Search results for: electrical potential
12149 Response of Selected Echocardiographic Features to Aerobic Training in Obese Hypertensive Males
Authors: Abeer Ahmed Abdelhameed
Abstract:
The aim of this study was to investigate the effect of aerobic exercises on LV parameters, lipid profile, and anthropometric measurements in hypertensive middle aged male subjects. Thirty obese patients were recruited for the study from the outpatient clinic of National Heart Institute, Egypt. Their ages ranges from 40 to 60 years. All participants underwent an aerobic training program including regular aerobic sub-maximal exercises in the form of treadmill walking and abdominal exercises 3/week for four months, the exercise were individually tailored for each participant depending on the result of cardiopulmonary exercise test. The result showed no significant difference observed in both LVPWT and LVSWT data from pre-test values to post-test values in all subjects after 4 months, with a significant reduction in WHR, systolic blood pressure, TAG and LDL records. Result also revealed a significant increase in HDL, Eƒ, LVEDD and FS records for all participants. The significant improvement in ventricular functions in form of ejection fraction of electrical group more than exercise group after 4 months at the end of the study may be due to the beneficial effect of faradic stimulation in lipolysis of storage adipose tissues, stimulation of lean body mass and muscles and/or thermal effect that improves vascularization.Keywords: left ventricular parameters, aerobic training, electrical stimulation, lipid profile
Procedia PDF Downloads 25412148 Assessing Carbon Stock and Sequestration of Reforestation Species on Old Mining Sites in Morocco Using the DNDC Model
Authors: Nabil Elkhatri, Mohamed Louay Metougui, Ngonidzashe Chirinda
Abstract:
Mining activities have left a legacy of degraded landscapes, prompting urgent efforts for ecological restoration. Reforestation holds promise as a potent tool to rehabilitate these old mining sites, with the potential to sequester carbon and contribute to climate change mitigation. This study focuses on evaluating the carbon stock and sequestration potential of reforestation species in the context of Morocco's mining areas, employing the DeNitrification-DeComposition (DNDC) model. The research is grounded in recognizing the need to connect theoretical models with practical implementation, ensuring that reforestation efforts are informed by accurate and context-specific data. Field data collection encompasses growth patterns, biomass accumulation, and carbon sequestration rates, establishing an empirical foundation for the study's analyses. By integrating the collected data with the DNDC model, the study aims to provide a comprehensive understanding of carbon dynamics within reforested ecosystems on old mining sites. The major findings reveal varying sequestration rates among different reforestation species, indicating the potential for species-specific optimization of reforestation strategies to enhance carbon capture. This research's significance lies in its potential to contribute to sustainable land management practices and climate change mitigation strategies. By quantifying the carbon stock and sequestration potential of reforestation species, the study serves as a valuable resource for policymakers, land managers, and practitioners involved in ecological restoration and carbon management. Ultimately, the study aligns with global objectives to rejuvenate degraded landscapes while addressing pressing climate challenges.Keywords: carbon stock, carbon sequestration, DNDC model, ecological restoration, mining sites, Morocco, reforestation, sustainable land management.
Procedia PDF Downloads 7612147 Integration of Sustainable Development into the Bachelor of Electrical and Electronics Engineering Degree Program in UNITEN
Authors: Nagaletchumi Balasubramaniam, A. Mohd Isa
Abstract:
Engineers have a leading role in planning, designing, building and ensuring a sustainable future. Universiti Tenaga Nasional (UNITEN) acknowledges this role by assigning sustainable development as one of the expected traits that a UNITEN student should have upon graduation, formalized as the Programme Outcomes 7 (PO7): Students graduating from the Bachelor of Electrical and Electronics (BEEE) program will have the ability to demonstrate knowledge of the impact of professional engineering solutions in environmental contexts and the need for sustainable development. This paper explores how PO7 is integrated within the BEEE (Hons) program in UNITEN under the framework of Outcome Base Education (OBE). Five technical core courses were specifically assigned by UNITEN to reflect attainment of PO7. Under UNITEN’s definition, the attainment criterion of a PO is set as 70/40. This means that 70% of the students taking the course achieve at least 40% of the full marks. The paper first gives an overview of the overall OBE system as applied in UNITEN, particularly describing the key and supporting courses approach adopted for each PO. Then, the paper reviews the mechanism in which PO7 is taught and assessed in the five assigned courses. Data on PO7 attainment from four of the five courses are collected and analyzed for two student cohorts to investigate the interrelationship between the courses assigned to PO7. It was found that the five courses have different mechanisms for assessing PO7, and that generally PO7 is attained for the assigned courses. This reflects positively on the UNITEN method for integrating sustainable development within the engineering undergraduate programme.Keywords: direct assessment, engineering education, outcome base education, programme outcome, sustainable development
Procedia PDF Downloads 23712146 Present and Future of Micromobility in the City of Medellin
Authors: Saul Emilio Rivero Mejia, Estefanya Marin Tabares, Carlos Andres Rodriguez Toro, Katherine Bolano Restrepo, Sarita Santa Cortes
Abstract:
Medellin is the Colombian city with the best public transportation system in the country, which is composed of two subway lines, five metro cables, two Bus Rapid Transit lines, and a streetcar. But despite the above, the Aburra Valley, the area in which the city is located, comparatively speaking, has a lower number of urban roads per inhabitant built, compared to the national average. In addition, since there is approximately one vehicle for every three inhabitants in Medellin, the problems of congestion and environmental pollution have become more acute over the years, and it has even been necessary to implement restrictive measures to the use of private vehicles on a permanent basis. In that sense, due to the limitations of physical space, the low public investment in road infrastructure, it is necessary to opt for mobility alternatives according to the above. Within the options for the city, there is what is known as micromobility. Micromobility is understood as those small and light means of transport used to travel short distances, which use electrical energy, such as skateboards and bicycles. These transport alternatives have a high potential for use by the city's young population, but this requires an adequate infrastructure and also state regulation. Taking into account the above, this paper will analyze the current state and future of micro mobility in the city of Medellin, making a prospective analysis, supported by a PEST (political, economic, social and technological) analysis. Based on the above, it is expected to identify the growth of demand for these alternative means and its impact on the mobility of the city in the medium and short term.Keywords: electric, micromobility, transport, sustainable
Procedia PDF Downloads 12512145 Systematic Review of Current Best Practice in the Diagnosis and Treatment of Obsessive Compulsive Disorder
Authors: Zahra R. Almansoor
Abstract:
Background: Selective serotonin reuptake inhibitors (SSRI’s) and cognitive behavioural therapy (CBT) are the main treatment methods used for patients with obsessive compulsive disorder (OCD) under the National Institute of Health and Care Excellence (NICE) guidelines. Yet many patients are left with residual symptoms or remit, so several other therapeutic approaches have been explored. Objective: The objective was to systematically review the available literature regarding the treatment efficacy of current and potential approaches and diagnostic strategies. Method: First, studies were examined concerning diagnosis, prognosis, and influencing factors. Then, one reviewer conducted a systematic search of six databases using stringent search terms. Results of studies exploring the efficacy of treatment interventions were analysed and compared separately for adults and children. This review was limited to randomised controlled trials (RCT’s) conducted from 2016 onwards, and an improved Y-BOCS (Yale- Brown obsessive compulsive scale) score was the primary outcome measure. Results: Technology-based interventions including internet-based cognitive behavioural therapy (iCBT) were deemed as potentially effective. Discrepancy remains about the benefits of SSRI use past one year, but potential medication adjuncts include amantadine. Treatments such as association splitting and family and mindfulness strategies also have future potential. Conclusion: A range of potential therapies exist, either as treatment adjuncts to current interventions or as sole therapies. To further improve efficacy, it may be necessary to remodel the current NICE stepped-care model, especially regarding the potential use of lower intensity, cheaper treatments, including iCBT. Although many interventions show promise, further research is warranted to confirm this.Keywords: family and group treatment, mindfulness strategies, novel treatment approaches, standard treatment, technology-based interventions
Procedia PDF Downloads 11912144 Assessment of Groundwater Quality around a Cement Factory in Ewekoro, Ogun State, Southwest Nigeria
Authors: A. O. David, A. A. Akaho, M. A. Abah, J. O. Ogunjimi
Abstract:
This study focuses on the growing concerns about the quality of groundwater found around cement factories, which have caused several health issues for residents located within two (2) kilometer radius. The qualities of groundwater were determined by an investigative study that involved the determination of some heavy metals and physicochemical properties in drinking water samples. Eight (8) samples of groundwater were collected from the eight sampling sites. The samples were analysed for the following parameters; iron, copper, manganese, zinc, lead, color, dissolved solids, electrical conductivity, pH, dissolved oxygen (DO), biological oxygen demand (BOD), chemical oxygen demand (COD), temperature, turbidity and total hardness using standard methods. The test results showed the variation of the investigated parameters in the samples as follows: temperature 26-31oC, pH 5.9-7.2, electrical conductivity (EC) 0.37 – 0.78 µS/cm, total hardness 181.8 – 333.0 mg/l, turbidity 0.00-0.05 FTU, colour 5-10 TCU, dissolved oxygen 4.31-5.01 mg/l, BOD 0.2-1.0 mg/l, COD 2.0 -4.0 mg/l, Cu 0.04 – 0.09 mg/l, Fe 0.006-0.122 mg/l, Zn 0.016-0.306 mg/l, Mn 0.01-0.05 mg/l and Pb < 0.001 mg/l. The World Health Organization's standard for drinking water quality guidelines was exceeded in several of the analyzed parameters' amounts in the drinking water samples from the study area. The dissolved oxygen was found to exceed 5.0 mg/l, which is the WHO permissible limit; also, Limestone was found to exceed the WHO maximum limit of 170 mg/l. All the above results confirmed the high pollution of the groundwater sources, and hence, they are not suitable for consumption without any prior treatment.Keywords: groundwater, quality, heavy metals, parameters
Procedia PDF Downloads 6512143 Durability of Slurry Infiltrated Fiber Concrete to Corrosion in Chloride Environment: An Experimental Study, Part I
Authors: M. F. Alrubaie, S. A. Salih, W. A. Abbas
Abstract:
Slurry infiltrated fiber concrete (SIFCON) is considered as a special type of high strength high-performance fiber reinforced concrete, extremely strong, and ductile. The objective of this study is to investigate the durability of SIFCON to corrosion in chloride environments. Six different SIFCON mixes were made in addition to two refinance mixes with 0% and 1.5% steel fiber content. All mixes were exposed to 10% chloride solution for 180 days. Half of the specimens were partially immersed in chloride solution, and the others were exposed to weekly cycles of wetting and drying in 10% chloride solution. The effectiveness of using corrosion inhibitors, mineral admixture, and epoxy protective coating were also evaluated as protective measures to reduce the effect of chloride attack and to improve the corrosion resistance of SIFCON mixes. Corrosion rates, half-cell potential, electrical resistivity, total permeability tests had been monitored monthly. The results indicated a significant improvement in performance for SIFCON mixes exposed to chloride environment, when using corrosion inhibitor or epoxy protective coating, whereas SIFCON mix contained mineral admixture (metakaolin) did not improve the corrosion resistance at the same level. The cyclic wetting and drying exposure were more aggressive to the specimens than the partial immersion in chloride solution although the observed surface corrosion for the later was clearer.Keywords: chloride attack, chloride environments, corrosion inhibitor, corrosion resistance, durability, SIFCON, slurry infiltrated fiber concrete
Procedia PDF Downloads 13612142 Components of Arterial Pressure and Its Association with Dietary Inflammatory Potential of Older Individuals: The Multinational Medis Study
Authors: Demosthenes Panagiotakos
Abstract:
The aim of the present work was to evaluate dietary habits’ inflammatory potential with various components of arterial blood pressure (hypertension, mean arterial pressure (MAP) and pulse pressure (PP)) in a sample of older Mediterranean people without known cardiovascular disease. During 2005-2011, 2,813 older (aged 65-100 years) individuals from 21 Mediterranean islands and the rural Mani region (Peloponnesus) were voluntarily enrolled. Standard procedures were used to determine arterial blood pressure, as well as PP and MAP, and for the evaluation of dietary habits, lifestyle, anthropometric and clinical characteristics of the participants. A dietary inflammatory index (DII) was assessed based on the participants specific dietary habits, and its calculation was based on a standard procedure. It was reported that the higher the DII level of a diet (adherence to a more pro-inflammatory diet) the greater was the likelihood of having an older adult hypertension [OR=3.82 (95% CI): 1.24 to 11.71]. Moreover, the higher the level of DII (more pro-inflammatory dietary habits) the greater were the levels of MAP [b-coefficient (95% CI): 7.23 (+1.86 to +12.59)] and PP, [b-coefficient (95% CI): 10.86 (+2.70 to +19.01)]. Diet’s inflammatory potential is related with various components of arterial pressure. Adherence to a more pro-inflammatory diet seems to be associated with increased arterial peripheral resistance and arterial stiffness.Keywords: dietary inflammatory index, hypertension, mean arterial pressure, elderly
Procedia PDF Downloads 27812141 Requirements Gathering for Improved Software Usability and the Potential for Usage-Centred Design
Authors: Kholod J. Alotaibi, Andrew M. Gravell
Abstract:
Usability is an important software quality that is often neglected at the design stage. Although methods exist to incorporate elements of usability engineering, there is a need for more balanced usability focused methods that can enhance the experience of software usability for users. In this regard, the potential for Usage-Centered Design is explored with respect to requirements gathering and is shown to lead to high software usability besides other benefits. It achieves this through its focus on usage, defining essential use cases, by conducting task modeling, encouraging user collaboration, refining requirements, and so on. The requirements gathering process in UgCD is described in detail.Keywords: requirements gathering, usability, usage-centred design, computer science
Procedia PDF Downloads 35812140 DG Allocation to Reduce Production Cost by Reducing Losses in Radial Distribution Systems Using Fuzzy
Authors: G. V. Siva Krishna Rao, B. Srinivasa Rao
Abstract:
Electrical energy is vital in every aspect of day-to-day life. Keen interest is taken on all possible sources of energy from which it can be generated and this led to the encouragement of generating electrical power using renewable energy resources such as solar, tidal waves and wind energy. Due to the increasing interest on renewable sources in recent times, the studies on integration of distributed generation to the power grid have rapidly increased. Distributed Generation (DG) is a promising solution to many power system problems such as voltage regulation, power loss and reduction in operational cost, etc. To reduce production cost, it is important to minimize the losses by determining the location and size of local generators to be placed in the radial distribution systems. In this paper, reduction of production cost by optimal size of DG unit operated at optimal power factor is dealt. The optimal size of the DG unit is calculated analytically using approximate reasoning suitable nodes and DG placement to minimize production cost with minimum loss is determined by fuzzy technique. Total Cost of Power generation is compared with and without DG unit for 1 year duration. The suggested method is programmed under MATLAB software and is tested on IEEE 33 bus system and the results are presented.Keywords: distributed generation, operational cost, exact loss formula, optimum size, optimum location
Procedia PDF Downloads 48412139 Switching Studies on Ge15In5Te56Ag24 Thin Films
Authors: Diptoshi Roy, G. Sreevidya Varma, S. Asokan, Chandasree Das
Abstract:
Germanium Telluride based quaternary thin film switching devices with composition Ge15In5Te56Ag24, have been deposited in sandwich geometry on glass substrate with aluminum as top and bottom electrodes. The bulk glassy form of the said composition is prepared by melt quenching technique. In this technique, appropriate quantity of elements with high purity are taken in a quartz ampoule and sealed under a vacuum of 10-5 mbar. Then, it is allowed to rotate in a horizontal rotary furnace for 36 hours to ensure homogeneity of the melt. After that, the ampoule is quenched into a mixture of ice - water and NaOH to get the bulk ingot of the sample. The sample is then coated on a glass substrate using flash evaporation technique at a vacuum level of 10-6 mbar. The XRD report reveals the amorphous nature of the thin film sample and Energy - Dispersive X-ray Analysis (EDAX) confirms that the film retains the same chemical composition as that of the base sample. Electrical switching behavior of the device is studied with the help of Keithley (2410c) source-measure unit interfaced with Lab VIEW 7 (National Instruments). Switching studies, mainly SET (changing the state of the material from amorphous to crystalline) operation is conducted on the thin film form of the sample. This device is found to manifest memory switching as the device remains 'ON' even after the removal of the electric field. Also it is found that amorphous Ge15In5Te56Ag24 thin film unveils clean memory type of electrical switching behavior which can be justified by the absence of fluctuation in the I-V characteristics. The I-V characteristic also reveals that the switching is faster in this sample as no data points could be seen in the negative resistance region during the transition to on state and this leads to the conclusion of fast phase change during SET process. Scanning Electron Microscopy (SEM) studies are performed on the chosen sample to study the structural changes at the time of switching. SEM studies on the switched Ge15In5Te56Ag24 sample has shown some morphological changes at the place of switching wherein it can be explained that a conducting crystalline channel is formed in the device when the device switches from high resistance to low resistance state. From these studies it can be concluded that the material may find its application in fast switching Non-Volatile Phase Change Memory (PCM) Devices.Keywords: Chalcogenides, Vapor deposition, Electrical switching, PCM.
Procedia PDF Downloads 37712138 Calculated Structural and Electronic Properties of Mg and Bi
Authors: G. Patricia Abdel Rahim, Jairo Arbey Rodriguez M, María Guadalupe Moreno Armenta
Abstract:
The present study shows the structural, electronic and magnetic properties of magnesium (Mg) and bismuth (Bi) in a supercell (1X1X5). For both materials were studied in five crystalline structures: rock salt (NaCl), cesium chloride (CsCl), zinc-blende (ZB), wurtzite (WZ), and nickel arsenide (NiAs), using the Density Functional Theory (DFT), the Generalized Gradient Approximation (GGA), and the Full Potential Linear Augmented Plane Wave (FP-LAPW) method. By means of fitting the Murnaghan's state equation we determine the lattice constant, the bulk modulus and it's derived with the pressure. Also we calculated the density of states (DOS) and the band structure.Keywords: bismuth, magnesium, pseudo-potential, supercell
Procedia PDF Downloads 82212137 Corrosion of Steel in Relation with Hydrogen Activity of Concentrated HClO4 Media: Realisation Sensor and Reference Electrode
Authors: B. Hammouti, H. Oudda, A. Benabdellah, A. Benayada, A. Aouniti
Abstract:
Corrosion behaviour of carbon steel was studied in various concentrated HClO4 solutions. To explain the acid attack in relation of H+ activity, new sensor was realised: two carbon paste electrodes (CPE) were constructed by incorporating ferrocene (Fc) and orthoquinone into the carbon paste matrix and crossed by weak current to stabilize potential difference. The potentiometric method at imposed weak current between these two electrodes permits the in situ determination of both concentration and acidity level of various concentrated HClO4 solutions. The different factors affecting the potential at imposed current as current intensity, temperature and H+ ion concentration are studied. The potentials measured between ferrocene and chloranil electrodes are directly linked to the acid concentration. The acidity Ri(H) function defined represents the determination of the H+ activity and constitutes the extend of pH is concentrated acid solutions. Ri(H) has been determined and compared to Strehlow Ro(H), Janata HGF and Hammett Ho functions. The collected data permit to give a scale of strength of mineral concentrated acids at a given concentration. Ri(H) is numerically equal to the thermodynamic Ro(H), but deviated from Hammett functions based on indicator determination. The CPE electrode with inserted ferrocene in presence of ferricinium (Fc+) ion in concentrated HClO4 at various concentrations is realized without junction potential and may plays the role of a practical reference electrode (FRE) in concentrated acids. Fc+ was easily prepared in biphasic medium HClO4-acid by the quantitative oxidation of ferrocene by the ortho-chloranil (oQ). Potential of FRE is stable with time. The variation of equilibrium potential of the interface Fc/ Fc+ at various concentrations of Fc+ (10-4 - 2 10-2 M) obeyed to the Nernst equation with a slope 0.059 Volt per decade. Corrosion rates obtained by weight loss and electrochemical techniques were then easily linked to acidity level.Keywords: ferrocene, strehlow, concentrated acid, corrosion, Generalised pH, sensor carbon paste electrode
Procedia PDF Downloads 35512136 Characterization of Coal Fly Ash with Potential Use in the Manufacture Geopolymers to Solidify/Stabilize Heavy Metal Ions
Authors: P. M. Fonseca Alfonso, E. A. Murillo Ruiz, M. Diaz Lagos
Abstract:
Understanding the physicochemical properties and mineralogy of fly ash from a particular source is essential for to protect the environment and considering its possible applications, specifically, in the production of geopolymeric materials that solidify/stabilize heavy metals ions. The results of the characterization of three fly ash samples are shown in this paper. The samples were produced in the TERMOPAIPA IV thermal power plant in the State of Boyaca, Colombia. The particle size distribution, chemical composition, mineralogy, and molecular structure of three samples were analyzed using laser diffraction, X-ray fluorescence, inductively coupled plasma mass spectrometry, X-ray diffraction, and infrared spectroscopy respectively. The particle size distribution of the three samples probably ranges from 0.128 to 211 μm. Approximately 59 elements have been identified in the three samples. It is noticeable that the ashes are made up of aluminum and silicon compounds. Besides, the iron phase in low content was also found. According to the results found in this study, the fly ash samples type F has a great potential to be used as raw material for the manufacture of geopolymers with potential use in the stabilization/solidification of heavy metals; mainly due to the presence of amorphous aluminosilicates typical of this type of ash, which react effectively with alkali-activator.Keywords: fly ash, geopolymers, molecular structure, physicochemical properties.
Procedia PDF Downloads 11812135 Enhanced Decolourization and Biodegradation of Textile Azo and Xanthene Dyes by Using Bacterial Isolates
Authors: Gimhani Madhushika Hewayalage, Thilini Ariyadasa, Sanja Gunawardena
Abstract:
In Sri Lanka, the largest contribution for the industrial export earnings is governed by textile and apparel industry. However, this industry generates huge quantities of effluent consists of unfixed dyes which enhance the effluent colour and toxicity thereby leading towards environmental pollution. Therefore, the effluent should properly be treated prior to the release into the environment. The biological technique has now captured much attention as an environmental-friendly and cost-competitive effluent decolourization method due to the drawbacks of physical and chemical treatment techniques. The present study has focused on identifying dye decolourizing potential of several bacterial isolates obtained from the effluent of the local textile industry. Yellow EXF, Red EXF, Blue EXF, Nova Black WNN and Nylosan-Rhodamine-EB dyes have been selected for the study to represent different chromophore groups such as Azo and Xanthene. The rates of decolorization of each dye have been investigated by employing distinct bacterial isolates. Bacterial isolate which exhibited effective dye decolorizing potential was identified as Proteus mirabilis using 16S rRNA gene sequencing analysis. The high decolorizing rates of identified bacterial strain indicate its potential applicability in the treatment of dye-containing wastewaters.Keywords: azo, bacterial, biological, decolourization, xanthene
Procedia PDF Downloads 25212134 Different Stages for the Creation of Electric Arc Plasma through Slow Rate Current Injection to Single Exploding Wire, by Simulation and Experiment
Authors: Ali Kadivar, Kaveh Niayesh
Abstract:
This work simulates the voltage drop and resistance of the explosion of copper wires of diameters 25, 40, and 100 µm surrounded by 1 bar nitrogen exposed to a 150 A current and before plasma formation. The absorption of electrical energy in an exploding wire is greatly diminished when the plasma is formed. This study shows the importance of considering radiation and heat conductivity in the accuracy of the circuit simulations. The radiation of the dense plasma formed on the wire surface is modeled with the Net Emission Coefficient (NEC) and is mixed with heat conductivity through PLASIMO® software. A time-transient code for analyzing wire explosions driven by a slow current rise rate is developed. It solves a circuit equation coupled with one-dimensional (1D) equations for the copper electrical conductivity as a function of its physical state and Net Emission Coefficient (NEC) radiation. At first, an initial voltage drop over the copper wire, current, and temperature distribution at the time of expansion is derived. The experiments have demonstrated that wires remain rather uniform lengthwise during the explosion and can be simulated utilizing 1D simulations. Data from the first stage are then used as the initial conditions of the second stage, in which a simplified 1D model for high-Mach-number flows is adopted to describe the expansion of the core. The current was carried by the vaporized wire material before it was dispersed in nitrogen by the shock wave. In the third stage, using a three-dimensional model of the test bench, the streamer threshold is estimated. Electrical breakdown voltage is calculated without solving a full-blown plasma model by integrating Townsend growth coefficients (TdGC) along electric field lines. BOLSIG⁺ and LAPLACE databases are used to calculate the TdGC at different mixture ratios of nitrogen/copper vapor. The simulations show both radiation and heat conductivity should be considered for an adequate description of wire resistance, and gaseous discharges start at lower voltages than expected due to ultraviolet radiation and the exploding shocks, which may have ionized the nitrogen.Keywords: exploding wire, Townsend breakdown mechanism, streamer, metal vapor, shock waves
Procedia PDF Downloads 8812133 Accurate Binding Energy of Ytterbium Dimer from Ab Initio Calculations and Ultracold Photoassociation Spectroscopy
Authors: Giorgio Visentin, Alexei A. Buchachenko
Abstract:
Recent proposals to use Yb dimer as an optical clock and as a sensor for non-Newtonian gravity imply the knowledge of its interaction potential. Here, the ground-state Born-Oppenheimer Yb₂ potential energy curve is represented by a semi-analytical function, consisting of short- and long-range contributions. For the former, the systematic ab initio all-electron exact 2-component scalar-relativistic CCSD(T) calculations are carried out. Special care is taken to saturate diffuse basis set component with the atom- and bond-centered primitives and reach the complete basis set limit through n = D, T, Q sequence of the correlation-consistent polarized n-zeta basis sets. Similar approaches are used to the long-range dipole and quadrupole dispersion terms by implementing the CCSD(3) polarization propagator method for dynamic polarizabilities. Dispersion coefficients are then computed through Casimir-Polder integration. The semiclassical constraint on the number of the bound vibrational levels known for the ¹⁷⁴Yb isotope is used to scale the potential function. The scaling, based on the most accurate ab initio results, bounds the interaction energy of two Yb atoms within the narrow 734 ± 4 cm⁻¹ range, in reasonable agreement with the previous ab initio-based estimations. The resulting potentials can be used as the reference for more sophisticated models that go beyond the Born-Oppenheimer approximation and provide the means of their uncertainty estimations. The work is supported by Russian Science Foundation grant # 17-13-01466.Keywords: ab initio coupled cluster methods, interaction potential, semi-analytical function, ytterbium dimer
Procedia PDF Downloads 15412132 Woody Carbon Stock Potentials and Factor Affecting Their Storage in Munessa Forest, Southern Ethiopia
Authors: Mojo Mengistu Gelasso
Abstract:
The tropical forest is considered the most important forest ecosystem for mitigating climate change by sequestering a high amount of carbon. The potential carbon stock of the forest can be influenced by many factors. Therefore, studying these factors is crucial for understanding the determinants that affect the potential for woody carbon storage in the forest. This study was conducted to evaluate the potential for woody carbon stock and how it varies based on plant community types, as well as along altitudinal, slope, and aspect gradients in the Munessa dry Afromontane forest. Vegetation data was collected using systematic sampling. Five line transects were established at 100 m intervals along the altitudinal gradient between two consecutive transect lines. On each transect, 10 quadrats (20 x 20 m), separated by 200 m, were established. The woody carbon was estimated using an appropriate allometric equation formulated for tropical forests. The data was analyzed using one-way ANOVA in R software. The results showed that the total woody carbon stock of the Munessa forest was 210.43 ton/ha. The analysis of variance revealed that woody carbon density varied significantly based on environmental factors, while community types had no significant effect. The highest mean carbon stock was found at middle altitudes (2367-2533 m.a.s.l), lower slopes (0-13%), and west-facing aspects. The Podocarpus falcatus-Croton macrostachyus community type also contributed a higher woody carbon stock, as larger tree size classes and older trees dominated it. Overall, the potential for woody carbon sequestration in this study was strongly associated with environmental variables. Additionally, the uneven distribution of species with larger diameter at breast height (DBH) in the study area might be linked to anthropogenic factors, as the current forest growth indicates characteristics of a secondary forest. Therefore, our study suggests that the development and implementation of a sustainable forest management plan is necessary to increase the carbon sequestration potential of this forest and mitigate climate change.Keywords: munessa forest, woody carbon stock, environmental factors, climate mitigation
Procedia PDF Downloads 8012131 Woody Carbon Stock Potentials and Factor Affecting Their Storage in Munessa Forest, Southern Ethiopia
Authors: Mengistu Gelasso Mojo
Abstract:
The tropical forest is considered the most important forest ecosystem for mitigating climate change by sequestering a high amount of carbon. The potential carbon stock of the forest can be influenced by many factors. Therefore, studying these factors is crucial for understanding the determinants that affect the potential for woody carbon storage in the forest. This study was conducted to evaluate the potential for woody carbon stock and how it varies based on plant community types, as well as along altitudinal, slope, and aspect gradients in the Munessa dry Afromontane forest. Vegetation data was collected using systematic sampling. Five line transects were established at 100 m intervals along the altitudinal gradient between two consecutive transect lines. On each transect, 10 quadrats (20 x 20 m), separated by 200 m, were established. The woody carbon was estimated using an appropriate allometric equation formulated for tropical forests. The data was analyzed using one-way ANOVA in R software. The results showed that the total woody carbon stock of the Munessa forest was 210.43 ton/ha. The analysis of variance revealed that woody carbon density varied significantly based on environmental factors, while community types had no significant effect. The highest mean carbon stock was found at middle altitudes (2367-2533 m.a.s.l), lower slopes (0-13%), and west-facing aspects. The Podocarpus falcatus-Croton macrostachyus community type also contributed a higher woody carbon stock, as larger tree size classes and older trees dominated it. Overall, the potential for woody carbon sequestration in this study was strongly associated with environmental variables. Additionally, the uneven distribution of species with larger diameter at breast height (DBH) in the study area might be linked to anthropogenic factors, as the current forest growth indicates characteristics of a secondary forest. Therefore, our study suggests that the development and implementation of a sustainable forest management plan is necessary to increase the carbon sequestration potential of this forest and mitigate climate change.Keywords: munessa forest, woody carbon stock, environmental factors, climate mitigation
Procedia PDF Downloads 8312130 The Influences of Accountants’ Potential Performance on Their Working Process: Government Savings Bank, Northeast, Thailand
Authors: Prateep Wajeetongratana
Abstract:
The purpose of this research was to study the influence of accountants’ potential performance on their working process, a case study of Government Savings Banks in the northeast of Thailand. The independent variables included accounting knowledge, accounting skill, accounting value, accounting ethics, and accounting attitude, while the dependent variable included the success of the working process. A total of 155 accountants working for Government Savings Banks were selected by random sampling. A questionnaire was used as a tool for collecting data. Descriptive statistics in this research included percentage, mean, and multiple regression analyses. The findings revealed that the majority of accountants were female with an age between 35-40 years old. Most of the respondents had an undergraduate degree with ten years of experience. Moreover, the factors of accounting knowledge, accounting skill, accounting a value and accounting ethics and accounting attitude were rated at a high level. The findings from regression analysis of observation data revealed a causal relationship in that the observation data could explain at least 51 percent of the success in the accountants’ working process.Keywords: influence, potential performance, success, working process
Procedia PDF Downloads 22712129 Research on the Effect of Accelerated Aging Illumination Mode on Bifacial Solar Modules
Authors: T. H. Huang, C. L. Fern, Y. K. Tseng
Abstract:
The design and reliability of solar photovoltaic modules are crucial to the development of solar energy, and efforts are still being made to extend the life of photovoltaic modules to improve their efficiency because natural aging is time-consuming and does not provide manufacturers and investors with timely information, accelerated aging is currently the best way to estimate the life of photovoltaic modules. Bifacial solar cells not only absorb light from the front side but also absorb light reflected from the ground on the back side, surpassing the performance of single-sided solar cells. Due to the asymmetry of the two sides of the light, in addition to the difference in photovoltaic conversion efficiency, there will also be differences in heat distribution, which will affect the electrical properties and material structure of the bifacial solar cell itself. In this study, there are two types of experimental samples: packaged and unpackaged and then irradiated with UVC light sources and halogen lamps for accelerated aging, as well as a control group without aging. After two weeks of accelerated aging, the bifacial solar cells were visual observation, and infrared thermal images were taken; then, the samples were subjected to IV measurement, and samples were taken for SEM, Raman, and XRD analyses in order to identify the defects that lead to failure and chemical changes, as well as to analyze the reasons for the degradation of their characteristics. From the results of the analysis, it is found that aging will cause carbonization of the polymer material on the surface of bifacial solar cells, and the crystal structure will be affected.Keywords: bifacial solar cell, accelerated aging, temperature, characterization, electrical measurement
Procedia PDF Downloads 11312128 Epigenetic Reprogramming of Aging: Reversing the Clock for Regenerative Medicine
Authors: Mohammad Ahmad Ahmad Odah
Abstract:
Aging is a complex biological process characterized by the progressive decline of physiological functions and increased vulnerability to age-related diseases. Epigenetic changes, particularly DNA methylation alterations, play a critical role in the aging process by influencing gene expression and genomic stability. This study explores the potential of epigenetic reprogramming as a strategy to reverse aging phenotypes in human fibroblasts. Using CRISPR-Cas9 gene editing and small molecule inhibitors targeting DNA methylation and histone acetylation, we successfully induced significant changes in DNA methylation and gene expression profiles. Our results demonstrate a global reduction in DNA methylation levels and the identification of differentially methylated regions (DMRs) associated with cellular senescence and DNA repair. Additionally, treated fibroblasts exhibited enhanced proliferative capacity, reduced cellular senescence, and improved differentiation potential. These findings suggest that epigenetic reprogramming could be a promising approach for regenerative medicine, offering potential therapeutic strategies to counteract age-related decline and extend healthy lifespan.Keywords: epigenetic reprogramming, aging, regenerative medicine, DNA methylation, cellular rejuvenation, CRISPR-Cas9, senescence
Procedia PDF Downloads 3712127 Blockchain for IoT Security and Privacy in Healthcare Sector
Authors: Umair Shafique, Hafiz Usman Zia, Fiaz Majeed, Samina Naz, Javeria Ahmed, Maleeha Zainab
Abstract:
The Internet of Things (IoT) has become a hot topic for the last couple of years. This innovative technology has shown promising progress in various areas, and the world has witnessed exponential growth in multiple application domains. Researchers are working to investigate its aptitudes to get the best from it by harnessing its true potential. But at the same time, IoT networks open up a new aspect of vulnerability and physical threats to data integrity, privacy, and confidentiality. It's is due to centralized control, data silos approach for handling information, and a lack of standardization in the IoT networks. As we know, blockchain is a new technology that involves creating secure distributed ledgers to store and communicate data. Some of the benefits include resiliency, integrity, anonymity, decentralization, and autonomous control. The potential for blockchain technology to provide the key to managing and controlling IoT has created a new wave of excitement around the idea of putting that data back into the hands of the end-users. In this manuscript, we have proposed a model that combines blockchain and IoT networks to address potential security and privacy issues in the healthcare domain. Then we try to describe various application areas, challenges, and future directions in the healthcare sector where blockchain platforms merge with IoT networks.Keywords: IoT, blockchain, cryptocurrency, healthcare, consensus, data
Procedia PDF Downloads 18012126 Magneto-Thermo-Mechanical Analysis of Electromagnetic Devices Using the Finite Element Method
Authors: Michael G. Pantelyat
Abstract:
Fundamental basics of pure and applied research in the area of magneto-thermo-mechanical numerical analysis and design of innovative electromagnetic devices (modern induction heaters, novel thermoelastic actuators, rotating electrical machines, induction cookers, electrophysical devices) are elaborated. Thus, mathematical models of magneto-thermo-mechanical processes in electromagnetic devices taking into account main interactions of interrelated phenomena are developed. In addition, graphical representation of coupled (multiphysics) phenomena under consideration is proposed. Besides, numerical techniques for nonlinear problems solution are developed. On this base, effective numerical algorithms for solution of actual problems of practical interest are proposed, validated and implemented in applied 2D and 3D computer codes developed. Many applied problems of practical interest regarding modern electrical engineering devices are numerically solved. Investigations of the influences of various interrelated physical phenomena (temperature dependences of material properties, thermal radiation, conditions of convective heat transfer, contact phenomena, etc.) on the accuracy of the electromagnetic, thermal and structural analyses are conducted. Important practical recommendations on the choice of rational structures, materials and operation modes of electromagnetic devices under consideration are proposed and implemented in industry.Keywords: electromagnetic devices, multiphysics, numerical analysis, simulation and design
Procedia PDF Downloads 38612125 Thermal Transport Properties of Common Transition Single Metal Atom Catalysts
Authors: Yuxi Zhu, Zhenqian Chen
Abstract:
It is of great interest to investigate the thermal properties of non-precious metal catalysts for Proton exchange membrane fuel cell (PEMFC) based on the thermal management requirements. Due to the low symmetry of materials, to accurately obtain the thermal conductivity of materials, it is necessary to obtain the second and third order force constants by combining density functional theory and machine learning interatomic potential. To be specific, the interatomic force constants are obtained by moment tensor potential (MTP), which is trained by the computational trajectory of Ab initio molecular dynamics (AIMD) at 50, 300, 600, and 900 K for 1 ps each, with a time step of 1 fs in the AIMD computation. And then the thermal conductivity can be obtained by solving the Boltzmann transport equation. In this paper, the thermal transport properties of single metal atom catalysts are studied for the first time to our best knowledge by machine-learning interatomic potential (MLIP). Results show that the single metal atom catalysts exhibit anisotropic thermal conductivities and partially exhibit good thermal conductivity. The average lattice thermal conductivities of G-FeN₄, G-CoN₄ and G-NiN₄ at 300 K are 88.61 W/mK, 205.32 W/mK and 210.57 W/mK, respectively. While other single metal atom catalysts show low thermal conductivity due to their low phonon lifetime. The results also show that low-frequency phonons (0-10 THz) dominate thermal transport properties. The results provide theoretical insights into the application of single metal atom catalysts in thermal management.Keywords: proton exchange membrane fuel cell, single metal atom catalysts, density functional theory, thermal conductivity, machine-learning interatomic potential
Procedia PDF Downloads 2412124 Full Potential Calculation of Structural and Electronic Properties of Perovskite BiAlO3 and BiGaO3
Authors: M. Harmel, H. Khachai
Abstract:
The first principles within the full potential linearized augmented plane wave (FP-LAPW) method were applied to study the structural and electronic properties of cubic perovskite-type compounds BiAlO3 and BiGaO3. The lattice constant, bulk modulus, its pressure derivative, band structure and density of states were obtained. The results show that BiGaO3 should exhibit higher hardness and stiffness than BiAlO3. The Al–O or Ga–O bonds are typically covalent with a strong hybridization as well as Bi–O ones that have a significant ionic character. Both materials are weakly ionic and exhibit wide and indirect band gaps, which are typical of insulators.Keywords: DFT, Ab initio, electronic structure, Perovskite structure, ferroelectrics
Procedia PDF Downloads 39712123 Biogenic Synthesis of ZnO Nanoparticles Using Annona muricata Plant Leaf Extract and Its Anti-Cancer Efficacy
Authors: Siva Chander Chabattula, Piyush Kumar Gupta, Debashis Chakraborty, Rama Shanker Verma
Abstract:
Green nanoparticles have gotten a lot of attention because of their potential applications in tissue regeneration, bioimaging, wound healing, and cancer therapy. The physical and chemical methods to synthesize metal oxide nanoparticles have an environmental impact, necessitating the development of an environmentally friendly green strategy for nanoparticle synthesis. In this study, we used Annona muricata plant leaf extract to synthesize Zinc Oxide nanoparticles (Am-ZnO NPs), which were evaluated using UV/Visible spectroscopy, FTIR spectroscopy, X-Ray Diffraction, DLS, and Zeta potential. Nanoparticles had an optical absorbance of 355 nm and a net negative surface charge of ~ - 2.59 mV. Transmission Electron Microscope characterizes the Shape and size of the nanoparticles. The obtained Am-ZnO NPs are biocompatible and hemocompatible in nature. These nanoparticles caused an anti-cancer therapeutic effect in MIA PaCa2 and MOLT4 cancer cells by inducing oxidative stress, and a change in mitochondrial membrane potential leads to programmed cell death. Further, we observed a reduction in the size of lung cancer spheroids (act as tumor micro-environment) with doxorubicin as a positive control.Keywords: Biomaterials, nanoparticle, anticancer activity, ZnO nanoparticles
Procedia PDF Downloads 20412122 Feasibilities for Recovering of Precious Metals from Printed Circuit Board Waste
Authors: Simona Ziukaite, Remigijus Ivanauskas, Gintaras Denafas
Abstract:
Market development of electrical and electronic equipment and a short life cycle is driven by the increasing waste streams. Gold Au, copper Cu, silver Ag and palladium Pd can be found on printed circuit board. These metals make up the largest value of printed circuit board. Therefore, the printed circuit boards scrap is valuable as potential raw material for precious metals recovery. A comparison of Cu, Au, Ag, Pd recovery from waste printed circuit techniques was selected metals leaching of chemical reagents. The study was conducted using the selected multistage technique for Au, Cu, Ag, Pd recovery of printed circuit board. In the first and second metals leaching stages, as the elution reagent, 2M H2SO4 and H2O2 (35%) was used. In the third stage, leaching of precious metals used solution of 20 g/l of thiourea and 6 g/l of Fe2 (SO4)3. Verify the efficiency of the method was carried out the metals leaching test with aqua regia. Based on the experimental study, the leaching efficiency, using the preferred methodology, 60 % of Au and 85,5 % of Cu dissolution was achieved. Metals leaching efficiency after waste mechanical crushing and thermal treatment have been increased by 1,7 times (40 %) for copper, 1,6 times (37 %) for gold and 1,8 times (44 %) for silver. It was noticed that, the Au amount in old (> 20 years) waste is 17 times more, Cu amount - 4 times more, and Ag - 2 times more than in the new (< 1 years) waste. Palladium in the new printed circuit board waste has not been found, however, it was established that from 1 t of old printed circuit board waste can be recovered 1,064 g of Pd (leaching with aqua regia). It was found that from 1 t of old printed circuit board waste can be recovered 1,064 g of Ag. Precious metals recovery in Lithuania was estimated in this study. Given the amounts of generated printed circuit board waste, the limits for recovery of precious metals were identified.Keywords: leaching efficiency, limits for recovery, precious metals recovery, printed circuit board waste
Procedia PDF Downloads 39212121 Theorising Chinese as a Foreign Language Curriculum Justice in the Australian School Context
Authors: Wen Xu
Abstract:
The expansion of Confucius institutes and Chinese as a Foreign Language (CFL) education is often considered as cultural invasion and part of much bigger, if not ambitious, Chinese central government agenda among Western public opinion. The CFL knowledge and teaching practice inherent in textbooks are also harshly critiqued as failing to align with Western educational principles. This paper takes up these concerns and attempts to articulate that Confucius’s idea of ‘education without discrimination’ appears to have become synonymous with social justice touted in contemporary Australian education and policy discourses. To do so, it capitalises on Bernstein's conceptualization of classification and pedagogic rights to articulate CFL curriculum's potential of drawing in and drawing out curriculum boundaries to achieve educational justice. In this way, the potential useful knowledge of CFL constitutes a worthwhile tool to engage in a peripheral Western country’s education issues, as well as to include disenfranchised students in the multicultural Australian society. It opens spaces for critically theorising CFL curricular justice in Australian educational contexts, and makes an original contribution to scholarly argumentation that CFL curriculum has the potential of including socially and economically disenfranchised students in schooling.Keywords: curriculum justice, Chinese as a Foreign Language curriculum, Bernstein, equity
Procedia PDF Downloads 14412120 Enhanced Photoelectrochemical Water Splitting Coupled with Pharmaceutical Pollutants Degradation on Zr:BiVO4 Photoanodes by Synergetic Catalytic Activity of NiFeOOH Nanostructures
Authors: Mabrook Saleh Amera, Prabhakarn Arunachalama, Maged N. Shaddadb, Abdulhadi Al-Qadia
Abstract:
Global energy crises and water pollution have negatively impacted sustainable development in recent years. It is most promising to use Bismuth vanadate (BiVO4) as an electrode for photoelectrocatalytic (PEC) oxidation of water and pollution degradation. However, BiVO4 anodes suffer from poor charge separation and slow water oxidation. In this paper, a Zr:BiVO4/NiFeOOH heterojunction was successfully prepared by electrodeposition and photoelectrochemical transformation process. The method resulted in a notable 5-fold improvement in photocurrent features (1.27 mAcm−2 at 1.23 VRHE) and a lower onset potential of 0.6 VRHE. Photoanodes with high photocatalytic features and high photocorrosion resistance may be attributed their high conformity and amorphous nature of the coating. In this study, PEC was compared to electrocatalysis (EC), and the effect of bias potential on PEC degradation was discussed for tetracycline (TCH), riboflavin, and streptomycin. In PEC, TCH was degraded in the most efficient way (96 %) by Zr:BiVO4/NiFeOOH, three times larger than Zr:BiVO4 and EC (55 %). Thus, this study offers a potential solution for oxidizing PEC water and treating water pollution.Keywords: photoelectrochemical, water splitting, pharmaceutical pollutants degradation, photoanodes, cocatalyst
Procedia PDF Downloads 54