Search results for: Fuzzy Logic estimation
1958 The Use of Rule-Based Cellular Automata to Track and Forecast the Dispersal of Classical Biocontrol Agents at Scale, with an Application to the Fopius arisanus Fruit Fly Parasitoid
Authors: Agboka Komi Mensah, John Odindi, Elfatih M. Abdel-Rahman, Onisimo Mutanga, Henri Ez Tonnang
Abstract:
Ecosystems are networks of organisms and populations that form a community of various species interacting within their habitats. Such habitats are defined by abiotic and biotic conditions that establish the initial limits to a population's growth, development, and reproduction. The habitat’s conditions explain the context in which species interact to access resources such as food, water, space, shelter, and mates, allowing for feeding, dispersal, and reproduction. Dispersal is an essential life-history strategy that affects gene flow, resource competition, population dynamics, and species distributions. Despite the importance of dispersal in population dynamics and survival, understanding the mechanism underpinning the dispersal of organisms remains challenging. For instance, when an organism moves into an ecosystem for survival and resource competition, its progression is highly influenced by extrinsic factors such as its physiological state, climatic variables and ability to evade predation. Therefore, greater spatial detail is necessary to understand organism dispersal dynamics. Understanding organisms dispersal can be addressed using empirical and mechanistic modelling approaches, with the adopted approach depending on the study's purpose Cellular automata (CA) is an example of these approaches that have been successfully used in biological studies to analyze the dispersal of living organisms. Cellular automata can be briefly described as occupied cells by an individual that evolves based on proper decisions based on a set of neighbours' rules. However, in the ambit of modelling individual organisms dispersal at the landscape scale, we lack user friendly tools that do not require expertise in mathematical models and computing ability; such as a visual analytics framework for tracking and forecasting the dispersal behaviour of organisms. The term "visual analytics" (VA) describes a semiautomated approach to electronic data processing that is guided by users who can interact with data via an interface. Essentially, VA converts large amounts of quantitative or qualitative data into graphical formats that can be customized based on the operator's needs. Additionally, this approach can be used to enhance the ability of users from various backgrounds to understand data, communicate results, and disseminate information across a wide range of disciplines. To support effective analysis of the dispersal of organisms at the landscape scale, we therefore designed Pydisp which is a free visual data analytics tool for spatiotemporal dispersal modeling built in Python. Its user interface allows users to perform a quick and interactive spatiotemporal analysis of species dispersal using bioecological and climatic data. Pydisp enables reuse and upgrade through the use of simple principles such as Fuzzy cellular automata algorithms. The potential of dispersal modeling is demonstrated in a case study by predicting the dispersal of Fopius arisanus (Sonan), endoparasitoids to control Bactrocera dorsalis (Hendel) (Diptera: Tephritidae) in Kenya. The results obtained from our example clearly illustrate the parasitoid's dispersal process at the landscape level and confirm that dynamic processes in an agroecosystem are better understood when designed using mechanistic modelling approaches. Furthermore, as demonstrated in the example, the built software is highly effective in portraying the dispersal of organisms despite the unavailability of detailed data on the species dispersal mechanisms.Keywords: cellular automata, fuzzy logic, landscape, spatiotemporal
Procedia PDF Downloads 791957 A Study of the Establishment of the Evaluation Index System for Tourist Attraction Disaster Resilience
Authors: Chung-Hung Tsai, Ya-Ping Li
Abstract:
Tourism industry is highly depended on the natural environment and climate. Compared to other industries, it is more susceptible to environment and climate. Taiwan belongs to a sea island country and located in the subtropical monsoon zone. The events of climate variability, frequency of typhoons and rainfalls raged are caused regularly serious disaster. In traditional disaster assessment, it usually focuses on the disaster damage and risk assessment, which is short of the features from different industries to understand the impact of the restoring force in post-disaster resilience and the main factors that constitute resilience. The object of this study is based on disaster recovery experience of tourism area and to understand the main factors affecting the tourist area of disaster resilience. The combinations of literature review and interviews with experts are prepared an early indicator system of the disaster resilience. Then, it is screened through a Fuzzy Delphi Method and Analytic Network Process for weight analysis. Finally, this study will establish the tourism disaster resilience evaluation index system considering the Taiwan's tourism industry characteristics. We hope that be able to enhance disaster resilience after tourist areas and increases the sustainability of industrial development. It is expected to provide government departments the tourism industry as the future owner of the assets in extreme climates responses.Keywords: resilience, Fuzzy Delphi Method, Analytic Network Process, industrial development
Procedia PDF Downloads 4081956 Automated Adaptions of Semantic User- and Service Profile Representations by Learning the User Context
Authors: Nicole Merkle, Stefan Zander
Abstract:
Ambient Assisted Living (AAL) describes a technological and methodological stack of (e.g. formal model-theoretic semantics, rule-based reasoning and machine learning), different aspects regarding the behavior, activities and characteristics of humans. Hence, a semantic representation of the user environment and its relevant elements are required in order to allow assistive agents to recognize situations and deduce appropriate actions. Furthermore, the user and his/her characteristics (e.g. physical, cognitive, preferences) need to be represented with a high degree of expressiveness in order to allow software agents a precise evaluation of the users’ context models. The correct interpretation of these context models highly depends on temporal, spatial circumstances as well as individual user preferences. In most AAL approaches, model representations of real world situations represent the current state of a universe of discourse at a given point in time by neglecting transitions between a set of states. However, the AAL domain currently lacks sufficient approaches that contemplate on the dynamic adaptions of context-related representations. Semantic representations of relevant real-world excerpts (e.g. user activities) help cognitive, rule-based agents to reason and make decisions in order to help users in appropriate tasks and situations. Furthermore, rules and reasoning on semantic models are not sufficient for handling uncertainty and fuzzy situations. A certain situation can require different (re-)actions in order to achieve the best results with respect to the user and his/her needs. But what is the best result? To answer this question, we need to consider that every smart agent requires to achieve an objective, but this objective is mostly defined by domain experts who can also fail in their estimation of what is desired by the user and what not. Hence, a smart agent has to be able to learn from context history data and estimate or predict what is most likely in certain contexts. Furthermore, different agents with contrary objectives can cause collisions as their actions influence the user’s context and constituting conditions in unintended or uncontrolled ways. We present an approach for dynamically updating a semantic model with respect to the current user context that allows flexibility of the software agents and enhances their conformance in order to improve the user experience. The presented approach adapts rules by learning sensor evidence and user actions using probabilistic reasoning approaches, based on given expert knowledge. The semantic domain model consists basically of device-, service- and user profile representations. In this paper, we present how this semantic domain model can be used in order to compute the probability of matching rules and actions. We apply this probability estimation to compare the current domain model representation with the computed one in order to adapt the formal semantic representation. Our approach aims at minimizing the likelihood of unintended interferences in order to eliminate conflicts and unpredictable side-effects by updating pre-defined expert knowledge according to the most probable context representation. This enables agents to adapt to dynamic changes in the environment which enhances the provision of adequate assistance and affects positively the user satisfaction.Keywords: ambient intelligence, machine learning, semantic web, software agents
Procedia PDF Downloads 2821955 Estimation of Solar Radiation Power Using Reference Evaluation of Solar Transmittance, 2 Bands Model: Case Study of Semarang, Central Java, Indonesia
Authors: Benedictus Asriparusa
Abstract:
Solar radiation is a green renewable energy which has the potential to answer the needs of energy problems on the period. Knowing how to estimate the strength of the solar radiation force may be one solution of sustainable energy development in an integrated manner. Unfortunately, a fairly extensive area of Indonesia is still very low availability of solar radiation data. Therefore, we need a method to estimate the exact strength of solar radiation. In this study, author used a model Reference Evaluation of Solar Transmittance, 2 Bands (REST 2). Validation of REST 2 model has been performed in Spain, India, Colorado, Saudi Arabia, and several other areas. But it is not widely used in Indonesia. Indonesian region study area is represented by the area of Semarang, Central Java. Solar radiation values estimated using REST 2 model was then verified by field data and gives average RMSE value of 6.53%. Based on the value, it can be concluded that the model REST 2 can be used to estimate the value of solar radiation in clear sky conditions in parts of Indonesia.Keywords: estimation, solar radiation power, REST 2, solar transmittance
Procedia PDF Downloads 4281954 Risk Assessment for Aerial Package Delivery
Authors: Haluk Eren, Ümit Çelik
Abstract:
Recent developments in unmanned aerial vehicles (UAVs) have begun to attract intense interest. UAVs started to use for many different applications from military to civilian use. Some online retailer and logistics companies are testing the UAV delivery. UAVs have great potentials to reduce cost and time of deliveries and responding to emergencies in a short time. Despite these great positive sides, just a few works have been done for routing of UAVs for package deliveries. As known, transportation of goods from one place to another may have many hazards on delivery route due to falling hazards that can be exemplified as ground objects or air obstacles. This situation refers to wide-range insurance concept. For this reason, deliveries that are made with drones get into the scope of shipping insurance. On the other hand, air traffic was taken into account in the absence of unmanned aerial vehicle. But now, it has been a reality for aerial fields. In this study, the main goal is to conduct risk analysis of package delivery services using drone, based on delivery routes.Keywords: aerial package delivery, insurance estimation, territory risk map, unmanned aerial vehicle, route risk estimation, drone risk assessment, drone package delivery
Procedia PDF Downloads 3441953 A Procedure for Post-Earthquake Damage Estimation Based on Detection of High-Frequency Transients
Authors: Aleksandar Zhelyazkov, Daniele Zonta, Helmut Wenzel, Peter Furtner
Abstract:
In the current research structural health monitoring is considered for addressing the critical issue of post-earthquake damage detection. A non-standard approach for damage detection via acoustic emission is presented - acoustic emissions are monitored in the low frequency range (up to 120 Hz). Such emissions are termed high-frequency transients. Further a damage indicator defined as the Time-Ratio Damage Indicator is introduced. The indicator relies on time-instance measurements of damage initiation and deformation peaks. Based on the time-instance measurements a procedure for estimation of the maximum drift ratio is proposed. Monitoring data is used from a shaking-table test of a full-scale reinforced concrete bridge pier. Damage of the experimental column is successfully detected and the proposed damage indicator is calculated.Keywords: acoustic emission, damage detection, shaking table test, structural health monitoring
Procedia PDF Downloads 2331952 Estimation and Validation of Free Lime Analysis of Clinker by Quantitative Phase Analysis Using X ray diffraction
Authors: Suresh Palla, Kalpna Sharma, Gaurav Bhatnagar, S. K. Chaturvedi, B. N. Mohapatra
Abstract:
Determining the content of free lime is especially important to judge reactivity of the raw materials and clinker quality. The free lime limit isn’t the same for all cements; it depends on several factors, especially the temperature reached during the cooking and the grain size distribution in cement after grinding. Estimation of free lime by conventional method is influenced by the presence of portlandite and misleads the actual free lime content in the clinker for quality check up conditions. To ensure the product quality according to the standard specifications in terms of within the quality limits or not, a reliable, precise, and very reproducible method to quantify the relative phase abundances in the Portland Cement clinker and Portland Cements is to use X-ray diffraction (XRD) in combination with the Rietveld method. In the present study, a methodology was proposed using XRD to validate the obtained results of free lime by conventional method. The XRD and TG/DTA results confirm the presence of portlandite in the clinker to take the decision on the obtained free lime results through conventional method.Keywords: free lime, quantitative phase analysis, conventional method, x ray diffraction
Procedia PDF Downloads 1381951 Elastic Deformation of Multistory RC Frames under Lateral Loads
Authors: Hamdy Elgohary, Majid Assas
Abstract:
Estimation of lateral displacement and interstory drifts represent a major step in multistory frames design. In the preliminary design stage, it is essential to perform a fast check for the expected values of lateral deformations. This step will help to ensure the compliance of the expected values with the design code requirements. Also, in some cases during or after the detailed design stage, it may be required to carry fast check of lateral deformations by design reviewer. In the present paper, a parametric study is carried out on the factors affecting in the lateral displacements of multistory frame buildings. Based on the results of the parametric study, simplified empirical equations are recommended for the direct determination of the lateral deflection of multistory frames. The results obtained using the recommended equations have been compared with the results obtained by finite element analysis. The comparison shows that the proposed equations lead to good approximation for the estimation of lateral deflection of multistory RC frame buildings.Keywords: lateral deflection, interstory drift, approximate analysis, multistory frames
Procedia PDF Downloads 2711950 Estimation of Human Absorbed Dose Using Compartmental Model
Authors: M. Mousavi-Daramoroudi, H. Yousefnia, F. Abbasi-Davani, S. Zolghadri
Abstract:
Dosimetry is an indispensable and precious factor in patient treatment planning to minimize the absorbed dose in vital tissues. In this study, compartmental model was used in order to estimate the human absorbed dose of 177Lu-DOTATOC from the biodistribution data in wild type rats. For this purpose, 177Lu-DOTATOC was prepared under optimized conditions and its biodistribution was studied in male Syrian rats up to 168 h. Compartmental model was applied to mathematical description of the drug behaviour in tissue at different times. Dosimetric estimation of the complex was performed using radiation absorbed dose assessment resource (RADAR). The biodistribution data showed high accumulation in the adrenal and pancreas as the major expression sites for somatostatin receptor (SSTR). While kidneys as the major route of excretion receive 0.037 mSv/MBq, pancreas and adrenal also obtain 0.039 and 0.028 mSv/MBq. Due to the usage of this method, the points of accumulated activity data were enhanced, and further information of tissues uptake was collected that it will be followed by high (or improved) precision in dosimetric calculations.Keywords: compartmental modeling, human absorbed dose, ¹⁷⁷Lu-DOTATOC, Syrian rats
Procedia PDF Downloads 1961949 Study and Acquisition of the Duality of the Arabic Language
Authors: Oleg Redkin, Olga Bernikova
Abstract:
It is commonly accepted that every language is both pure linguistic phenomenon as well as socially significant communicative system, which exists on the basis of certain society - its collective 'native speaker'. Therefore the language evolution and features besides its own linguistic rules and regulations are also defined by the influence of a number of extra-linguistic factors. The above mentioned statement may be illustrated by the example of the Arabic language which may be characterized by the following peculiarities: - the inner logic of the Arabic language - the 'algebraicity' of its morphological paradigms and grammar rules; - association of the Arabic language with the sacred texts of Islam, its close ties with the pre-Islamic and Islamic cultural heritage - the pre-Islamic poetry and Islamic literature and science; - territorial distribution, which in recent years went far beyond the boundaries of its traditional realm due to the development of new technologies and the spread of mass media, and what is more important, migration processes; - association of the Arabic language with the so called 'Renaissance of Islam'. These peculiarities should be remembered while considering the status of the Modern Standard Arabic (MSA) language or the Classical Arabic (CA) language as well as the Modern Arabic (MA) dialects in synchrony or from the diachronic point of view. Continuity of any system in diachrony on the one hand depends on the level of its ability to adapt itself to changing environment and by its internal ties on the other. Structural durability of language is characterized by its inner logic, hierarchy of paradigms and its grammar rules, as well as continuity of their implementation in acts of everyday communication. Since the Arabic language is both linguistic and social phenomenon the process of the Arabic language acquisition and study should not be focused only on the knowledge about linguistic features or development of communicative skills alone, but must be supplied with the information related to culture, history and religion of peoples of certain region that will expand and enrich competences of the target audience.Keywords: Arabic, culture, Islam, language
Procedia PDF Downloads 2771948 PostureCheck with the Kinect and Proficio: Posture Modeling for Exercise Assessment
Authors: Elham Saraee, Saurabh Singh, Margrit Betke
Abstract:
Evaluation of a person’s posture while exercising is important in physical therapy. During a therapy session, a physical therapist or a monitoring system must assure that the person is performing an exercise correctly to achieve the desired therapeutic effect. In this work, we introduce a system called POSTURECHECK for exercise assessment in physical therapy. POSTURECHECK assesses the posture of a person who is exercising with the Proficio robotic arm while being recorded by the Microsoft Kinect interface. POSTURECHECK extracts unique features from the person’s upper body during the exercise, and classifies the sequence of postures as correct or incorrect using Bayesian estimation and majority voting. If POSTURECHECK recognizes an incorrect posture, it specifies what the user can do to correct it. The result of our experiment shows that POSTURECHECK is capable of recognizing the incorrect postures in real time while the user is performing an exercise.Keywords: Bayesian estimation, majority voting, Microsoft Kinect, PostureCheck, Proficio robotic arm, upper body physical therapy
Procedia PDF Downloads 2851947 Comparison of Petrophysical Relationship for Soil Water Content Estimation at Peat Soil Area Using GPR Common-Offset Measurements
Authors: Nurul Izzati Abd Karim, Samira Albati Kamaruddin, Rozaimi Che Hasan
Abstract:
The appropriate petrophysical relationship is needed for Soil Water Content (SWC) estimation especially when using Ground Penetrating Radar (GPR). Ground penetrating radar is a geophysical tool that provides indirectly the parameter of SWC. This paper examines the performance of few published petrophysical relationships to obtain SWC estimates from in-situ GPR common- offset survey measurements with gravimetric measurements at peat soil area. Gravimetric measurements were conducted to support of GPR measurements for the accuracy assessment. Further, GPR with dual frequencies (250MHhz and 700MHz) were used in the survey measurements to obtain the dielectric permittivity. Three empirical equations (i.e., Roth’s equation, Schaap’s equation and Idi’s equation) were selected for the study, used to compute the soil water content from dielectric permittivity of the GPR profile. The results indicate that Schaap’s equation provides strong correlation with SWC as measured by GPR data sets and gravimetric measurements.Keywords: common-offset measurements, ground penetrating radar, petrophysical relationship, soil water content
Procedia PDF Downloads 2541946 Estimation of Mobility Parameters and Threshold Voltage of an Organic Thin Film Transistor Using an Asymmetric Capacitive Test Structure
Authors: Rajesh Agarwal
Abstract:
Carrier mobility at the organic/insulator interface is essential to the performance of organic thin film transistors (OTFT). The present work describes estimation of field dependent mobility (FDM) parameters and the threshold voltage of an OTFT using a simple, easy to fabricate two terminal asymmetric capacitive test structure using admittance measurements. Conventionally, transfer characteristics are used to estimate the threshold voltage in an OTFT with field independent mobility (FIDM). Yet, this technique breaks down to give accurate results for devices with high contact resistance and having field dependent mobility. In this work, a new technique is presented for characterization of long channel organic capacitor (LCOC). The proposed technique helps in the accurate estimation of mobility enhancement factor (γ), the threshold voltage (V_th) and band mobility (µ₀) using capacitance-voltage (C-V) measurement in OTFT. This technique also helps to get rid of making short channel OTFT or metal-insulator-metal (MIM) structures for making C-V measurements. To understand the behavior of devices and ease of analysis, transmission line compact model is developed. The 2-D numerical simulation was carried out to illustrate the correctness of the model. Results show that proposed technique estimates device parameters accurately even in the presence of contact resistance and field dependent mobility. Pentacene/Poly (4-vinyl phenol) based top contact bottom-gate OTFT’s are fabricated to illustrate the operation and advantages of the proposed technique. Small signal of frequency varying from 1 kHz to 5 kHz and gate potential ranging from +40 V to -40 V have been applied to the devices for measurement.Keywords: capacitance, mobility, organic, thin film transistor
Procedia PDF Downloads 1651945 A Targeted Maximum Likelihood Estimation for a Non-Binary Causal Variable: An Application
Authors: Mohamed Raouf Benmakrelouf, Joseph Rynkiewicz
Abstract:
Targeted maximum likelihood estimation (TMLE) is well-established method for causal effect estimation with desirable statistical properties. TMLE is a doubly robust maximum likelihood based approach that includes a secondary targeting step that optimizes the target statistical parameter. A causal interpretation of the statistical parameter requires assumptions of the Rubin causal framework. The causal effect of binary variable, E, on outcomes, Y, is defined in terms of comparisons between two potential outcomes as E[YE=1 − YE=0]. Our aim in this paper is to present an adaptation of TMLE methodology to estimate the causal effect of a non-binary categorical variable, providing a large application. We propose coding on the initial data in order to operate a binarization of the interest variable. For each category, we get a transformation of the non-binary interest variable into a binary variable, taking value 1 to indicate the presence of category (or group of categories) for an individual, 0 otherwise. Such a dummy variable makes it possible to have a pair of potential outcomes and oppose a category (or a group of categories) to another category (or a group of categories). Let E be a non-binary interest variable. We propose a complete disjunctive coding of our variable E. We transform the initial variable to obtain a set of binary vectors (dummy variables), E = (Ee : e ∈ {1, ..., |E|}), where each vector (variable), Ee, takes the value of 0 when its category is not present, and the value of 1 when its category is present, which allows to compute a pairwise-TMLE comparing difference in the outcome between one category and all remaining categories. In order to illustrate the application of our strategy, first, we present the implementation of TMLE to estimate the causal effect of non-binary variable on outcome using simulated data. Secondly, we apply our TMLE adaptation to survey data from the French Political Barometer (CEVIPOF), to estimate the causal effect of education level (A five-level variable) on a potential vote in favor of the French extreme right candidate Jean-Marie Le Pen. Counterfactual reasoning requires us to consider some causal questions (additional causal assumptions). Leading to different coding of E, as a set of binary vectors, E = (Ee : e ∈ {2, ..., |E|}), where each vector (variable), Ee, takes the value of 0 when the first category (reference category) is present, and the value of 1 when its category is present, which allows to apply a pairwise-TMLE comparing difference in the outcome between the first level (fixed) and each remaining level. We confirmed that the increase in the level of education decreases the voting rate for the extreme right party.Keywords: statistical inference, causal inference, super learning, targeted maximum likelihood estimation
Procedia PDF Downloads 1051944 Role of Spatial Variability in the Service Life Prediction of Reinforced Concrete Bridges Affected by Corrosion
Authors: Omran M. Kenshel, Alan J. O'Connor
Abstract:
Estimating the service life of Reinforced Concrete (RC) bridge structures located in corrosive marine environments of a great importance to their owners/engineers. Traditionally, bridge owners/engineers relied more on subjective engineering judgment, e.g. visual inspection, in their estimation approach. However, because financial resources are often limited, rational calculation methods of estimation are needed to aid in making reliable and more accurate predictions for the service life of RC structures. This is in order to direct funds to bridges found to be the most critical. Criticality of the structure can be considered either form the Structural Capacity (i.e. Ultimate Limit State) or from Serviceability viewpoint whichever is adopted. This paper considers the service life of the structure only from the Structural Capacity viewpoint. Considering the great variability associated with the parameters involved in the estimation process, the probabilistic approach is most suited. The probabilistic modelling adopted here used Monte Carlo simulation technique to estimate the Reliability (i.e. Probability of Failure) of the structure under consideration. In this paper the authors used their own experimental data for the Correlation Length (CL) for the most important deterioration parameters. The CL is a parameter of the Correlation Function (CF) by which the spatial fluctuation of a certain deterioration parameter is described. The CL data used here were produced by analyzing 45 chloride profiles obtained from a 30 years old RC bridge located in a marine environment. The service life of the structure were predicted in terms of the load carrying capacity of an RC bridge beam girder. The analysis showed that the influence of SV is only evident if the reliability of the structure is governed by the Flexure failure rather than by the Shear failure.Keywords: Chloride-induced corrosion, Monte-Carlo simulation, reinforced concrete, spatial variability
Procedia PDF Downloads 4731943 Parameter Estimation of Additive Genetic and Unique Environment (AE) Model on Diabetes Mellitus Type 2 Using Bayesian Method
Authors: Andi Darmawan, Dewi Retno Sari Saputro, Purnami Widyaningsih
Abstract:
Diabetes mellitus (DM) is a chronic disease in human that occurred if pancreas cannot produce enough of insulin hormone or the body uses ineffectively insulin hormone which causes increasing level of glucose in the blood, or it was called hyperglycemia. In Indonesia, DM is a serious disease on health because it can cause blindness, kidney disease, diabetic feet (gangrene), and stroke. The type of DM criteria can also be divided based on the main causes; they are DM type 1, type 2, and gestational. Diabetes type 1 or previously known as insulin-independent diabetes is due to a lack of production of insulin hormone. Diabetes type 2 or previously known as non-insulin dependent diabetes is due to ineffective use of insulin while gestational diabetes is a hyperglycemia that found during pregnancy. The most one type commonly found in patient is DM type 2. The main factors of this disease are genetic (A) and life style (E). Those disease with 2 factors can be constructed with additive genetic and unique environment (AE) model. In this article was discussed parameter estimation of AE model using Bayesian method and the inheritance character simulation on parent-offspring. On the AE model, there are response variable, predictor variables, and parameters were capable of representing the number of population on research. The population can be measured through a taken random sample. The response and predictor variables can be determined by sample while the parameters are unknown, so it was required to estimate the parameters based on the sample. Estimation of AE model parameters was obtained based on a joint posterior distribution. The simulation was conducted to get the value of genetic variance and life style variance. The results of simulation are 0.3600 for genetic variance and 0.0899 for life style variance. Therefore, the variance of genetic factor in DM type 2 is greater than life style.Keywords: AE model, Bayesian method, diabetes mellitus type 2, genetic, life style
Procedia PDF Downloads 2851942 Approximating Maximum Speed on Road from Curvature Information of Bezier Curve
Authors: M. Yushalify Misro, Ahmad Ramli, Jamaludin M. Ali
Abstract:
Bezier curves have useful properties for path generation problem, for instance, it can generate the reference trajectory for vehicles to satisfy the path constraints. Both algorithms join cubic Bezier curve segment smoothly to generate the path. Some of the useful properties of Bezier are curvature. In mathematics, the curvature is the amount by which a geometric object deviates from being flat, or straight in the case of a line. Another extrinsic example of curvature is a circle, where the curvature is equal to the reciprocal of its radius at any point on the circle. The smaller the radius, the higher the curvature thus the vehicle needs to bend sharply. In this study, we use Bezier curve to fit highway-like curve. We use the different approach to finding the best approximation for the curve so that it will resemble highway-like curve. We compute curvature value by analytical differentiation of the Bezier Curve. We will then compute the maximum speed for driving using the curvature information obtained. Our research works on some assumptions; first the Bezier curve estimates the real shape of the curve which can be verified visually. Even, though, the fitting process of Bezier curve does not interpolate exactly on the curve of interest, we believe that the estimation of speed is acceptable. We verified our result with the manual calculation of the curvature from the map.Keywords: speed estimation, path constraints, reference trajectory, Bezier curve
Procedia PDF Downloads 3751941 The Impact of Board Characteristics on Firm Performance: Evidence from Banking Industry in India
Authors: Manmeet Kaur, Madhu Vij
Abstract:
The Board of Directors in a firm performs the primary role of an internal control mechanism. This Study seeks to understand the relationship between internal governance and performance of banks in India. The research paper investigates the effect of board structure (proportion of nonexecutive directors, gender diversity, board size and meetings per year) on the firm performance. This paper evaluates the impact of corporate governance mechanisms on bank’s financial performance using panel data for 28 listed banks in National Stock Exchange of India for the period of 2008-2014. Returns on Asset, Return on Equity, Tobin’s Q and Net Interest Margin were used as the financial performance indicators. To estimate the relationship among governance and bank performance initially the Study uses Pooled Ordinary Least Square (OLS) Estimation and Generalized Least Square (GLS) Estimation. Then a well-developed panel Generalized Method of Moments (GMM) Estimator is developed to investigate the dynamic nature of performance and governance relationship. The Study empirically confirms that two-step system GMM approach controls the problem of unobserved heterogeneity and endogeneity as compared to the OLS and GLS approach. The result suggests that banks with small board, boards with female members, and boards that meet more frequently tend to be more efficient and subsequently have a positive impact on performance of banks. The study offers insights to policy makers interested in enhancing the quality of governance of banks in India. Also, the findings suggest that board structure plays a vital role in the improvement of corporate governance mechanism for financial institutions. There is a need to have efficient boards in banks to improve the overall health of the financial institutions and the economic development of the country.Keywords: board of directors, corporate governance, GMM estimation, Indian banking
Procedia PDF Downloads 2621940 Count Data Regression Modeling: An Application to Spontaneous Abortion in India
Authors: Prashant Verma, Prafulla K. Swain, K. K. Singh, Mukti Khetan
Abstract:
Objective: In India, around 20,000 women die every year due to abortion-related complications. In the modelling of count variables, there is sometimes a preponderance of zero counts. This article concerns the estimation of various count regression models to predict the average number of spontaneous abortion among women in the Punjab state of India. It also assesses the factors associated with the number of spontaneous abortions. Materials and methods: The study included 27,173 married women of Punjab obtained from the DLHS-4 survey (2012-13). Poisson regression (PR), Negative binomial (NB) regression, zero hurdle negative binomial (ZHNB), and zero-inflated negative binomial (ZINB) models were employed to predict the average number of spontaneous abortions and to identify the determinants affecting the number of spontaneous abortions. Results: Statistical comparisons among four estimation methods revealed that the ZINB model provides the best prediction for the number of spontaneous abortions. Antenatal care (ANC) place, place of residence, total children born to a woman, woman's education and economic status were found to be the most significant factors affecting the occurrence of spontaneous abortion. Conclusions: The study offers a practical demonstration of techniques designed to handle count variables. Statistical comparisons among four estimation models revealed that the ZINB model provided the best prediction for the number of spontaneous abortions and is recommended to be used to predict the number of spontaneous abortions. The study suggests that women receive institutional Antenatal care to attain limited parity. It also advocates promoting higher education among women in Punjab, India.Keywords: count data, spontaneous abortion, Poisson model, negative binomial model, zero hurdle negative binomial, zero-inflated negative binomial, regression
Procedia PDF Downloads 1561939 Wind Energy Resources Assessment and Micrositting on Different Areas of Libya: The Case Study in Darnah
Authors: F. Ahwide, Y. Bouker, K. Hatem
Abstract:
This paper presents long term wind data analysis in terms of annual and diurnal variations at different areas of Libya. The data of the wind speed and direction are taken each ten minutes for a period, at least two years, are used in the analysis. ‘WindPRO’ software and Excel workbook were used for the wind statistics and energy calculations. As for Derna, average speeds are 10 m, 20 m, and 40 m, and respectively 6.57 m/s, 7.18 m/s, and 8.09 m/s. Highest wind speeds are observed at SSW, followed by S, WNW and NW sectors. Lowest wind speeds are observed between N and E sectors. Most frequent wind directions are NW and NNW. Hence, wind turbines can be installed against these directions. The most powerful sector is NW (29.4 % of total expected wind energy), followed by 19.9 % SSW, 11.9% NNW, 8.6% WNW and 8.2% S. Furthermore in Al-Maqrun: the most powerful sector is W (26.8 % of total expected wind energy), followed by 12.3 % WSW and 9.5% WNW. While in Goterria: the most powerful sector is S (14.8 % of total expected wind energy), followed by SSE, SE, and WSW. And Misalatha: the most powerful sector is S, by far represents 28.5% of the expected power, followed by SSE and SE. As for Tarhuna, it is by far SSE and SE, representing each one two times the expected energy of the third powerful sector (NW). In Al-Asaaba: it is SSE by far represents 50% of the expected power, followed by S. It can to be noted that the high frequency of the south direction winds, that come from the desert could cause a high frequency of dust episodes. This fact then, should be taken into account in order to take appropriate measures to prevent wind turbine deterioration. In Excel workbook, an estimation of annual energy yield at position of Derna, Al-Maqrun, Tarhuna, and Al-Asaaba meteorological mast has been done, considering a generic wind turbine of 1.65 MW. (mtORRES, TWT 82-1.65MW) in position of meteorological mast. Three other turbines have been tested. At 80 m, the estimation of energy yield for Derna, Al-Maqrun, Tarhuna, and Asaaba is 6.78 GWh or 3390 equivalent hours, 5.80 GWh or 2900 equivalent hours, 4.91 GWh or 2454 equivalent hours and 5.08 GWh or 2541 equivalent hours respectively. It seems a fair value in the context of a possible development of a wind energy project in the areas, considering a value of 2400 equivalent hours as an approximate limit to consider a wind warm economically profitable. Furthermore, an estimation of annual energy yield at positions of Misalatha, Azizyah and Goterria meteorological mast has been done, considering a generic wind turbine of 2 MW. We found that, at 80 m, the estimation of energy yield is 3.12 GWh or 1557 equivalent hours, 4.47 GWh or 2235 equivalent hours and 4.07GWh or 2033 respectively . It seems a very poor value in the context of possible development of a wind energy project in the areas, considering a value of 2400 equivalent hours as an approximate limit to consider a wind warm economically profitable. Anyway, more data and a detailed wind farm study would be necessary to draw conclusions.Keywords: wind turbines, wind data, energy yield, micrositting
Procedia PDF Downloads 1881938 In vitro Estimation of Genotoxic Lesions in Peripheral Blood Lymphocytes of Rat Exposed to Organophosphate Pesticides
Authors: A. Ojha, Y. K. Gupta
Abstract:
Organophosphate (OP) pesticides are among the most widely used synthetic chemicals for controlling a wide variety of pests throughout the world. Chlorpyrifos (CPF), methyl parathion (MPT), and malathion (MLT) are among the most extensively used OP pesticides in India. DNA strand breaks and DNA-protein crosslinks (DPC) are toxic lesions associated with the mechanisms of toxicity of genotoxic compounds. In the present study, we have examined the potential of CPF, MPT, and MLT individually and in combination, to cause DNA strand breakage and DPC formation. Peripheral blood lymphocytes of rat were exposed to 1/4 and 1/10 LC50 dose of CPF, MPT, and MLT for 2, 4, 8, and 12h. The DNA strand break was measured by the comet assay and expressed as DNA damage index while DPC estimation was done by fluorescence emission. There was significantly marked increase in DNA damage and DNA-protein crosslink formation in time and dose dependent manner. It was also observed that MPT caused the highest level of DNA damage as compared to other studied OP compounds. Thus, from present study, we can conclude that studied pesticides have genotoxic potential. The pesticides mixture does not potentiate the toxicity of each other. Nonetheless, additional in vivo data are required before a definitive conclusion can be drawn regarding hazard prediction to humans.Keywords: organophosphate, pesticides, DNA damage, DNA protein crosslink, genotoxic
Procedia PDF Downloads 3561937 Parameter Estimation for the Oral Minimal Model and Parameter Distinctions Between Obese and Non-obese Type 2 Diabetes
Authors: Manoja Rajalakshmi Aravindakshana, Devleena Ghosha, Chittaranjan Mandala, K. V. Venkateshb, Jit Sarkarc, Partha Chakrabartic, Sujay K. Maity
Abstract:
Oral Glucose Tolerance Test (OGTT) is the primary test used to diagnose type 2 diabetes mellitus (T2DM) in a clinical setting. Analysis of OGTT data using the Oral Minimal Model (OMM) along with the rate of appearance of ingested glucose (Ra) is performed to study differences in model parameters for control and T2DM groups. The differentiation of parameters of the model gives insight into the behaviour and physiology of T2DM. The model is also studied to find parameter differences among obese and non-obese T2DM subjects and the sensitive parameters were co-related to the known physiological findings. Sensitivity analysis is performed to understand changes in parameter values with model output and to support the findings, appropriate statistical tests are done. This seems to be the first preliminary application of the OMM with obesity as a distinguishing factor in understanding T2DM from estimated parameters of insulin-glucose model and relating the statistical differences in parameters to diabetes pathophysiology.Keywords: oral minimal model, OGTT, obese and non-obese T2DM, mathematical modeling, parameter estimation
Procedia PDF Downloads 931936 Approaches to Valuing Ecosystem Services in Agroecosystems From the Perspectives of Ecological Economics and Agroecology
Authors: Sandra Cecilia Bautista-Rodríguez, Vladimir Melgarejo
Abstract:
Climate change, loss of ecosystems, increasing poverty, increasing marginalization of rural communities and declining food security are global issues that require urgent attention. In this regard, a great deal of research has focused on how agroecosystems respond to these challenges as they provide ecosystem services (ES) that lead to higher levels of resilience, adaptation, productivity and self-sufficiency. Hence, the valuing of ecosystem services plays an important role in the decision-making process for the design and management of agroecosystems. This paper aims to define the link between ecosystem service valuation methods and ES value dimensions in agroecosystems from ecological economics and agroecology. The method used to identify valuation methodologies was a literature review in the fields of Agroecology and Ecological Economics, based on a strategy of information search and classification. The conceptual framework of the work is based on the multidimensionality of value, considering the social, ecological, political, technological and economic dimensions. Likewise, the valuation process requires consideration of the ecosystem function associated with ES, such as regulation, habitat, production and information functions. In this way, valuation methods for ES in agroecosystems can integrate more than one value dimension and at least one ecosystem function. The results allow correlating the ecosystem functions with the ecosystem services valued, and the specific tools or models used, the dimensions and valuation methods. The main methodologies identified are multi-criteria valuation (1), deliberative - consultative valuation (2), valuation based on system dynamics modeling (3), valuation through energy or biophysical balances (4), valuation through fuzzy logic modeling (5), valuation based on agent-based modeling (6). Amongst the main conclusions, it is highlighted that the system dynamics modeling approach has a high potential for development in valuation processes, due to its ability to integrate other methods, especially multi-criteria valuation and energy and biophysical balances, to describe through causal cycles the interrelationships between ecosystem services, the dimensions of value in agroecosystems, thus showing the relationships between the value of ecosystem services and the welfare of communities. As for methodological challenges, it is relevant to achieve the integration of tools and models provided by different methods, to incorporate the characteristics of a complex system such as the agroecosystem, which allows reducing the limitations in the processes of valuation of ES.Keywords: ecological economics, agroecosystems, ecosystem services, valuation of ecosystem services
Procedia PDF Downloads 1251935 A Comparative Analysis Approach Based on Fuzzy AHP, TOPSIS and PROMETHEE for the Selection Problem of GSCM Solutions
Authors: Omar Boutkhoum, Mohamed Hanine, Abdessadek Bendarag
Abstract:
Sustainable economic growth is nowadays driving firms to extend toward the adoption of many green supply chain management (GSCM) solutions. However, the evaluation and selection of these solutions is a matter of concern that needs very serious decisions, involving complexity owing to the presence of various associated factors. To resolve this problem, a comparative analysis approach based on multi-criteria decision-making methods is proposed for adequate evaluation of sustainable supply chain management solutions. In the present paper, we propose an integrated decision-making model based on FAHP (Fuzzy Analytic Hierarchy Process), TOPSIS (Technique for Order of Preference by Similarity to Ideal Solution) and PROMETHEE (Preference Ranking Organisation METHod for Enrichment Evaluations) to contribute to a better understanding and development of new sustainable strategies for industrial organizations. Due to the varied importance of the selected criteria, FAHP is used to identify the evaluation criteria and assign the importance weights for each criterion, while TOPSIS and PROMETHEE methods employ these weighted criteria as inputs to evaluate and rank the alternatives. The main objective is to provide a comparative analysis based on TOPSIS and PROMETHEE processes to help make sound and reasoned decisions related to the selection problem of GSCM solution.Keywords: GSCM solutions, multi-criteria analysis, decision support system, TOPSIS, FAHP, PROMETHEE
Procedia PDF Downloads 1641934 An Application of Sinc Function to Approximate Quadrature Integrals in Generalized Linear Mixed Models
Authors: Altaf H. Khan, Frank Stenger, Mohammed A. Hussein, Reaz A. Chaudhuri, Sameera Asif
Abstract:
This paper discusses a novel approach to approximate quadrature integrals that arise in the estimation of likelihood parameters for the generalized linear mixed models (GLMM) as well as Bayesian methodology also requires computation of multidimensional integrals with respect to the posterior distributions in which computation are not only tedious and cumbersome rather in some situations impossible to find solutions because of singularities, irregular domains, etc. An attempt has been made in this work to apply Sinc function based quadrature rules to approximate intractable integrals, as there are several advantages of using Sinc based methods, for example: order of convergence is exponential, works very well in the neighborhood of singularities, in general quite stable and provide high accurate and double precisions estimates. The Sinc function based approach seems to be utilized first time in statistical domain to our knowledge, and it's viability and future scopes have been discussed to apply in the estimation of parameters for GLMM models as well as some other statistical areas.Keywords: generalized linear mixed model, likelihood parameters, qudarature, Sinc function
Procedia PDF Downloads 3961933 Assessment of Green Infrastructure for Sustainable Urban Water Management
Authors: Suraj Sharma
Abstract:
Green infrastructure (GI) offers a contemporary approach for reducing the risk of flooding, improve water quality, and harvesting stormwater for sustainable use. GI promotes landscape planning to enhance sustainable development and urban resilience. However, the existing literature is lacking in ensuring the comprehensive assessment of GI performance in terms of ecosystem function and services for social, ecological, and economical system resilience. We propose a robust indicator set and fuzzy comprehensive evaluation (FCE) for quantitative and qualitative analysis for sustainable water management to assess the capacity of urban resilience. Green infrastructure in urban resilience water management system (GIUR-WMS) supports decision-making for GI planning through scenario comparisons with urban resilience capacity index. To demonstrate the GIUR-WMS, we develop five scenarios for five sectors of Chandigarh (12, 26, 14, 17, and 34) to test common type of GI (rain barrel, rain gardens, detention basins, porous pavements, and open spaces). The result shows the open spaces achieve the highest green infrastructure urban resilience index of 4.22/5. To implement the open space scenario in urban sites, suitable vacant can be converted to green spaces (example: forest, low impact recreation areas, and detention basins) GIUR-WMS is easy to replicate, customize and apply to cities of different sizes to assess environmental, social and ecological dimensions.Keywords: green infrastructure, assessment, urban resilience, water management system, fuzzy comprehensive evaluation
Procedia PDF Downloads 1441932 Deep Learning Based Fall Detection Using Simplified Human Posture
Authors: Kripesh Adhikari, Hamid Bouchachia, Hammadi Nait-Charif
Abstract:
Falls are one of the major causes of injury and death among elderly people aged 65 and above. A support system to identify such kind of abnormal activities have become extremely important with the increase in ageing population. Pose estimation is a challenging task and to add more to this, it is even more challenging when pose estimations are performed on challenging poses that may occur during fall. Location of the body provides a clue where the person is at the time of fall. This paper presents a vision-based tracking strategy where available joints are grouped into three different feature points depending upon the section they are located in the body. The three feature points derived from different joints combinations represents the upper region or head region, mid-region or torso and lower region or leg region. Tracking is always challenging when a motion is involved. Hence the idea is to locate the regions in the body in every frame and consider it as the tracking strategy. Grouping these joints can be beneficial to achieve a stable region for tracking. The location of the body parts provides a crucial information to distinguish normal activities from falls.Keywords: fall detection, machine learning, deep learning, pose estimation, tracking
Procedia PDF Downloads 1891931 Learning-Oriented School Education: Indicator Construction and Taiwan's Implementation Performance
Authors: Meiju Chen, Chaoyu Guo, Chia Wei Tang
Abstract:
The present study's purpose is twofold: first, to construct indicators for learning-oriented school education and, second, to conduct a survey to examine how learning-oriented education has been implemented in junior high schools after the launch of the 12-year compulsory curriculum. For indicator system construction, we compiled relevant literature to develop a preliminary indicator list model and then conducted two rounds of a questionnaire survey to gain comprehensive feedback from experts to finalize our indicator model. In the survey's first round, 12 experts were invited to evaluate the indicators' appropriateness. Based on the experts' consensus, we determined our final indicator list and used it to develop the Fuzzy Delphi questionnaire to finalize the indicator system and each indicator's relative value. For the fact-finding survey, we collected 454 valid samples to examine how the concept of learning-oriented education is adopted and implemented in the junior high school context. We also used this data in our importance-performance analysis to explore the strengths and weaknesses of school education in Taiwan. The results suggest that the indicator system for learning-oriented school education must consist of seven dimensions and 34 indicators. Among the seven dimensions, 'student learning' and 'curriculum planning and implementation' are the most important yet underperforming dimensions that need immediate improvement. We anticipate that the indicator system will be a useful tool for other countries' evaluation of schools' performance in learning-oriented education.Keywords: learning-oriented education, school education, fuzzy Delphi method, importance-performance analysis
Procedia PDF Downloads 1431930 Technological Innovations and African Export Performances
Authors: Lukman Oyelami
Abstract:
Studies have identified trade as a veritable tool for inclusive economic growth and poverty reduction in developing countries. However, contrary to the overwhelming pieces of evidence of the Asian tiger as a success story of beneficial trade, many African countries still experience poverty unabatedly despite active engagement in trade. Consequently, this study seeks to investigate the contributory effect of technological innovation on total export performance and specifically manufacturing exports of African countries. This is with a view to exploring manufacturing exports as a viable option for diversification. To achieve the empirical investigation this study, require Systems Generalized Method of Moments (sys-GMM) estimation technique was adopted based on the econometric realities inherent in the data utilized. However, the static technique of panel estimation of the Fixed Effects (FE) model was utilized for baseline analysis and robustness check. The conclusion from this study is that innovation generally impacts export performance of African countries positively, however, manufacturing export shows more sensitivity to innovation than total export. And, this provides a clear pathway for export diversification for many African countries that run a resource-based economy.Keywords: innovation, export, GMM, Africa
Procedia PDF Downloads 2201929 Missing Link Data Estimation with Recurrent Neural Network: An Application Using Speed Data of Daegu Metropolitan Area
Authors: JaeHwan Yang, Da-Woon Jeong, Seung-Young Kho, Dong-Kyu Kim
Abstract:
In terms of ITS, information on link characteristic is an essential factor for plan or operation. But in practical cases, not every link has installed sensors on it. The link that does not have data on it is called “Missing Link”. The purpose of this study is to impute data of these missing links. To get these data, this study applies the machine learning method. With the machine learning process, especially for the deep learning process, missing link data can be estimated from present link data. For deep learning process, this study uses “Recurrent Neural Network” to take time-series data of road. As input data, Dedicated Short-range Communications (DSRC) data of Dalgubul-daero of Daegu Metropolitan Area had been fed into the learning process. Neural Network structure has 17 links with present data as input, 2 hidden layers, for 1 missing link data. As a result, forecasted data of target link show about 94% of accuracy compared with actual data.Keywords: data estimation, link data, machine learning, road network
Procedia PDF Downloads 510