of Timed Up and Go test(TUG) and WOMAC were recorded as a measure of knee pain, stiffness and function. Comparison between the mean values of different variables in the two groups was performed using unpaired student t test. The P value less or equal to 0.05 was considered significant. Results: There were significant differences between the studied variables between the experimental and control groups except the values of AAE at 30O. Also, there were no significant correlation between the clinical findings (pain, function, muscle strength and proprioception) and the severity of arthritic changes in X-rays. CONCLUSION: From the finding of the current study we can conclude that there were a significant difference between the both groups in all studied parameters (the WOMAC, functional level, quadriceps muscle strength and the joint proprioception). Also this study did not support the dependency on radiological findings in management of knee OA as the radiological features did not necessarily indicate the level of structural damage of patients with knee OA and we should consider the clinical features in our treatment plan.Keywords: joint position sense, peak torque, proprioception, radiological knee osteoarthritis
Procedia PDF Downloads 30219888 Reducing CO2 Emission Using EDA and Weighted Sum Model in Smart Parking System
Authors: Rahman Ali, Muhammad Sajjad, Farkhund Iqbal, Muhammad Sadiq Hassan Zada, Mohammed Hussain
Abstract:
Emission of Carbon Dioxide (CO2) has adversely affected the environment. One of the major sources of CO2 emission is transportation. In the last few decades, the increase in mobility of people using vehicles has enormously increased the emission of CO2 in the environment. To reduce CO2 emission, sustainable transportation system is required in which smart parking is one of the important measures that need to be established. To contribute to the issue of reducing the amount of CO2 emission, this research proposes a smart parking system. A cloud-based solution is provided to the drivers which automatically searches and recommends the most preferred parking slots. To determine preferences of the parking areas, this methodology exploits a number of unique parking features which ultimately results in the selection of a parking that leads to minimum level of CO2 emission from the current position of the vehicle. To realize the methodology, a scenario-based implementation is considered. During the implementation, a mobile application with GPS signals, vehicles with a number of vehicle features and a list of parking areas with parking features are used by sorting, multi-level filtering, exploratory data analysis (EDA, Analytical Hierarchy Process (AHP)) and weighted sum model (WSM) to rank the parking areas and recommend the drivers with top-k most preferred parking areas. In the EDA process, “2020testcar-2020-03-03”, a freely available dataset is used to estimate CO2 emission of a particular vehicle. To evaluate the system, results of the proposed system are compared with the conventional approach, which reveal that the proposed methodology supersedes the conventional one in reducing the emission of CO2 into the atmosphere.Keywords: car parking, Co2, Co2 reduction, IoT, merge sort, number plate recognition, smart car parking
Procedia PDF Downloads 14619887 Presenting a Model Based on Artificial Neural Networks to Predict the Execution Time of Design Projects
Authors: Hamed Zolfaghari, Mojtaba Kord
Abstract:
After feasibility study the design phase is started and the rest of other phases are highly dependent on this phase. forecasting the duration of design phase could do a miracle and would save a lot of time. This study provides a fast and accurate Machine learning (ML) and optimization framework, which allows a quick duration estimation of project design phase, hence improving operational efficiency and competitiveness of a design construction company. 3 data sets of three years composed of daily time spent for different design projects are used to train and validate the ML models to perform multiple projects. Our study concluded that Artificial Neural Network (ANN) performed an accuracy of 0.94.Keywords: time estimation, machine learning, Artificial neural network, project design phase
Procedia PDF Downloads 9719886 Teaching Academic Vocabulary: A Recent and Old Approach
Authors: Sara Fine-Meltzer
Abstract:
An obvious, but ill-addressed hindrance to reading comprehension in academic English is poor vocabulary. Unfortunately, dealing with the problem is usually delayed until university entrance. It is the contention of this paper that the chore should be confronted much earlier and by using a very old-fashioned method. This presentation is accompanied by vocabulary lists for advanced level university students with explanations concerning the content and justification for the 500-word lists: how they change over time in accordance with evolving styles of academic writing. There are also sample quizzes and methods to ensure that the words are “absorbed” over time. There is a discussion of other vocabulary acquisition methods and conclusions drawn from the drawbacks of such methods. The paper concludes with the rationale for beginning the study of “academic” vocabulary earlier than is generally acceptable.Keywords: academic vocabulary, old-fashioned methods, quizzes, vocabulary lists
Procedia PDF Downloads 12219885 The Term Structure of Government Bond Yields in an Emerging Market: Empirical Evidence from Pakistan Bond Market
Authors: Wali Ullah, Muhammad Nishat
Abstract:
The study investigates the extent to which the so called Nelson-Siegel model (DNS) and its extended version that accounts for time varying volatility (DNS-EGARCH) can optimally fit the yield curve and predict its future path in the context of an emerging economy. For the in-sample fit, both models fit the curve remarkably well even in the emerging markets. However, the DNS-EGARCH model fits the curve slightly better than the DNS. Moreover, both specifications of yield curve that are based on the Nelson-Siegel functional form outperform the benchmark VAR forecasts at all forecast horizons. The DNS-EGARCH comes with more precise forecasts than the DNS for the 6- and 12-month ahead forecasts, while the two have almost similar performance in terms of RMSE for the very short forecast horizons.Keywords: yield curve, forecasting, emerging markets, Kalman filter, EGARCH
Procedia PDF Downloads 53919884 Forecasting Solid Waste Generation in Turkey
Authors: Yeliz Ekinci, Melis Koyuncu
Abstract:
Successful planning of solid waste management systems requires successful prediction of the amount of solid waste generated in an area. Waste management planning can protect the environment and human health, hence it is tremendously important for countries. The lack of information in waste generation can cause many environmental and health problems. Turkey is a country that plans to join European Union, hence, solid waste management is one of the most significant criteria that should be handled in order to be a part of this community. Solid waste management system requires a good forecast of solid waste generation. Thus, this study aims to forecast solid waste generation in Turkey. Artificial Neural Network and Linear Regression models will be used for this aim. Many models will be run and the best one will be selected based on some predetermined performance measures.Keywords: forecast, solid waste generation, solid waste management, Turkey
Procedia PDF Downloads 50719883 Code Embedding for Software Vulnerability Discovery Based on Semantic Information
Authors: Joseph Gear, Yue Xu, Ernest Foo, Praveen Gauravaran, Zahra Jadidi, Leonie Simpson
Abstract:
Deep learning methods have been seeing an increasing application to the long-standing security research goal of automatic vulnerability detection for source code. Attention, however, must still be paid to the task of producing vector representations for source code (code embeddings) as input for these deep learning models. Graphical representations of code, most predominantly Abstract Syntax Trees and Code Property Graphs, have received some use in this task of late; however, for very large graphs representing very large code snip- pets, learning becomes prohibitively computationally expensive. This expense may be reduced by intelligently pruning this input to only vulnerability-relevant information; however, little research in this area has been performed. Additionally, most existing work comprehends code based solely on the structure of the graph at the expense of the information contained by the node in the graph. This paper proposes Semantic-enhanced Code Embedding for Vulnerability Discovery (SCEVD), a deep learning model which uses semantic-based feature selection for its vulnerability classification model. It uses information from the nodes as well as the structure of the code graph in order to select features which are most indicative of the presence or absence of vulnerabilities. This model is implemented and experimentally tested using the SARD Juliet vulnerability test suite to determine its efficacy. It is able to improve on existing code graph feature selection methods, as demonstrated by its improved ability to discover vulnerabilities.Keywords: code representation, deep learning, source code semantics, vulnerability discovery
Procedia PDF Downloads 15819882 Evaluation of Virtual Reality for the Rehabilitation of Athlete Lower Limb Musculoskeletal Injury: A Method for Obtaining Practitioner’s Viewpoints through Observation and Interview
Authors: Hannah K. M. Tang, Muhammad Ateeq, Mark J. Lake, Badr Abdullah, Frederic A. Bezombes
Abstract:
Based on a theoretical assessment of current literature, virtual reality (VR) could help to treat sporting injuries in a number of ways. However, it is important to obtain rehabilitation specialists’ perspectives in order to design, develop and validate suitable content for a VR application focused on treatment. Subsequently, a one-day observation and interview study focused on the use of VR for the treatment of lower limb musculoskeletal conditions in athletes was conducted at St George’s Park England National Football Centre with rehabilitation specialists. The current paper established the methods suitable for obtaining practitioner’s viewpoints through observation and interview in this context. Particular detail was provided regarding the method of qualitatively processing interview results using the qualitative data analysis software tool NVivo, in order to produce a narrative of overarching themes. The observations and overarching themes identified could be used as a framework and success criteria of a VR application developed in future research. In conclusion, this work explained the methods deemed suitable for obtaining practitioner’s viewpoints through observation and interview. This was required in order to highlight characteristics and features of a VR application designed to treat lower limb musculoskeletal injury of athletes and could be built upon to direct future work.Keywords: athletes, lower-limb musculoskeletal injury, rehabilitation, return-to-sport, virtual reality
Procedia PDF Downloads 25719881 Analyzing Global User Sentiments on Laptop Features: A Comparative Study of Preferences Across Economic Contexts
Authors: Mohammadreza Bakhtiari, Mehrdad Maghsoudi, Hamidreza Bakhtiari
Abstract:
The widespread adoption of laptops has become essential to modern lifestyles, supporting work, education, and entertainment. Social media platforms have emerged as key spaces where users share real-time feedback on laptop performance, providing a valuable source of data for understanding consumer preferences. This study leverages aspect-based sentiment analysis (ABSA) on 1.5 million tweets to examine how users from developed and developing countries perceive and prioritize 16 key laptop features. The analysis reveals that consumers in developing countries express higher satisfaction overall, emphasizing affordability, durability, and reliability. Conversely, users in developed countries demonstrate more critical attitudes, especially toward performance-related aspects such as cooling systems, battery life, and chargers. The study employs a mixed-methods approach, combining ABSA using the PyABSA framework with expert insights gathered through a Delphi panel of ten industry professionals. Data preprocessing included cleaning, filtering, and aspect extraction from tweets. Universal issues such as battery efficiency and fan performance were identified, reflecting shared challenges across markets. However, priorities diverge between regions, while users in developed countries demand high-performance models with advanced features, those in developing countries seek products that offer strong value for money and long-term durability. The findings suggest that laptop manufacturers should adopt a market-specific strategy by developing differentiated product lines. For developed markets, the focus should be on cutting-edge technologies, enhanced cooling solutions, and comprehensive warranty services. In developing markets, emphasis should be placed on affordability, versatile port options, and robust designs. Additionally, the study highlights the importance of universal charging solutions and continuous sentiment monitoring to adapt to evolving consumer needs. This research offers practical insights for manufacturers seeking to optimize product development and marketing strategies for global markets, ensuring enhanced user satisfaction and long-term competitiveness. Future studies could explore multi-source data integration and conduct longitudinal analyses to capture changing trends over time.Keywords: consumer behavior, durability, laptop industry, sentiment analysis, social media analytics
Procedia PDF Downloads 1519880 High Temperature Oxidation Behavior of Aluminized Steel by Arc Spray and Cementation Techniques
Authors: Minoo Tavakoli, Alireza Kiani Rashid, Abbas Afrasiabi
Abstract:
An aluminum coating deposited on mild steel substrate by electric arc spray and diffused to the base steel material by diffusion treatment at 800 and 900°C for 1 and 3 hours in a static air. Alloy layers formed by diffusion at both temperatures were investigated, and their features were compared with those of pack cementation aluminized steel. High-temperature oxidation tests were carried out in air at 600 °C for 145 hours. Results indicated that the aluminide coatings obtained from this process have significantly improved the high-temperature oxidation resistance in both methods due to the Al2O3 scale formation. Furthermore, it showed that the isothermal oxidation resistance of arc spray technique is better than pack cementation method. This can be attributed to voids that formed at the intermetallic layer /Al layer interface which is increased in the pack cementation method.Keywords: electric arc spray, pack cementation, oxidation resistance, aluminized steel
Procedia PDF Downloads 46819879 Drive Sharing with Multimodal Interaction: Enhancing Safety and Efficiency
Authors: Sagar Jitendra Mahendrakar
Abstract:
Exploratory testing is a dynamic and adaptable method of software quality assurance that is frequently praised for its ability to find hidden flaws and improve the overall quality of the product. Instead of using preset test cases, exploratory testing allows testers to explore the software application dynamically. This is in contrast to scripted testing methodologies, which primarily rely on tester intuition, creativity, and adaptability. There are several tools and techniques that can aid testers in the exploratory testing process which we will be discussing in this talk.Tests of this kind are able to find bugs of this kind that are harder to find during structured testing or that other testing methods may have overlooked.The purpose of this abstract is to examine the nature and importance of exploratory testing in modern software development methods. It explores the fundamental ideas of exploratory testing, highlighting the value of domain knowledge and tester experience in spotting possible problems that may escape the notice of traditional testing methodologies. Throughout the software development lifecycle, exploratory testing promotes quick feedback loops and continuous improvement by giving testers the ability to make decisions in real time based on their observations. This abstract also clarifies the unique features of exploratory testing, like its non-linearity and capacity to replicate user behavior in real-world settings. Testers can find intricate bugs, usability problems, and edge cases in software through impromptu exploration that might go undetected. Exploratory testing's flexible and iterative structure fits in well with agile and DevOps processes, allowing for a quicker time to market without sacrificing the quality of the final product.Keywords: exploratory, testing, automation, quality
Procedia PDF Downloads 5119878 Domain-Specific Languages Evaluation: A Literature Review and Experience Report
Authors: Sofia Meacham
Abstract:
In this abstract paper, the Domain-Specific Languages (DSL) evaluation will be presented based on existing literature and years of experience developing DSLs for several domains. The domains we worked on ranged from AI, business applications, and finances/accounting to health. In general, DSLs have been utilised in many domains to provide tailored and efficient solutions to address specific problems. Although they are a reputable method among highly technical circles and have also been used by non-technical experts with success, according to our knowledge, there isn’t a commonly accepted method for evaluating them. There are some methods that define criteria that are adaptations from the general software engineering quality criteria. Other literature focuses on the DSL usability aspect of evaluation and applies methods such as Human-Computer Interaction (HCI) and goal modeling. All these approaches are either hard to introduce, such as the goal modeling, or seem to ignore the domain-specific focus of the DSLs. From our experience, the DSLs have domain-specificity in their core, and consequently, the methods to evaluate them should also include domain-specific criteria in their core. The domain-specific criteria would require synergy between the domain experts and the DSL developers in the same way that DSLs cannot be developed without domain-experts involvement. Methods from agile and other software engineering practices, such as co-creation workshops, should be further emphasised and explored to facilitate this direction. Concluding, our latest experience and plans for DSLs evaluation will be presented and open for discussion.Keywords: domain-specific languages, DSL evaluation, DSL usability, DSL quality metrics
Procedia PDF Downloads 10319877 Teaching Academic Writing for Publication: A Liminal Threshold Experience Towards Development of Scholarly Identity
Authors: Belinda du Plooy, Ruth Albertyn, Christel Troskie-De Bruin, Ella Belcher
Abstract:
In the academy, scholarliness or intellectual craftsmanship is considered the highest level of achievement, culminating in being consistently successfully published in impactful, peer-reviewed journals and books. Scholarliness implies rigorous methods, systematic exposition, in-depth analysis and evaluation, and the highest level of critical engagement and reflexivity. However, being a scholar does not happen automatically when one becomes an academic or completes graduate studies. A graduate qualification is an indication of one’s level of research competence but does not necessarily prepare one for the type of scholarly writing for publication required after a postgraduate qualification has been conferred. Scholarly writing for publication requires a high-level skillset and a specific mindset, which must be intentionally developed. The rite of passage to become a scholar is an iterative process with liminal spaces, thresholds, transitions, and transformations. The journey from researcher to published author is often fraught with rejection, insecurity, and disappointment and requires resilience and tenacity from those who eventually triumph. It cannot be achieved without support, guidance, and mentorship. In this article, the authors use collective auto-ethnography (CAE) to describe the phases and types of liminality encountered during the liminal journey toward scholarship. The authors speak as long-time facilitators of Writing for Academic Publication (WfAP) capacity development events (training workshops and writing retreats) presented at South African universities. Their WfAP facilitation practice is structured around experiential learning principles that allow them to act as critical reading partners and reflective witnesses for the writer-participants of their WfAP events. They identify three essential facilitation features for the effective holding of a generative, liminal, and transformational writing space for novice academic writers in order to enable their safe passage through the various liminal spaces they encounter during their scholarly development journey. These features are that facilitators should be agents of disruption and liminality while also guiding writers through these liminal spaces; that there should be a sense of mutual trust and respect, shared responsibility and accountability in order for writers to produce publication-worthy scholarly work; and that this can only be accomplished with the continued application of high levels of sensitivity and discernment by WfAP facilitators. These are key features for successful WfAP scholarship training events, where focused, individual input triggers personal and professional transformational experiences, which in turn translate into high-quality scholarly outputs.Keywords: academic writing, liminality, scholarship, scholarliness, threshold experience, writing for publication
Procedia PDF Downloads 4419876 Evaluation of Robust Feature Descriptors for Texture Classification
Authors: Jia-Hong Lee, Mei-Yi Wu, Hsien-Tsung Kuo
Abstract:
Texture is an important characteristic in real and synthetic scenes. Texture analysis plays a critical role in inspecting surfaces and provides important techniques in a variety of applications. Although several descriptors have been presented to extract texture features, the development of object recognition is still a difficult task due to the complex aspects of texture. Recently, many robust and scaling-invariant image features such as SIFT, SURF and ORB have been successfully used in image retrieval and object recognition. In this paper, we have tried to compare the performance for texture classification using these feature descriptors with k-means clustering. Different classifiers including K-NN, Naive Bayes, Back Propagation Neural Network , Decision Tree and Kstar were applied in three texture image sets - UIUCTex, KTH-TIPS and Brodatz, respectively. Experimental results reveal SIFTS as the best average accuracy rate holder in UIUCTex, KTH-TIPS and SURF is advantaged in Brodatz texture set. BP neuro network works best in the test set classification among all used classifiers.Keywords: texture classification, texture descriptor, SIFT, SURF, ORB
Procedia PDF Downloads 36919875 Reading Literacy and Methods of Improving Reading
Authors: Iva Košek Bartošová, Andrea Jokešová, Eva Kozlová, Helena Matějová
Abstract:
The paper presents results of a research team from Faculty of Education, University of Hradec Králové in the Czech Republic. It introduces with the most reading methods used in the 1st classes of a primary school and presents results of a pilot research focused on mastering reading techniques and the quality of reading comprehension of pupils in the first half of a school year during training in teaching reading by an analytic-synthetic method and by a genetic method. These methods of practicing reading skills are the most used ones in the Czech Republic. During the school year 2015/16 there has been a measurement made of two groups of pupils of the 1st year and monitoring of quantitative and qualitative parameters of reading pupils’ outputs by several methods. Both of these methods are based on different theoretical basis and each of them has a specific educational and methodical procedure. This contribution represents results during a piloting project and draws pilot conclusions which will be verified in the subsequent broader research at the end of the school year of the first class of primary school.Keywords: analytic-synthetic method of reading, genetic method of reading, reading comprehension, reading literacy, reading methods, reading speed
Procedia PDF Downloads 25919874 Detection of Phoneme [S] Mispronounciation for Sigmatism Diagnosis in Adults
Authors: Michal Krecichwost, Zauzanna Miodonska, Pawel Badura
Abstract:
The diagnosis of sigmatism is mostly based on the observation of articulatory organs. It is, however, not always possible to precisely observe the vocal apparatus, in particular in the oral cavity of the patient. Speech processing can allow to objectify the therapy and simplify the verification of its progress. In the described study the methodology for classification of incorrectly pronounced phoneme [s] is proposed. The recordings come from adults. They were registered with the speech recorder at the sampling rate of 44.1 kHz and the resolution of 16 bit. The database of pathological and normative speech has been collected for the study including reference assessments provided by the speech therapy experts. Ten adult subjects were asked to simulate a certain type of stigmatism under the speech therapy expert supervision. In the recordings, the analyzed phone [s] was surrounded by vowels, viz: ASA, ESE, ISI, SPA, USU, YSY. Thirteen MFCC (mel-frequency cepstral coefficients) and RMS (root mean square) values are calculated within each frame being a part of the analyzed phoneme. Additionally, 3 fricative formants along with corresponding amplitudes are determined for the entire segment. In order to aggregate the information within the segment, the average value of each MFCC coefficient is calculated. All features of other types are aggregated by means of their 75th percentile. The proposed method of features aggregation reduces the size of the feature vector used in the classification. Binary SVM (support vector machine) classifier is employed at the phoneme recognition stage. The first group consists of pathological phones, while the other of the normative ones. The proposed feature vector yields classification sensitivity and specificity measures above 90% level in case of individual logo phones. The employment of a fricative formants-based information improves the sole-MFCC classification results average of 5 percentage points. The study shows that the employment of specific parameters for the selected phones improves the efficiency of pathology detection referred to the traditional methods of speech signal parameterization.Keywords: computer-aided pronunciation evaluation, sibilants, sigmatism diagnosis, speech processing
Procedia PDF Downloads 28319873 The Influence of Characteristics of Waste Water on Properties of Sewage Sludge
Authors: Catalina Iticescu, Lucian P. Georgescu, Mihaela Timofti, Gabriel Murariu, Catalina Topa
Abstract:
In the field of environmental protection in the EU and also in Romania, strict and clear rules are imposed that are respected. Among those, mandatory municipal wastewater treatment is included. Our study involved Municipal Wastewater Treatment Plant (MWWTP) of Galati. MWWTP began its activity by the end of 2011 and technology is one of the most modern used in the EU. Moreover, to our knowledge, it is the first technology of this kind used in the region. Until commissioning, municipal wastewater was discharged directly into the Danube without any treatment. Besides the benefits of depollution, a new problem has arisen: the accumulation of increasingly large sewage sludge. Therefore, it is extremely important to find economically feasible and environmentally friendly solutions. One of the most feasible methods of disposing of sewage sludge is their use on agricultural land. Sewage sludge can be used in agriculture if monitored in terms of physicochemical properties (pH, nutrients, heavy metals, etc.), in order not to contribute to pollution in soils and not to affect chemical and biological balances, which are relatively fragile. In this paper, 16 physico-chemical parameters were monitored. Experimental testings were realised on waste water samples, sewage sludge results and treated water samples. Testing was conducted with electrochemichal methods (pH, conductivity, TDS); parameters N-total (mg/L), P-total (mg/L), N-NH4 (mg/L), N-NO2 (mg/L), N-NO3 (mg/L), Fe-total (mg/L), Cr-total (mg/L), Cu (mg/L), Zn (mg/L), Cd (mg/L), Pb (mg/L), Ni (mg/L) were determined by spectrophotometric methods using a spectrophotometer NOVA 60 and specific kits. Analyzing the results, we concluded that Sewage sludges, although containing heavy metals, are in small quantities and will not affect the land on which they will be deposited. Also, the amount of nutrients contained are appreciable. These features indicate that the sludge can be safely used in agriculture, with the advantage that they represent a cheap fertilizer. Acknowledgement: This work was supported by a grant of the Romanian National Authority for Scientific Research and Innovation – UEFISCDI, PNCDI III project, 79BG/2017, Efficiency of the technological process for obtaining of sewage sludge usable in agriculture, Efficient.Keywords: municipal wastewater, physico-chemical properties, sewage sludge, technology
Procedia PDF Downloads 20919872 Impacts of Hydrologic and Topographic Changes on Water Regime Evolution of Poyang Lake, China
Authors: Feng Huang, Carlos G. Ochoa, Haitao Zhao
Abstract:
Poyang Lake, the largest freshwater lake in China, is located at the middle-lower reaches of the Yangtze River basin. It has great value in socioeconomic development and is internationally recognized as an important lacustrine and wetland ecosystem with abundant biodiversity. Impacted by ongoing climate change and anthropogenic activities, especially the regulation of the Three Gorges Reservoir since 2003, Poyang Lake has experienced significant water regime evolution, resulting in challenges for the management of water resources and the environment. Quantifying the contribution of hydrologic and topographic changes to water regime alteration is necessary for policymakers to design effective adaption strategies. Long term hydrologic data were collected and the back-propagation neural networks were constructed to simulate the lake water level. The impacts of hydrologic and topographic changes were differentiated through scenario analysis that considered pre-impact and post-impact hydrologic and topographic scenarios. The lake water regime was characterized by hydrologic indicators that describe monthly water level fluctuations, hydrologic features during flood and drought seasons, and frequency and rate of hydrologic variations. The results revealed different contributions of hydrologic and topographic changes to different features of the lake water regime.Noticeable changes were that the water level declined dramatically during the period of reservoir impoundment, and the drought was enhanced during the dry season. The hydrologic and topographic changes exerted a synergistic effect or antagonistic effect on different lake water regime features. The findings provide scientific reference for lacustrine and wetland ecological protection associated with water regime alterations.Keywords: back-propagation neural network, scenario analysis, water regime, Poyang Lake
Procedia PDF Downloads 13919871 Linguistic Analysis of Borderline Personality Disorder: Using Language to Predict Maladaptive Thoughts and Behaviours
Authors: Charlotte Entwistle, Ryan Boyd
Abstract:
Recent developments in information retrieval techniques and natural language processing have allowed for greater exploration of psychological and social processes. Linguistic analysis methods for understanding behaviour have provided useful insights within the field of mental health. One area within mental health that has received little attention though, is borderline personality disorder (BPD). BPD is a common mental health disorder characterised by instability of interpersonal relationships, self-image and affect. It also manifests through maladaptive behaviours, such as impulsivity and self-harm. Examination of language patterns associated with BPD could allow for a greater understanding of the disorder and its links to maladaptive thoughts and behaviours. Language analysis methods could also be used in a predictive way, such as by identifying indicators of BPD or predicting maladaptive thoughts, emotions and behaviours. Additionally, associations that are uncovered between language and maladaptive thoughts and behaviours could then be applied at a more general level. This study explores linguistic characteristics of BPD, and their links to maladaptive thoughts and behaviours, through the analysis of social media data. Data were collected from a large corpus of posts from the publicly available social media platform Reddit, namely, from the ‘r/BPD’ subreddit whereby people identify as having BPD. Data were collected using the Python Reddit API Wrapper and included all users which had posted within the BPD subreddit. All posts were manually inspected to ensure that they were not posted by someone who clearly did not have BPD, such as people posting about a loved one with BPD. These users were then tracked across all other subreddits of which they had posted in and data from these subreddits were also collected. Additionally, data were collected from a random control group of Reddit users. Disorder-relevant behaviours, such as self-harming or aggression-related behaviours, outlined within Reddit posts were coded to by expert raters. All posts and comments were aggregated by user and split by subreddit. Language data were then analysed using the Linguistic Inquiry and Word Count (LIWC) 2015 software. LIWC is a text analysis program that identifies and categorises words based on linguistic and paralinguistic dimensions, psychological constructs and personal concern categories. Statistical analyses of linguistic features could then be conducted. Findings revealed distinct linguistic features associated with BPD, based on Reddit posts, which differentiated these users from a control group. Language patterns were also found to be associated with the occurrence of maladaptive thoughts and behaviours. Thus, this study demonstrates that there are indeed linguistic markers of BPD present on social media. It also implies that language could be predictive of maladaptive thoughts and behaviours associated with BPD. These findings are of importance as they suggest potential for clinical interventions to be provided based on the language of people with BPD to try to reduce the likelihood of maladaptive thoughts and behaviours occurring. For example, by social media tracking or engaging people with BPD in expressive writing therapy. Overall, this study has provided a greater understanding of the disorder and how it manifests through language and behaviour.Keywords: behaviour analysis, borderline personality disorder, natural language processing, social media data
Procedia PDF Downloads 349