Search results for: Adult dataset
1436 Sentiment Analysis of Ensemble-Based Classifiers for E-Mail Data
Authors: Muthukumarasamy Govindarajan
Abstract:
Detection of unwanted, unsolicited mails called spam from email is an interesting area of research. It is necessary to evaluate the performance of any new spam classifier using standard data sets. Recently, ensemble-based classifiers have gained popularity in this domain. In this research work, an efficient email filtering approach based on ensemble methods is addressed for developing an accurate and sensitive spam classifier. The proposed approach employs Naive Bayes (NB), Support Vector Machine (SVM) and Genetic Algorithm (GA) as base classifiers along with different ensemble methods. The experimental results show that the ensemble classifier was performing with accuracy greater than individual classifiers, and also hybrid model results are found to be better than the combined models for the e-mail dataset. The proposed ensemble-based classifiers turn out to be good in terms of classification accuracy, which is considered to be an important criterion for building a robust spam classifier.Keywords: accuracy, arcing, bagging, genetic algorithm, Naive Bayes, sentiment mining, support vector machine
Procedia PDF Downloads 1421435 Identifying Degradation Patterns of LI-Ion Batteries from Impedance Spectroscopy Using Machine Learning
Authors: Yunwei Zhang, Qiaochu Tang, Yao Zhang, Jiabin Wang, Ulrich Stimming, Alpha Lee
Abstract:
Forecasting the state of health and remaining useful life of Li-ion batteries is an unsolved challenge that limits technologies such as consumer electronics and electric vehicles. Here we build an accurate battery forecasting system by combining electrochemical impedance spectroscopy (EIS) -- a real-time, non-invasive and information-rich measurement that is hitherto underused in battery diagnosis -- with Gaussian process machine learning. We collect over 20,000 EIS spectra of commercial Li-ion batteries at different states of health, states of charge and temperatures -- the largest dataset to our knowledge of its kind. Our Gaussian process model takes the entire spectrum as input, without further feature engineering, and automatically determines which spectral features predict degradation. Our model accurately predicts the remaining useful life, even without complete knowledge of past operating conditions of the battery. Our results demonstrate the value of EIS signals in battery management systems.Keywords: battery degradation, machine learning method, electrochemical impedance spectroscopy, battery diagnosis
Procedia PDF Downloads 1481434 Indexing and Incremental Approach Using Map Reduce Bipartite Graph (MRBG) for Mining Evolving Big Data
Authors: Adarsh Shroff
Abstract:
Big data is a collection of dataset so large and complex that it becomes difficult to process using data base management tools. To perform operations like search, analysis, visualization on big data by using data mining; which is the process of extraction of patterns or knowledge from large data set. In recent years, the data mining applications become stale and obsolete over time. Incremental processing is a promising approach to refreshing mining results. It utilizes previously saved states to avoid the expense of re-computation from scratch. This project uses i2MapReduce, an incremental processing extension to Map Reduce, the most widely used framework for mining big data. I2MapReduce performs key-value pair level incremental processing rather than task level re-computation, supports not only one-step computation but also more sophisticated iterative computation, which is widely used in data mining applications, and incorporates a set of novel techniques to reduce I/O overhead for accessing preserved fine-grain computation states. To optimize the mining results, evaluate i2MapReduce using a one-step algorithm and three iterative algorithms with diverse computation characteristics for efficient mining.Keywords: big data, map reduce, incremental processing, iterative computation
Procedia PDF Downloads 3511433 The Educational Role of Non-Governmental Organizations among Young Refugees: An Ethnographic Study
Authors: Ceyda Sensin
Abstract:
Chios Island in Greece hosts many refugees from the Middle East since the Turkey-EU Refugee Deal. Thus, it has become commonplace for non-governmental organizations (NGO) to provide help for refugees in various ways. The purpose of this research is to identify ways in which improvements can be made in the educational services offered to young adult refugees (age group 14-22) by the NGO’s. To meet this aim, an unstructured observational technique was used in this qualitative study. The data was collected as a participant observer in February 2018. According to the observations made in this study, it came out that international NGOs may utilize volunteering team members on an urgent basis since they are a free resource from all around the world. In this study, it was observed that the volunteering team members without any teaching qualifications or teaching experience have struggled with reaching refugee students with or without potential mental health problems from exposure to stress, turmoil and trauma. Therefore, this study highly recommends the use of more relevantly trained professionals, alongside the volunteer staff. Alternatively, the volunteer staffs need to have teacher training and periodical refresher training.Keywords: ethnographic study, non-governmental organizations, refugees, qualitative research method
Procedia PDF Downloads 3021432 Artificial Neural Network-Based Short-Term Load Forecasting for Mymensingh Area of Bangladesh
Authors: S. M. Anowarul Haque, Md. Asiful Islam
Abstract:
Electrical load forecasting is considered to be one of the most indispensable parts of a modern-day electrical power system. To ensure a reliable and efficient supply of electric energy, special emphasis should have been put on the predictive feature of electricity supply. Artificial Neural Network-based approaches have emerged to be a significant area of interest for electric load forecasting research. This paper proposed an Artificial Neural Network model based on the particle swarm optimization algorithm for improved electric load forecasting for Mymensingh, Bangladesh. The forecasting model is developed and simulated on the MATLAB environment with a large number of training datasets. The model is trained based on eight input parameters including historical load and weather data. The predicted load data are then compared with an available dataset for validation. The proposed neural network model is proved to be more reliable in terms of day-wise load forecasting for Mymensingh, Bangladesh.Keywords: load forecasting, artificial neural network, particle swarm optimization
Procedia PDF Downloads 1711431 Incorporating Multiple Supervised Learning Algorithms for Effective Intrusion Detection
Authors: Umar Albalawi, Sang C. Suh, Jinoh Kim
Abstract:
As internet continues to expand its usage with an enormous number of applications, cyber-threats have significantly increased accordingly. Thus, accurate detection of malicious traffic in a timely manner is a critical concern in today’s Internet for security. One approach for intrusion detection is to use Machine Learning (ML) techniques. Several methods based on ML algorithms have been introduced over the past years, but they are largely limited in terms of detection accuracy and/or time and space complexity to run. In this work, we present a novel method for intrusion detection that incorporates a set of supervised learning algorithms. The proposed technique provides high accuracy and outperforms existing techniques that simply utilizes a single learning method. In addition, our technique relies on partial flow information (rather than full information) for detection, and thus, it is light-weight and desirable for online operations with the property of early identification. With the mid-Atlantic CCDC intrusion dataset publicly available, we show that our proposed technique yields a high degree of detection rate over 99% with a very low false alarm rate (0.4%).Keywords: intrusion detection, supervised learning, traffic classification, computer networks
Procedia PDF Downloads 3501430 Genistein Treatment Confers Protection Against Gliopathy & Vasculopathy of the Diabetic Retina in Rats
Authors: Sanaa AM Elgayar, Sohair A Eltony, Maha Mahmoud Abd El Rouf
Abstract:
Background: Retinopathy remains an important complication of diabetes. Aim of work: This work was carried out to evaluate the protective effects of genistein from diabetic retinopathy in rat. Material and Methods: Fifteen adult male albino rats were divided into two groups; Group I: control (n=5) and Group II: streptozotocin induced diabetic group (n=10), which is equally divided into two subgroups; IIa (diabetic vehicle control) and IIb (diabetic genistein-treated). Specimens were taken from the retina 12 weeks post induction, processed and examined using light, immunohistochemical, ultrastructural techniques. Blood samples were assayed for the levels of glucose. Results: In comparison with the diabetic non-treated group, the histological changes in macro and microglial glial cells reactivity and retinal blood capillaries were improved in genistein-treated groups. In addition, GFAP and iNOS expressions in the retina and the blood glucose level were reduced. Conclusion: Genistein ameliorates the histological changes of diabetic retinopathy reaching healing features, which resemble that of a normal retina.Keywords: diabetic retinopathy, genistein, glia, capillaries.
Procedia PDF Downloads 3151429 Analysis of Patient No-Shows According to Health Conditions
Authors: Sangbok Lee
Abstract:
There has been much effort on process improvement for outpatient clinics to provide quality and acute care to patients. One of the efforts is no-show analysis or prediction. This work analyzes patient no-shows along with patient health conditions. The health conditions refer to clinical symptoms that each patient has, out of the followings; hyperlipidemia, diabetes, metastatic solid tumor, dementia, chronic obstructive pulmonary disease, hypertension, coronary artery disease, myocardial infraction, congestive heart failure, atrial fibrillation, stroke, drug dependence abuse, schizophrenia, major depression, and pain. A dataset from a regional hospital is used to find the relationship between the number of the symptoms and no-show probabilities. Additional analysis reveals how each symptom or combination of symptoms affects no-shows. In the above analyses, cross-classification of patients by age and gender is carried out. The findings from the analysis will be used to take extra care to patients with particular health conditions. They will be forced to visit clinics by being informed about their health conditions and possible consequences more clearly. Moreover, this work will be used in the preparation of making institutional guidelines for patient reminder systems.Keywords: healthcare system, no show analysis, process improvment, statistical data analysis
Procedia PDF Downloads 2331428 Analysing Causal Effect of London Cycle Superhighways on Traffic Congestion
Authors: Prajamitra Bhuyan
Abstract:
Transport operators have a range of intervention options available to improve or enhance their networks. But often such interventions are made in the absence of sound evidence on what outcomes may result. Cycling superhighways were promoted as a sustainable and healthy travel mode which aims to cut traffic congestion. The estimation of the impacts of the cycle superhighways on congestion is complicated due to the non-random assignment of such intervention over the transport network. In this paper, we analyse the causal effect of cycle superhighways utilising pre-innervation and post-intervention information on traffic and road characteristics along with socio-economic factors. We propose a modeling framework based on the propensity score and outcome regression model. The method is also extended to doubly robust set-up. Simulation results show the superiority of the performance of the proposed method over existing competitors. The method is applied to analyse a real dataset on the London transport network, and the result would help effective decision making to improve network performance.Keywords: average treatment effect, confounder, difference-in-difference, intelligent transportation system, potential outcome
Procedia PDF Downloads 2401427 Human Mesenchymal Stem Cells as a Potential Source for Cell Therapy in Liver Disorders
Authors: Laila Montaser, Hala Gabr, Maha El-Bassuony, Gehan Tawfeek
Abstract:
Orthotropic liver transplantation (OLT) is the final procedure of both end stage and metabolic liver diseases. Hepatocyte transplantation is an alternative for OLT, but the sources of hepatocytes are limited. Bone marrow mesenchymal stem cells (BM-MSCs) can differentiate into hepatocyte-like cells and are a potential alternative source for hepatocytes. The MSCs from bone marrow are a promising target population as they are capable of differentiating along multiple lineages and, at least in vitro, have significant expansion capability. MSCs from bone marrow may have the potential to differentiate in vitro and in vivo into hepatocytes. Our study examined whether mesenchymal stem cells (MSCs), which are stem cells originated from human bone marrow, are able to differentiate into functional hepatocyte-like cells in vitro. Our aim was to investigate the differentiation potential of BM-MSCs into hepatocyte-like cells. Adult stem cell therapy could solve the problem of degenerative disorders, including liver disease.Keywords: bone marrow, differentiation, hepatocyte, stem cells
Procedia PDF Downloads 5201426 Toward Automatic Chest CT Image Segmentation
Authors: Angely Sim Jia Wun, Sasa Arsovski
Abstract:
Numerous studies have been conducted on the segmentation of medical images. Segmenting the lungs is one of the common research topics in those studies. Our research stemmed from the lack of solutions for automatic bone, airway, and vessel segmentation, despite the existence of multiple lung segmentation techniques. Consequently, currently, available software tools used for medical image segmentation do not provide automatic lung, bone, airway, and vessel segmentation. This paper presents segmentation techniques along with an interactive software tool architecture for segmenting bone, lung, airway, and vessel tissues. Additionally, we propose a method for creating binary masks from automatically generated segments. The key contribution of our approach is the technique for automatic image thresholding using adjustable Hounsfield values and binary mask extraction. Generated binary masks can be successfully used as a training dataset for deep-learning solutions in medical image segmentation. In this paper, we also examine the current software tools used for medical image segmentation, discuss our approach, and identify its advantages.Keywords: lung segmentation, binary masks, U-Net, medical software tools
Procedia PDF Downloads 981425 Vehicle Detection and Tracking Using Deep Learning Techniques in Surveillance Image
Authors: Abe D. Desta
Abstract:
This study suggests a deep learning-based method for identifying and following moving objects in surveillance video. The proposed method uses a fast regional convolution neural network (F-RCNN) trained on a substantial dataset of vehicle images to first detect vehicles. A Kalman filter and a data association technique based on a Hungarian algorithm are then used to monitor the observed vehicles throughout time. However, in general, F-RCNN algorithms have been shown to be effective in achieving high detection accuracy and robustness in this research study. For example, in one study The study has shown that the vehicle detection and tracking, the system was able to achieve an accuracy of 97.4%. In this study, the F-RCNN algorithm was compared to other popular object detection algorithms and was found to outperform them in terms of both detection accuracy and speed. The presented system, which has application potential in actual surveillance systems, shows the usefulness of deep learning approaches in vehicle detection and tracking.Keywords: artificial intelligence, computer vision, deep learning, fast-regional convolutional neural networks, feature extraction, vehicle tracking
Procedia PDF Downloads 1261424 The Affect of Ethnic Minority People: A Prediction by Gender and Marital Status
Authors: A. K. M. Rezaul Karim, Abu Yusuf Mahmud, S. H. Mahmud
Abstract:
The study aimed to investigate whether the affect (experience of feeling or emotion) of ethnic minority people can be predicted by gender and marital status. Toward this end, positive affect and negative affect of 103 adult indigenous persons were measured. Analysis of data in multiple regressions demonstrated that both gender and marital status are significantly associated with positive affect (Gender: β=.318, p < .001; Marital status: β=.201, p < .05), but not with negative affect. Results indicated that the indigenous males have 0.32 standard deviations increased positive affect as compared to the indigenous females and that married individuals have 0.20 standard deviations increased positive affect as compared to their unmarried counterparts. These findings advance our understanding that gender and marital status inequalities in the experience of emotion are not specific to the mainstream society; rather it is a generalized picture of all societies. In general, men possess more positive affect than females; married persons possess more positive affect than the unmarried persons.Keywords: positive affect, negative affect, ethnic minority, gender, marital status
Procedia PDF Downloads 4481423 Effect of Monotonically Decreasing Parameters on Margin Softmax for Deep Face Recognition
Authors: Umair Rashid
Abstract:
Normally softmax loss is used as the supervision signal in face recognition (FR) system, and it boosts the separability of features. In the last two years, a number of techniques have been proposed by reformulating the original softmax loss to enhance the discriminating power of Deep Convolutional Neural Networks (DCNNs) for FR system. To learn angularly discriminative features Cosine-Margin based softmax has been adjusted as monotonically decreasing angular function, that is the main challenge for angular based softmax. On that issue, we propose monotonically decreasing element for Cosine-Margin based softmax and also, we discussed the effect of different monotonically decreasing parameters on angular Margin softmax for FR system. We train the model on publicly available dataset CASIA- WebFace via our proposed monotonically decreasing parameters for cosine function and the tests on YouTube Faces (YTF, Labeled Face in the Wild (LFW), VGGFace1 and VGGFace2 attain the state-of-the-art performance.Keywords: deep convolutional neural networks, cosine margin face recognition, softmax loss, monotonically decreasing parameter
Procedia PDF Downloads 1011422 Spatiotemporal Neural Network for Video-Based Pose Estimation
Authors: Bin Ji, Kai Xu, Shunyu Yao, Jingjing Liu, Ye Pan
Abstract:
Human pose estimation is a popular research area in computer vision for its important application in human-machine interface. In recent years, 2D human pose estimation based on convolution neural network has got great progress and development. However, in more and more practical applications, people often need to deal with tasks based on video. It’s not far-fetched for us to consider how to combine the spatial and temporal information together to achieve a balance between computing cost and accuracy. To address this issue, this study proposes a new spatiotemporal model, namely Spatiotemporal Net (STNet) to combine both temporal and spatial information more rationally. As a result, the predicted keypoints heatmap is potentially more accurate and spatially more precise. Under the condition of ensuring the recognition accuracy, the algorithm deal with spatiotemporal series in a decoupled way, which greatly reduces the computation of the model, thus reducing the resource consumption. This study demonstrate the effectiveness of our network over the Penn Action Dataset, and the results indicate superior performance of our network over the existing methods.Keywords: convolutional long short-term memory, deep learning, human pose estimation, spatiotemporal series
Procedia PDF Downloads 1481421 Face Recognition Using Eigen Faces Algorithm
Authors: Shweta Pinjarkar, Shrutika Yawale, Mayuri Patil, Reshma Adagale
Abstract:
Face recognition is the technique which can be applied to the wide variety of problems like image and film processing, human computer interaction, criminal identification etc. This has motivated researchers to develop computational models to identify the faces, which are easy and simple to implement. In this, demonstrates the face recognition system in android device using eigenface. The system can be used as the base for the development of the recognition of human identity. Test images and training images are taken directly with the camera in android device.The test results showed that the system produces high accuracy. The goal is to implement model for particular face and distinguish it with large number of stored faces. face recognition system detects the faces in picture taken by web camera or digital camera and these images then checked with training images dataset based on descriptive features. Further this algorithm can be extended to recognize the facial expressions of a person.recognition could be carried out under widely varying conditions like frontal view,scaled frontal view subjects with spectacles. The algorithm models the real time varying lightning conditions. The implemented system is able to perform real-time face detection, face recognition and can give feedback giving a window with the subject's info from database and sending an e-mail notification to interested institutions using android application. Face recognition is the technique which can be applied to the wide variety of problems like image and film processing, human computer interaction, criminal identification etc. This has motivated researchers to develop computational models to identify the faces, which are easy and simple to implement. In this , demonstrates the face recognition system in android device using eigenface. The system can be used as the base for the development of the recognition of human identity. Test images and training images are taken directly with the camera in android device.The test results showed that the system produces high accuracy. The goal is to implement model for particular face and distinguish it with large number of stored faces. face recognition system detects the faces in picture taken by web camera or digital camera and these images then checked with training images dataset based on descriptive features. Further this algorithm can be extended to recognize the facial expressions of a person.recognition could be carried out under widely varying conditions like frontal view,scaled frontal view subjects with spectacles. The algorithm models the real time varying lightning conditions. The implemented system is able to perform real-time face detection, face recognition and can give feedback giving a window with the subject's info from database and sending an e-mail notification to interested institutions using android application.Keywords: face detection, face recognition, eigen faces, algorithm
Procedia PDF Downloads 3611420 Exercise program’s Effectiveness on Hepatic Fat Mobilization among Nonalcoholic Fatty Liver Patients
Authors: Taher Eid Shaaban Ahmed Mousa
Abstract:
Non-Alcoholic fatty liver disease (NAFLD) is a major cause of multiple liver disorders, which strongly linked to a poor lifestyle. This study aiming to elucidate the exercise program’s effectiveness on hepatic fat mobilization among nonalcoholic fatty liver patients. Subjects: A purposive sample of 150 adult male & female patients. Setting: National institute of liver out patient's clinics of Menoufia University. Tools: three tools I: An interviewing structured questionnaire, II: International Physical Activity Questionnaire, III: compliance assessment sheet. Results: There was statistically significant difference pre and post exercise program regarding total body weight, physical activity level and compliance that prevent new fat development with resolution of existing one. Conclusion: regular exercise is the best implemented approach as an initial step for the prevention, treatment and management of NAFLD. Recommendation: It is highly important to unravel the mechanism and dose by which each exercise specifically resolve various stages of liver diseases.Keywords: exercise program, hebatic fat mobilization, nonalcoholic fatty liver patients, sport science
Procedia PDF Downloads 851419 The Effects of Combination of Melatonin with and without Zinc on Gonadotropin Hormones in Female Rats
Authors: Fariba Rahimi, Morteza Zendedel, Mohammad Jaafar Rezaee, Bita Vazir, Shahin Fakour
Abstract:
The present study was carried out to investigate the effect of melatonin (Mel) with and without zinc (Zn) on the gonadotropin hormones, also thyroid (T3 and T4) hormone concentration in female rats. A total of 40 adult female rats were randomly grouped into five treatment groups, each of 2 rats in a Completely Randomized Design (CRD) entire research time. Daily was treated by gavage with Zn and melatonin as follows: T1 (control1, basal diet), T2 (control 2, treated with normal saline) and other experimental groups, including T3, T4 and T5, were treated with a dose of zinc (40 ppm), melatonin (5 mg/kg), and combination zinc plus melatonin with the same level, respectively. Blood FSH and LH concentrations were measured. The result showed no significant differences between treatments in FSH and LH levels. The estrogen and progesterone and TSH levels in rats that received 5 mg of melatonin per day were higher than in other groups but not statistically significant (P>0.05). However, T3 (thyroid) concentration significantly (P<0.05) decreased in the group that received 40 mg/zinc per Kg compared to other groups. No significant (P>0.05) difference was detected among treatments in T4 levels. In conclusion, except for T3, had no significant (P>0.05) effect on another parameter in the female rats that received melatonin or zinc and a blend of melatonin and Zn.Keywords: zinc, melatonin, hormone, rat
Procedia PDF Downloads 1091418 Development of Fake News Model Using Machine Learning through Natural Language Processing
Authors: Sajjad Ahmed, Knut Hinkelmann, Flavio Corradini
Abstract:
Fake news detection research is still in the early stage as this is a relatively new phenomenon in the interest raised by society. Machine learning helps to solve complex problems and to build AI systems nowadays and especially in those cases where we have tacit knowledge or the knowledge that is not known. We used machine learning algorithms and for identification of fake news; we applied three classifiers; Passive Aggressive, Naïve Bayes, and Support Vector Machine. Simple classification is not completely correct in fake news detection because classification methods are not specialized for fake news. With the integration of machine learning and text-based processing, we can detect fake news and build classifiers that can classify the news data. Text classification mainly focuses on extracting various features of text and after that incorporating those features into classification. The big challenge in this area is the lack of an efficient way to differentiate between fake and non-fake due to the unavailability of corpora. We applied three different machine learning classifiers on two publicly available datasets. Experimental analysis based on the existing dataset indicates a very encouraging and improved performance.Keywords: fake news detection, natural language processing, machine learning, classification techniques.
Procedia PDF Downloads 1671417 Machine Learning Approach for Automating Electronic Component Error Classification and Detection
Authors: Monica Racha, Siva Chandrasekaran, Alex Stojcevski
Abstract:
The engineering programs focus on promoting students' personal and professional development by ensuring that students acquire technical and professional competencies during four-year studies. The traditional engineering laboratory provides an opportunity for students to "practice by doing," and laboratory facilities aid them in obtaining insight and understanding of their discipline. Due to rapid technological advancements and the current COVID-19 outbreak, the traditional labs were transforming into virtual learning environments. Aim: To better understand the limitations of the physical laboratory, this research study aims to use a Machine Learning (ML) algorithm that interfaces with the Augmented Reality HoloLens and predicts the image behavior to classify and detect the electronic components. The automated electronic components error classification and detection automatically detect and classify the position of all components on a breadboard by using the ML algorithm. This research will assist first-year undergraduate engineering students in conducting laboratory practices without any supervision. With the help of HoloLens, and ML algorithm, students will reduce component placement error on a breadboard and increase the efficiency of simple laboratory practices virtually. Method: The images of breadboards, resistors, capacitors, transistors, and other electrical components will be collected using HoloLens 2 and stored in a database. The collected image dataset will then be used for training a machine learning model. The raw images will be cleaned, processed, and labeled to facilitate further analysis of components error classification and detection. For instance, when students conduct laboratory experiments, the HoloLens captures images of students placing different components on a breadboard. The images are forwarded to the server for detection in the background. A hybrid Convolutional Neural Networks (CNNs) and Support Vector Machines (SVMs) algorithm will be used to train the dataset for object recognition and classification. The convolution layer extracts image features, which are then classified using Support Vector Machine (SVM). By adequately labeling the training data and classifying, the model will predict, categorize, and assess students in placing components correctly. As a result, the data acquired through HoloLens includes images of students assembling electronic components. It constantly checks to see if students appropriately position components in the breadboard and connect the components to function. When students misplace any components, the HoloLens predicts the error before the user places the components in the incorrect proportion and fosters students to correct their mistakes. This hybrid Convolutional Neural Networks (CNNs) and Support Vector Machines (SVMs) algorithm automating electronic component error classification and detection approach eliminates component connection problems and minimizes the risk of component damage. Conclusion: These augmented reality smart glasses powered by machine learning provide a wide range of benefits to supervisors, professionals, and students. It helps customize the learning experience, which is particularly beneficial in large classes with limited time. It determines the accuracy with which machine learning algorithms can forecast whether students are making the correct decisions and completing their laboratory tasks.Keywords: augmented reality, machine learning, object recognition, virtual laboratories
Procedia PDF Downloads 1341416 Multi-Level Attentional Network for Aspect-Based Sentiment Analysis
Authors: Xinyuan Liu, Xiaojun Jing, Yuan He, Junsheng Mu
Abstract:
Aspect-based Sentiment Analysis (ABSA) has attracted much attention due to its capacity to determine the sentiment polarity of the certain aspect in a sentence. In previous works, great significance of the interaction between aspect and sentence has been exhibited in ABSA. In consequence, a Multi-Level Attentional Networks (MLAN) is proposed. MLAN consists of four parts: Embedding Layer, Encoding Layer, Multi-Level Attentional (MLA) Layers and Final Prediction Layer. Among these parts, MLA Layers including Aspect Level Attentional (ALA) Layer and Interactive Attentional (ILA) Layer is the innovation of MLAN, whose function is to focus on the important information and obtain multiple levels’ attentional weighted representation of aspect and sentence. In the experiments, MLAN is compared with classical TD-LSTM, MemNet, RAM, ATAE-LSTM, IAN, AOA, LCR-Rot and AEN-GloVe on SemEval 2014 Dataset. The experimental results show that MLAN outperforms those state-of-the-art models greatly. And in case study, the works of ALA Layer and ILA Layer have been proven to be effective and interpretable.Keywords: deep learning, aspect-based sentiment analysis, attention, natural language processing
Procedia PDF Downloads 1381415 A Study on Sentiment Analysis Using Various ML/NLP Models on Historical Data of Indian Leaders
Authors: Sarthak Deshpande, Akshay Patil, Pradip Pandhare, Nikhil Wankhede, Rushali Deshmukh
Abstract:
Among the highly significant duties for any language most effective is the sentiment analysis, which is also a key area of NLP, that recently made impressive strides. There are several models and datasets available for those tasks in popular and commonly used languages like English, Russian, and Spanish. While sentiment analysis research is performed extensively, however it is lagging behind for the regional languages having few resources such as Hindi, Marathi. Marathi is one of the languages that included in the Indian Constitution’s 8th schedule and is the third most widely spoken language in the country and primarily spoken in the Deccan region, which encompasses Maharashtra and Goa. There isn’t sufficient study on sentiment analysis methods based on Marathi text due to lack of available resources, information. Therefore, this project proposes the use of different ML/NLP models for the analysis of Marathi data from the comments below YouTube content, tweets or Instagram posts. We aim to achieve a short and precise analysis and summary of the related data using our dataset (Dates, names, root words) and lexicons to locate exact information.Keywords: multilingual sentiment analysis, Marathi, natural language processing, text summarization, lexicon-based approaches
Procedia PDF Downloads 741414 Drawings as a Methodical Access to Reconstruct Children's Perspective on a Horse-Assisted Intervention
Authors: Annika Barzen
Abstract:
In this article, the collection and analysis of drawings are implemented and discussed as a methodological approach to reconstruct children's perspective on horse-assisted interventions. For this purpose, drawings of three children (8-10 years old) were included in the research process in order to clarify the question of what insights can be derived from the drawings about the child's perspective on the intervention. The children were asked to draw a picture of themselves at the horse stable. Practical implementation considerations are disclosed. The developed analysis steps consider the work of two art historians (Erwin Panofsky and Max Imdahl) to capture the visual sense and to interpret the children's drawings. Relevant topics about the children's perspective can be inferred from the drawings. In the drawings, the following topics are important for the children: Overcoming challenges and fears in handling the horse, support from an adult in handling the horse and feeling self-confident and competent to act after completing tasks with the horse. The drawings show the main topics which are relevant for the children and can be used as a basis for conversation. All in all, the child's drawing offers a useful addition to other survey methods in order to gain further insights into the experiences of children in a horse-assisted setting.Keywords: children's perspective, interpret children's drawings, equine-assisted-intervention, methodical analysis
Procedia PDF Downloads 1541413 Artificial Reproduction System and Imbalanced Dataset: A Mendelian Classification
Authors: Anita Kushwaha
Abstract:
We propose a new evolutionary computational model called Artificial Reproduction System which is based on the complex process of meiotic reproduction occurring between male and female cells of the living organisms. Artificial Reproduction System is an attempt towards a new computational intelligence approach inspired by the theoretical reproduction mechanism, observed reproduction functions, principles and mechanisms. A reproductive organism is programmed by genes and can be viewed as an automaton, mapping and reducing so as to create copies of those genes in its off springs. In Artificial Reproduction System, the binding mechanism between male and female cells is studied, parameters are chosen and a network is constructed also a feedback system for self regularization is established. The model then applies Mendel’s law of inheritance, allele-allele associations and can be used to perform data analysis of imbalanced data, multivariate, multiclass and big data. In the experimental study Artificial Reproduction System is compared with other state of the art classifiers like SVM, Radial Basis Function, neural networks, K-Nearest Neighbor for some benchmark datasets and comparison results indicates a good performance.Keywords: bio-inspired computation, nature- inspired computation, natural computing, data mining
Procedia PDF Downloads 2721412 Efficient Deep Neural Networks for Real-Time Strawberry Freshness Monitoring: A Transfer Learning Approach
Authors: Mst. Tuhin Akter, Sharun Akter Khushbu, S. M. Shaqib
Abstract:
A real-time system architecture is highly effective for monitoring and detecting various damaged products or fruits that may deteriorate over time or become infected with diseases. Deep learning models have proven to be effective in building such architectures. However, building a deep learning model from scratch is a time-consuming and costly process. A more efficient solution is to utilize deep neural network (DNN) based transfer learning models in the real-time monitoring architecture. This study focuses on using a novel strawberry dataset to develop effective transfer learning models for the proposed real-time monitoring system architecture, specifically for evaluating and detecting strawberry freshness. Several state-of-the-art transfer learning models were employed, and the best performing model was found to be Xception, demonstrating higher performance across evaluation metrics such as accuracy, recall, precision, and F1-score.Keywords: strawberry freshness evaluation, deep neural network, transfer learning, image augmentation
Procedia PDF Downloads 901411 Analysis of Persian Fallow Deer Semen Parameters in Breeding and Non-Breeding Seasons
Authors: Hamid Ghasemzadeh-Nava, Behrang Ekrami
Abstract:
Persian fallow deer (Dama dama mesopotamica) is belonging to the family Cervidae and is only found in a few protected areas in the northwest, north, and southwest of Iran. The aims of this study were the analysis of inbreeding and morphometric parameters of semen in male Persian fallow deer to investigate the cause of reduced fertility of this endangered species in Dasht-e-Naz National Refuge, Sari, Iran. The Persian fallow deer semen was collected from four adult bucks randomly during the breeding and non-breeding season from five dehorned and horned deer's by using a ram electroejaculator. The post-mating season collected ejaculates contained abnormal spermatozoa, debris and secretion of accessory glands in horned bucks and accessory glands secretion free of any spermatozoa in dehorned or early velvet budding bucks. Many dag defect abnormalities observed in all samples may be the cause of high rate of polymorphism because of small primary herd size of Persian fallow deer in this area, so needs be evaluated genetically.Keywords: electroejaculator, Persian fallow deer, reproductive characteristics, spermatozoa
Procedia PDF Downloads 3531410 Generalized Approach to Linear Data Transformation
Authors: Abhijith Asok
Abstract:
This paper presents a generalized approach for the simple linear data transformation, Y=bX, through an integration of multidimensional coordinate geometry, vector space theory and polygonal geometry. The scaling is performed by adding an additional ’Dummy Dimension’ to the n-dimensional data, which helps plot two dimensional component-wise straight lines on pairs of dimensions. The end result is a set of scaled extensions of observations in any of the 2n spatial divisions, where n is the total number of applicable dimensions/dataset variables, created by shifting the n-dimensional plane along the ’Dummy Axis’. The derived scaling factor was found to be dependent on the coordinates of the common point of origin for diverging straight lines and the plane of extension, chosen on and perpendicular to the ’Dummy Axis’, respectively. This result indicates the geometrical interpretation of a linear data transformation and hence, opportunities for a more informed choice of the factor ’b’, based on a better choice of these coordinate values. The paper follows on to identify the effect of this transformation on certain popular distance metrics, wherein for many, the distance metric retained the same scaling factor as that of the features.Keywords: data transformation, dummy dimension, linear transformation, scaling
Procedia PDF Downloads 2971409 Delicate Balance between Cardiac Stress and Protection: Role of Mitochondrial Proteins
Authors: Zuzana Tatarkova, Ivana Pilchova, Michal Cibulka, Martin Kolisek, Peter Racay, Peter Kaplan
Abstract:
Introduction: Normal functioning of mitochondria is crucial for cardiac performance. Mitochondria undergo mitophagy and biogenesis, and mitochondrial proteins are subject to extensive post-translational modifications. The state of mitochondrial homeostasis reflects overall cellular fitness and longevity. Perturbed mitochondria produce less ATP, release greater amounts of reactive molecules, and are more prone to apoptosis. Therefore mitochondrial turnover is an integral aspect of quality control in which dysfunctional mitochondria are selectively eliminated through mitophagy. Currently, the progressive deterioration of physiological functions is seen as accumulation of modified/damaged proteins with limiting regenerative ability and disturbance of such affected protein-protein communication throughout aging in myocardial cells. Methodologies: For our study was used immunohistochemistry, biochemical methods: spectrophotometry, western blotting, immunodetection as well as more sophisticated 2D electrophoresis and mass spectrometry for evaluation protein-protein interactions and specific post-translational modification. Results and Discussion: Mitochondrial stress response to reactive species was evaluated as electron transport chain (ETC) complexes, redox-active molecules, and their possible communication. Protein-protein interactions revealed a strong linkage between age and ETC protein subunits. Redox state was strongly affected in senescent mitochondria with shift in favor of more pro-oxidizing condition within cardiomyocytes. Acute myocardial ischemia and ischemia-reperfusion (IR) injury affected ETC complexes I, II and IV with no change in complex III. Ischemia induced decrease in total antioxidant capacity, MnSOD, GSH and catalase activity with recovery in some extent during reperfusion. While MnSOD protein content was higher in IR group, activity returned to 95% of control. Nitric oxide is one of the biological molecules that can out compete MnSOD for superoxide and produce peroxynitrite. This process is faster than dismutation and led to the 10-fold higher production of nitrotyrosine after IR injury in adult with higher protection in senescent ones. 2D protein profiling revealed 140 mitochondrial proteins, 12 of them with significant changes after IR injury and 36 individual nitrotyrosine-modified proteins further identified by mass spectrometry. Linking these two groups, 5 proteins were altered after IR as well as nitrated, but only one showed massive nitration per lowering content of protein after IR injury in adult. Conclusions: Senescent cells have greater proportion of protein content, which might be modulated by several post-translational modifications. If these protein modifications are connected to functional consequences and protein-protein interactions are revealed, link may lead to the solution. Assume all together, dysfunctional proteostasis can play a causative role and restoration of protein homeostasis machinery is protective against aging and possibly age-related disorders. This work was supported by the project VEGA 1/0018/18 and by project 'Competence Center for Research and Development in the field of Diagnostics and Therapy of Oncological diseases', ITMS: 26220220153, co-financed from EU sources.Keywords: aging heart, mitochondria, proteomics, redox state
Procedia PDF Downloads 1671408 The Effects of Combination of Melatonin with and Without Zinc on Gonadotropin Hormones in Female Rats
Authors: Fariba Rahimi, Morteza Zendedel, Mohammad Jaafar Rezaee, Bita Vazir, Shahin Fakour
Abstract:
The present study was carried out to investigate the effect of melatonin (Mel) with and without zinc (Zn) on the gonadotropin hormones, also thyroid (T3 and T4) hormone concentration in female rat. A total of 40 adult female rats were randomly grouped into five treatment groups, each of 2 rats in a Completely Randomized Design (CRD) entire research time. Daily were treated by gavaging with Zn and melatonin as following: T1 (control1, basal diet), T2 (control 2, treated with normal saline) and other experimental groups including T3, T4 and T5 were treated with dose of zinc (40 ppm), melatonin (5 mg/kg), and combination zinc plus melatonin with the same level, respectively. Blood FSH and LH concentration were measured. Result showed no significantly differences between treatments in FSH and LH levels. The estrogen and progesterone and TSH levels in rats that received 5 mg of melatonin per day were higher than other groups, but not statistically significant (P>0.05). However, T3 (thyroid) concentration significantly (P<0.05) decreased in group that received 40 mg/zinc per Kg compared other groups. No significant (P>0.05) difference was detected among treatments in T4 levels. In conclusion, except for T3, had not significantly (P>0.05) effect on another parameters in the female rats that received melatonin or zinc and blend of melatonin and Zn.Keywords: zinc, melatonin, hormone, rat
Procedia PDF Downloads 1221407 Feature Weighting Comparison Based on Clustering Centers in the Detection of Diabetic Retinopathy
Authors: Kemal Polat
Abstract:
In this paper, three feature weighting methods have been used to improve the classification performance of diabetic retinopathy (DR). To classify the diabetic retinopathy, features extracted from the output of several retinal image processing algorithms, such as image-level, lesion-specific and anatomical components, have been used and fed them into the classifier algorithms. The dataset used in this study has been taken from University of California, Irvine (UCI) machine learning repository. Feature weighting methods including the fuzzy c-means clustering based feature weighting, subtractive clustering based feature weighting, and Gaussian mixture clustering based feature weighting, have been used and compered with each other in the classification of DR. After feature weighting, five different classifier algorithms comprising multi-layer perceptron (MLP), k- nearest neighbor (k-NN), decision tree, support vector machine (SVM), and Naïve Bayes have been used. The hybrid method based on combination of subtractive clustering based feature weighting and decision tree classifier has been obtained the classification accuracy of 100% in the screening of DR. These results have demonstrated that the proposed hybrid scheme is very promising in the medical data set classification.Keywords: machine learning, data weighting, classification, data mining
Procedia PDF Downloads 326