Search results for: earth's surface interaction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10662

Search results for: earth's surface interaction

462 Engineering Design of a Chemical Launcher: An Interdisciplinary Design Activity

Authors: Mei Xuan Tan, Gim-Yang Maggie Pee, Mei Chee Tan

Abstract:

Academic performance, in the form of scoring high grades in enrolled subjects, is not the only significant trait in achieving success. Engineering graduates with experience in working on hands-on projects in a team setting are highly sought after in industry upon graduation. Such projects are typically real world problems that require the integration and application of knowledge and skills from several disciplines. In a traditional university setting, subjects are taught in a silo manner with no cross participation from other departments or disciplines. This may lead to knowledge compartmentalization and students are unable to understand and connect the relevance and applicability of the subject. University instructors thus see this integration across disciplines as a challenging task as they aim to better prepare students in understanding and solving problems for work or future studies. To improve students’ academic performance and to cultivate various skills such as critical thinking, there has been a gradual uptake in the use of an active learning approach in introductory science and engineering courses, where lecturing is traditionally the main mode of instruction. This study aims to discuss the implementation and experience of a hands-on, interdisciplinary project that involves all the four core subjects taught during the term at the Singapore University of Technology Design (SUTD). At SUTD, an interdisciplinary design activity, named 2D, is integrated into the curriculum to help students reinforce the concepts learnt. A student enrolled in SUTD experiences his or her first 2D in Term 1. This activity. which spans over one week in Week 10 of Term 1, highlights the application of chemistry, physics, mathematics, humanities, arts and social sciences (HASS) in designing an engineering product solution. The activity theme for Term 1 2D revolved around “work and play”. Students, in teams of 4 or 5, used a scaled-down model of a chemical launcher to launch a projectile across the room. It involved the use of a small chemical combustion reaction between ethanol (a highly volatile fuel) and oxygen. This reaction generated a sudden and large increase in gas pressure built up in a closed chamber, resulting in rapid gas expansion and ejection of the projectile out of the launcher. Students discussed and explored the meaning of play in their lives in HASS class while the engineering aspects of a combustion system to launch an object using underlying principles of energy conversion and projectile motion were revisited during the chemistry and physics classes, respectively. Numerical solutions on the distance travelled by the projectile launched by the chemical launcher, taking into account drag forces, was developed during the mathematics classes. At the end of the activity, students developed skills in report writing, data collection and analysis. Specific to this 2D activity, students gained an understanding and appreciation on the application and interdisciplinary nature of science, engineering and HASS. More importantly, students were exposed to design and problem solving, where human interaction and discussion are important yet challenging in a team setting.

Keywords: active learning, collaborative learning, first year undergraduate, interdisciplinary, STEAM

Procedia PDF Downloads 104
461 Development and Characterization of Novel Topical Formulation Containing Niacinamide

Authors: Sevdenur Onger, Ali Asram Sagiroglu

Abstract:

Hyperpigmentation is a cosmetically unappealing skin problem caused by an overabundance of melanin in the skin. Its pathophysiology is caused by melanocytes being exposed to paracrine melanogenic stimuli, which can upregulate melanogenesis-related enzymes (such as tyrosinase) and cause melanosome formation. Tyrosinase is linked to the development of melanosomes biochemically, and it is the main target of hyperpigmentation treatment. therefore, decreasing tyrosinase activity to reduce melanosomes has become the main target of hyperpigmentation treatment. Niacinamide (NA) is a natural chemical found in a variety of plants that is used as a skin-whitening ingredient in cosmetic formulations. NA decreases melanogenesis in the skin by inhibiting melanosome transfer from melanocytes to covering keratinocytes. Furthermore, NA protects the skin from reactive oxygen species and acts as a main barrier with the skin, reducing moisture loss by increasing ceramide and fatty acid synthesis. However, it is very difficult for hydrophilic compounds such as NA to penetrate deep into the skin. Furthermore, because of the nicotinic acid in NA, it is an irritant. As a result, we've concentrated on strategies to increase NA skin permeability while avoiding its irritating impacts. Since nanotechnology can affect drug penetration behavior by controlling the release and increasing the period of permanence on the skin, it can be a useful technique in the development of whitening formulations. Liposomes have become increasingly popular in the cosmetics industry in recent years due to benefits such as their lack of toxicity, high penetration ability in living skin layers, ability to increase skin moisture by forming a thin layer on the skin surface, and suitability for large-scale production. Therefore, liposomes containing NA were developed for this study. Different formulations were prepared by varying the amount of phospholipid and cholesterol and examined in terms of particle sizes, polydispersity index (PDI) and pH values. The pH values of the produced formulations were determined to be suitable with the pH value of the skin. Particle sizes were determined to be smaller than 250 nm and the particles were found to be of homogeneous size in the formulation (pdi<0.30). Despite the important advantages of liposomal systems, they have low viscosity and stability for topical use. For these reasons, in this study, liposomal cream formulations have been prepared for easy topical application of liposomal systems. As a result, liposomal cream formulations containing NA have been successfully prepared and characterized. Following the in-vitro release and ex-vivo diffusion studies to be conducted in the continuation of the study, it is planned to test the formulation that gives the most appropriate result on the volunteers after obtaining the approval of the ethics committee.

Keywords: delivery systems, hyperpigmentation, liposome, niacinamide

Procedia PDF Downloads 97
460 Economic Impacts of Sanctuary and Immigration and Customs Enforcement Policies Inclusive and Exclusive Institutions

Authors: Alexander David Natanson

Abstract:

This paper focuses on the effect of Sanctuary and Immigration and Customs Enforcement (ICE) policies on local economies. "Sanctuary cities" refers to municipal jurisdictions that limit their cooperation with the federal government's efforts to enforce immigration. Using county-level data from the American Community Survey and ICE data on economic indicators from 2006 to 2018, this study isolates the effects of local immigration policies on U.S. counties. The investigation is accomplished by simultaneously studying the policies' effects in counties where immigrants' families are persecuted via collaboration with Immigration and Customs Enforcement (ICE), in contrast to counties that provide protections. The analysis includes a difference-in-difference & two-way fixed effect model. Results are robust to nearest-neighbor matching, after the random assignment of treatment, after running estimations using different cutoffs for immigration policies, and with a regression discontinuity model comparing bordering counties with opposite policies. Results are also robust after restricting the data to a single-year policy adoption, using the Sun and Abraham estimator, and with event-study estimation to deal with the staggered treatment issue. In addition, the study reverses the estimation to understand what drives the decision to choose policies to detect the presence of reverse causality biases in the estimated policy impact on economic factors. The evidence demonstrates that providing protections to undocumented immigrants increases economic activity. The estimates show gains in per capita income ranging from 3.1 to 7.2, median wages between 1.7 to 2.6, and GDP between 2.4 to 4.1 percent. Regarding labor, sanctuary counties saw increases in total employment between 2.3 to 4 percent, and the unemployment rate declined from 12 to 17 percent. The data further shows that ICE policies have no statistically significant effects on income, median wages, or GDP but adverse effects on total employment, with declines from 1 to 2 percent, mostly in rural counties, and an increase in unemployment of around 7 percent in urban counties. In addition, results show a decline in the foreign-born population in ICE counties but no changes in sanctuary counties. The study also finds similar results for sanctuary counties when separating the data between urban, rural, educational attainment, gender, ethnic groups, economic quintiles, and the number of business establishments. The takeaway from this study is that institutional inclusion creates the dynamic nature of an economy, as inclusion allows for economic expansion due to the extension of fundamental freedoms to newcomers. Inclusive policies show positive effects on economic outcomes with no evident increase in population. To make sense of these results, the hypothesis and theoretical model propose that inclusive immigration policies play an essential role in conditioning the effect of immigration by decreasing uncertainties and constraints for immigrants' interaction in their communities, decreasing the cost from fear of deportation or the constant fear of criminalization and optimize their human capital.

Keywords: inclusive and exclusive institutions, post matching, fixed effect, time trend, regression discontinuity, difference-in-difference, randomization inference and sun, Abraham estimator

Procedia PDF Downloads 64
459 The 5-HT1A Receptor Biased Agonists, NLX-101 and NLX-204, Elicit Rapid-Acting Antidepressant Activity in Rat Similar to Ketamine and via GABAergic Mechanisms

Authors: A. Newman-Tancredi, R. Depoortère, P. Gruca, E. Litwa, M. Lason, M. Papp

Abstract:

The N-methyl-D-aspartic acid (NMDA) receptor antagonist, ketamine, can elicit rapid-acting antidepressant (RAAD) effects in treatment-resistant patients, but it requires parenteral co-administration with a classical antidepressant under medical supervision. In addition, ketamine can also produce serious side effects that limit its long-term use, and there is much interest in identifying RAADs based on ketamine’s mechanism of action but with safer profiles. Ketamine elicits GABAergic interneuron inhibition, glutamatergic neuron stimulation, and, notably, activation of serotonin 5-HT1A receptors in the prefrontal cortex (PFC). Direct activation of the latter receptor subpopulation with selective ‘biased agonists’ may therefore be a promising strategy to identify novel RAADs and, consistent with this hypothesis, the prototypical cortical biased agonist, NLX-101, exhibited robust RAAD-like activity in the chronic mild stress model of depression (CMS). The present study compared the effects of a novel, selective 5-HT1A receptor-biased agonist, NLX-204, with those of ketamine and NLX-101. Materials and methods: CMS procedure was conducted on Wistar rats; drugs were administered either intraperitoneally (i.p.) or by bilateral intracortical microinjection. Ketamine: 10 mg/kg i.p. or 10 µg/side in PFC; NLX-204 and NLX-101: 0.08 and 0.16 mg/kg i.p. or 16 µg/side in PFC. In addition, interaction studies were carried out with systemic NLX-204 or NLX-101 (each at 0.16 mg/kg i.p.) in combination with intracortical WAY-100635 (selective 5-HT1A receptor antagonist; 2 µg/side) or muscimol (GABA-A receptor agonist, 12.5 ng/side). Anhedonia was assessed by CMS-induced decrease in sucrose solution consumption; anxiety-like behavior was assessed using the Elevated Plus Maze (EPM), and cognitive impairment was assessed by the Novel Object Recognition (NOR) test. Results: A single administration of NLX-204 was sufficient to reverse the CMS-induced deficit in sucrose consumption, similarly to ketamine and NLX-101. NLX-204 also reduced CMS-induced anxiety in the EPM and abolished CMS-induced NOR deficits. These effects were maintained (EPM and NOR) or enhanced (sucrose consumption) over a subsequent 2-week period of treatment. The anti-anhedonic response of the drugs was also maintained for several weeks Following treatment discontinuation, suggesting that they had sustained effects on neuronal networks. A single PFC administration of NLX-204 reversed deficient sucrose consumption, similarly to ketamine and NLX-101. Moreover, the anti-anhedonic activities of systemic NLX-204 and NLX 101 were abolished by coadministration with intracortical WAY-100635 or muscimol. Conclusions: (i) The antidepressant-like activity of NLX-204 in the rat CMS model was as rapid as that of ketamine or NLX-101, supporting targeting cortical 5-HT1A receptors with selective, biased agonists to achieve RAAD effects. (ii)The anti-anhedonic activity of systemic NLX-204 was mimicked by local administration of the compound in the PFC, confirming the involvement of cortical circuits in its RAAD-like effects. (iii) Notably, the effects of systemic NLX-204 and NLX-101 were abolished by PFC administration of muscimol, indicating that they act by (indirectly) eliciting a reduction in cortical GABAergic neurotransmission. This is consistent with ketamine’s mechanism of action and suggests that there are converging NMDA and 5-HT1A receptor signaling cascades in PFC underlying the RAAD-like activities of ketamine and NLX-204. Acknowledgements: The study was financially supported by NCN grant no. 2019/35/B/NZ7/00787.

Keywords: depression, ketamine, serotonin, 5-HT1A receptor, chronic mild stress

Procedia PDF Downloads 85
458 Dependence of Densification, Hardness and Wear Behaviors of Ti6Al4V Powders on Sintering Temperature

Authors: Adewale O. Adegbenjo, Elsie Nsiah-Baafi, Mxolisi B. Shongwe, Mercy Ramakokovhu, Peter A. Olubambi

Abstract:

The sintering step in powder metallurgy (P/M) processes is very sensitive as it determines to a large extent the properties of the final component produced. Spark plasma sintering over the past decade has been extensively used in consolidating a wide range of materials including metallic alloy powders. This novel, non-conventional sintering method has proven to be advantageous offering full densification of materials, high heating rates, low sintering temperatures, and short sintering cycles over conventional sintering methods. Ti6Al4V has been adjudged the most widely used α+β alloy due to its impressive mechanical performance in service environments, especially in the aerospace and automobile industries being a light metal alloy with the capacity for fuel efficiency needed in these industries. The P/M route has been a promising method for the fabrication of parts made from Ti6Al4V alloy due to its cost and material loss reductions and the ability to produce near net and intricate shapes. However, the use of this alloy has been largely limited owing to its relatively poor hardness and wear properties. The effect of sintering temperature on the densification, hardness, and wear behaviors of spark plasma sintered Ti6Al4V powders was investigated in this present study. Sintering of the alloy powders was performed in the 650–850°C temperature range at a constant heating rate, applied pressure and holding time of 100°C/min, 50 MPa and 5 min, respectively. Density measurements were carried out according to Archimedes’ principle and microhardness tests were performed on sectioned as-polished surfaces at a load of 100gf and dwell time of 15 s. Dry sliding wear tests were performed at varied sliding loads of 5, 15, 25 and 35 N using the ball-on-disc tribometer configuration with WC as the counterface material. Microstructural characterization of the sintered samples and wear tracks were carried out using SEM and EDX techniques. The density and hardness characteristics of sintered samples increased with increasing sintering temperature. Near full densification (99.6% of the theoretical density) and Vickers’ micro-indentation hardness of 360 HV were attained at 850°C. The coefficient of friction (COF) and wear depth improved significantly with increased sintering temperature under all the loading conditions examined, except at 25 N indicating better mechanical properties at high sintering temperatures. Worn surface analyses showed the wear mechanism was a synergy of adhesive and abrasive wears, although the former was prevalent.

Keywords: hardness, powder metallurgy, spark plasma sintering, wear

Procedia PDF Downloads 247
457 A World Map of Seabed Sediment Based on 50 Years of Knowledge

Authors: T. Garlan, I. Gabelotaud, S. Lucas, E. Marchès

Abstract:

Production of a global sedimentological seabed map has been initiated in 1995 to provide the necessary tool for searches of aircraft and boats lost at sea, to give sedimentary information for nautical charts, and to provide input data for acoustic propagation modelling. This original approach had already been initiated one century ago when the French hydrographic service and the University of Nancy had produced maps of the distribution of marine sediments of the French coasts and then sediment maps of the continental shelves of Europe and North America. The current map of the sediment of oceans presented was initiated with a UNESCO's general map of the deep ocean floor. This map was adapted using a unique sediment classification to present all types of sediments: from beaches to the deep seabed and from glacial deposits to tropical sediments. In order to allow good visualization and to be adapted to the different applications, only the granularity of sediments is represented. The published seabed maps are studied, if they present an interest, the nature of the seabed is extracted from them, the sediment classification is transcribed and the resulted map is integrated in the world map. Data come also from interpretations of Multibeam Echo Sounder (MES) imagery of large hydrographic surveys of deep-ocean. These allow a very high-quality mapping of areas that until then were represented as homogeneous. The third and principal source of data comes from the integration of regional maps produced specifically for this project. These regional maps are carried out using all the bathymetric and sedimentary data of a region. This step makes it possible to produce a regional synthesis map, with the realization of generalizations in the case of over-precise data. 86 regional maps of the Atlantic Ocean, the Mediterranean Sea, and the Indian Ocean have been produced and integrated into the world sedimentary map. This work is permanent and permits a digital version every two years, with the integration of some new maps. This article describes the choices made in terms of sediment classification, the scale of source data and the zonation of the variability of the quality. This map is the final step in a system comprising the Shom Sedimentary Database, enriched by more than one million punctual and surface items of data, and four series of coastal seabed maps at 1:10,000, 1:50,000, 1:200,000 and 1:1,000,000. This step by step approach makes it possible to take into account the progresses in knowledge made in the field of seabed characterization during the last decades. Thus, the arrival of new classification systems for seafloor has improved the recent seabed maps, and the compilation of these new maps with those previously published allows a gradual enrichment of the world sedimentary map. But there is still a lot of work to enhance some regions, which are still based on data acquired more than half a century ago.

Keywords: marine sedimentology, seabed map, sediment classification, world ocean

Procedia PDF Downloads 213
456 Effect of Fuel Type on Design Parameters and Atomization Process for Pressure Swirl Atomizer and Dual Orifice Atomizer for High Bypass Turbofan Engine

Authors: Mohamed K. Khalil, Mohamed S. Ragab

Abstract:

Atomizers are used in many engineering applications including diesel engines, petrol engines and spray combustion in furnaces as well as gas turbine engines. These atomizers are used to increase the specific surface area of the fuel, which achieve a high rate of fuel mixing and evaporation. In all combustion systems reduction in mean drop size is a challenge which has many advantages since it leads to rapid and easier ignition, higher volumetric heat release rate, wider burning range and lower exhaust concentrations of the pollutant emissions. Pressure atomizers have a different configuration for design such as swirl atomizer (simplex), dual orifice, spill return, plain orifice, duplex and fan spray. Simplex pressure atomizers are the most common type of all. Among all types of atomizers, pressure swirl types resemble a special category since they differ in quality of atomization, the reliability of operation, simplicity of construction and low expenditure of energy. But, the disadvantages of these atomizers are that they require very high injection pressure and have low discharge coefficient owing to the fact that the air core covers the majority of the atomizer orifice. To overcome these problems, dual orifice atomizer was designed. This paper proposes a detailed mathematical model design procedure for both pressure swirl atomizer (Simplex) and dual orifice atomizer, examines the effects of varying fuel type and makes a clear comparison between the two types. Using five types of fuel (JP-5, JA1, JP-4, Diesel and Bio-Diesel) as a case study, reveal the effect of changing fuel type and its properties on atomizers design and spray characteristics. Which effect on combustion process parameters; Sauter Mean Diameter (SMD), spray cone angle and sheet thickness with varying the discharge coefficient from 0.27 to 0.35 during takeoff for high bypass turbofan engines. The spray atomizer performance of the pressure swirl fuel injector was compared to the dual orifice fuel injector at the same differential pressure and discharge coefficient using Excel. The results are analyzed and handled to form the final reliability results for fuel injectors in high bypass turbofan engines. The results show that the Sauter Mean Diameter (SMD) in dual orifice atomizer is larger than Sauter Mean Diameter (SMD) in pressure swirl atomizer, the film thickness (h) in dual orifice atomizer is less than the film thickness (h) in pressure swirl atomizer. The Spray Cone Angle (α) in pressure swirl atomizer is larger than Spray Cone Angle (α) in dual orifice atomizer.

Keywords: gas turbine engines, atomization process, Sauter mean diameter, JP-5

Procedia PDF Downloads 146
455 Finite Element Modeling of Mass Transfer Phenomenon and Optimization of Process Parameters for Drying of Paddy in a Hybrid Solar Dryer

Authors: Aprajeeta Jha, Punyadarshini P. Tripathy

Abstract:

Drying technologies for various food processing operations shares an inevitable linkage with energy, cost and environmental sustainability. Hence, solar drying of food grains has become imperative choice to combat duo challenges of meeting high energy demand for drying and to address climate change scenario. But performance and reliability of solar dryers depend hugely on sunshine period, climatic conditions, therefore, offer a limited control over drying conditions and have lower efficiencies. Solar drying technology, supported by Photovoltaic (PV) power plant and hybrid type solar air collector can potentially overpower the disadvantages of solar dryers. For development of such robust hybrid dryers; to ensure quality and shelf-life of paddy grains the optimization of process parameter becomes extremely critical. Investigation of the moisture distribution profile within the grains becomes necessary in order to avoid over drying or under drying of food grains in hybrid solar dryer. Computational simulations based on finite element modeling can serve as potential tool in providing a better insight of moisture migration during drying process. Hence, present work aims at optimizing the process parameters and to develop a 3-dimensional (3D) finite element model (FEM) for predicting moisture profile in paddy during solar drying. COMSOL Multiphysics was employed to develop a 3D finite element model for predicting moisture profile. Furthermore, optimization of process parameters (power level, air velocity and moisture content) was done using response surface methodology in design expert software. 3D finite element model (FEM) for predicting moisture migration in single kernel for every time step has been developed and validated with experimental data. The mean absolute error (MAE), mean relative error (MRE) and standard error (SE) were found to be 0.003, 0.0531 and 0.0007, respectively, indicating close agreement of model with experimental results. Furthermore, optimized process parameters for drying paddy were found to be 700 W, 2.75 m/s at 13% (wb) with optimum temperature, milling yield and drying time of 42˚C, 62%, 86 min respectively, having desirability of 0.905. Above optimized conditions can be successfully used to dry paddy in PV integrated solar dryer in order to attain maximum uniformity, quality and yield of product. PV-integrated hybrid solar dryers can be employed as potential and cutting edge drying technology alternative for sustainable energy and food security.

Keywords: finite element modeling, moisture migration, paddy grain, process optimization, PV integrated hybrid solar dryer

Procedia PDF Downloads 126
454 Corrosion Analysis of Brazed Copper-Based Conducts in Particle Accelerator Water Cooling Circuits

Authors: A. T. Perez Fontenla, S. Sgobba, A. Bartkowska, Y. Askar, M. Dalemir Celuch, A. Newborough, M. Karppinen, H. Haalien, S. Deleval, S. Larcher, C. Charvet, L. Bruno, R. Trant

Abstract:

The present study investigates the corrosion behavior of copper (Cu) based conducts predominantly brazed with Sil-Fos (self-fluxing copper-based filler with silver and phosphorus) within various cooling circuits of demineralized water across different particle accelerator components at CERN. The study covers a range of sample service time, from a few months to fifty years, and includes various accelerator components such as quadrupoles, dipoles, and bending magnets. The investigation comprises the established sample extraction procedure, examination methodology including non-destructive testing, evaluation of the corrosion phenomena, and identification of commonalities across the studied components as well as analysis of the environmental influence. The systematic analysis included computed microtomography (CT) of the joints that revealed distributed defects across all brazing interfaces. Some defects appeared to result from areas not wetted by the filler during the brazing operation, displaying round shapes, while others exhibited irregular contours and radial alignment, indicative of a network or interconnection. The subsequent dry cutting performed facilitated access to the conduct's inner surface and the brazed joints for further inspection through light and electron microscopy (SEM) and chemical analysis via Energy Dispersive X-ray spectroscopy (EDS). Brazing analysis away from affected areas identified the expected phases for a Sil-Fos alloy. In contrast, the affected locations displayed micrometric cavities propagating into the material, along with selective corrosion of the bulk Cu initiated at the conductor-braze interface. Corrosion product analysis highlighted the consistent presence of sulfur (up to 6 % in weight), whose origin and role in the corrosion initiation and extension is being further investigated. The importance of this study is paramount as it plays a crucial role in comprehending the underlying factors contributing to recently identified water leaks and evaluating the extent of the issue. Its primary objective is to provide essential insights for the repair of impacted brazed joints when accessibility permits. Moreover, the study seeks to contribute to the improvement of design and manufacturing practices for future components, ultimately enhancing the overall reliability and performance of magnet systems within CERN accelerator facilities.

Keywords: accelerator facilities, brazed copper conducts, demineralized water, magnets

Procedia PDF Downloads 28
453 Medium-Scale Multi-Juice Extractor for Food Processing

Authors: Flordeliza L. Mercado, Teresito G. Aguinaldo, Helen F. Gavino, Victorino T. Taylan

Abstract:

Most fruits and vegetables are available in large quantities during peak season which are oftentimes marketed at low price and left to rot or fed to farm animals. The lack of efficient storage facilities, and the additional cost and unavailability of small machinery for food processing, results to low price and wastage. Incidentally, processed fresh fruits and vegetables are gaining importance nowadays and health conscious people are also into ‘juicing’. One way to reduce wastage and ensure an all-season availability of crop juices at reasonable costs is to develop equipment for effective extraction of juice. The study was conducted to design, fabricate and evaluate a multi-juice extractor using locally available materials, making it relatively cheaper and affordable for medium-scale enterprises. The study was also conducted to formulate juice blends using extracted juices and calamansi juice at different blending percentage, and evaluate its chemical properties and sensory attributes. Furthermore, the chemical properties of extracted meals were evaluated for future applications. The multi-juice extractor has an overall dimension of 963mm x 300mm x 995mm, a gross weight of 82kg and 5 major components namely; feeding hopper, extracting chamber, juice and meal outlet, transmission assembly, and frame. The machine performance was evaluated based on juice recovery, extraction efficiency, extraction rate, extraction recovery, and extraction loss considering type of crop as apple and carrot with three replications each and was analyzed using T-test. The formulated juice blends were subjected to sensory evaluation and data gathered were analyzed using Analysis of Variance appropriate for Complete Randomized Design. Results showed that the machine’s juice recovery (73.39%), extraction rate (16.40li/hr), and extraction efficiency (88.11%) for apple were significantly higher than for carrot while extraction recovery (99.88%) was higher for apple than for carrot. Extraction loss (0.12%) was lower for apple than for carrot, but was not significantly affected by crop. Based on adding percentage mark-up on extraction cost (Php 2.75/kg), the breakeven weight and payback period for a 35% mark-up is 4,710.69kg and 1.22 years, respectively and for a 50% mark-up, the breakeven weight is 3,492.41kg and the payback period is 0.86 year (10.32 months). Results on the sensory evaluation of juice blends showed that the type of juice significantly influenced all the sensory parameters while the blending percentage including their respective interaction, had no significant effect on all sensory parameters, making the apple-calamansi juice blend more preferred than the carrot-calamansi juice blend in terms of all the sensory parameter. The machine’s performance is higher for apple than for carrot and the cost analysis on the use of the machine revealed that it is financially viable with a payback period of 1.22 years (35% mark-up) and 0.86 year (50% mark-up) for machine cost, generating an income of Php 23,961.60 and Php 34,444.80 per year using 35% and 50% mark-up, respectively. The juice blends were of good qualities based on the values obtained in the chemical analysis and the extracted meal could also be used to produce another product based on the values obtained from proximate analysis.

Keywords: food processing, fruits and vegetables, juice extraction, multi-juice extractor

Procedia PDF Downloads 278
452 Material Use & Life cycle GHG Emissions of Different Electrification Options for Long-Haul Trucks

Authors: Nafisa Mahbub, Hajo Ribberink

Abstract:

Electrification of long-haul trucks has been in discussion as a potential strategy to decarbonization. These trucks will require large batteries because of their weight and long daily driving distances. Around 245 million battery electric vehicles are predicted to be on the road by the year 2035. This huge increase in the number of electric vehicles (EVs) will require intensive mining operations for metals and other materials to manufacture millions of batteries for the EVs. These operations will add significant environmental burdens and there is a significant risk that the mining sector will not be able to meet the demand for battery materials, leading to higher prices. Since the battery is the most expensive component in the EVs, technologies that can enable electrification with smaller batteries sizes have substantial potential to reduce the material usage and associated environmental and cost burdens. One of these technologies is an ‘electrified road’ (eroad), where vehicles receive power while they are driving, for instance through an overhead catenary (OC) wire (like trolleybuses and electric trains), through wireless (inductive) chargers embedded in the road, or by connecting to an electrified rail in or on the road surface. This study assessed the total material use and associated life cycle GHG emissions of two types of eroads (overhead catenary and in-road wireless charging) for long-haul trucks in Canada and compared them to electrification using stationary plug-in fast charging. As different electrification technologies require different amounts of materials for charging infrastructure and for the truck batteries, the study included the contributions of both for the total material use. The study developed a bottom-up approach model comparing the three different charging scenarios – plug in fast chargers, overhead catenary and in-road wireless charging. The investigated materials for charging technology and batteries were copper (Cu), steel (Fe), aluminium (Al), and lithium (Li). For the plug-in fast charging technology, different charging scenarios ranging from overnight charging (350 kW) to megawatt (MW) charging (2 MW) were investigated. A 500 km of highway (1 lane of in-road charging per direction) was considered to estimate the material use for the overhead catenary and inductive charging technologies. The study considered trucks needing an 800 kWh battery under the plug-in charger scenario but only a 200 kWh battery for the OC and inductive charging scenarios. Results showed that overall the inductive charging scenario has the lowest material use followed by OC and plug-in charger scenarios respectively. The materials use for the OC and plug-in charger scenarios were 50-70% higher than for the inductive charging scenarios for the overall system including the charging infrastructure and battery. The life cycle GHG emissions from the construction and installation of the charging technology material were also investigated.

Keywords: charging technology, eroad, GHG emissions, material use, overhead catenary, plug in charger

Procedia PDF Downloads 32
451 A Longitudinal Exploration into Computer-Mediated Communication Use (CMC) and Relationship Change between 2005-2018

Authors: Laurie Dempsey

Abstract:

Relationships are considered to be beneficial for emotional wellbeing, happiness and physical health. However, they are also complicated: individuals engage in a multitude of complex and volatile relationships during their lifetime, where the change to or ending of these dynamics can be deeply disruptive. As the internet is further integrated into everyday life and relationships are increasingly mediated, Media Studies’ and Sociology’s research interests intersect and converge. This study longitudinally explores how relationship change over time corresponds with the developing UK technological landscape between 2005-2018. Since the early 2000s, the use of computer-mediated communication (CMC) in the UK has dramatically reshaped interaction. Its use has compelled individuals to renegotiate how they consider their relationships: some argue it has allowed for vast networks to be accumulated and strengthened; others contend that it has eradicated the core values and norms associated with communication, damaging relationships. This research collaborated with UK media regulator Ofcom, utilising the longitudinal dataset from their Adult Media Lives study to explore how relationships and CMC use developed over time. This is a unique qualitative dataset covering 2005-2018, where the same 18 participants partook in annual in-home filmed depth interviews. The interviews’ raw video footage was examined year-on-year to consider how the same people changed their reported behaviour and outlooks towards their relationships, and how this coincided with CMC featuring more prominently in their everyday lives. Each interview was transcribed, thematically analysed and coded using NVivo 11 software. This study allowed for a comprehensive exploration into these individuals’ changing relationships over time, as participants grew older, experienced marriages or divorces, conceived and raised children, or lost loved ones. It found that as technology developed between 2005-2018, everyday CMC use was increasingly normalised and incorporated into relationship maintenance. It played a crucial role in altering relationship dynamics, even factoring in the breakdown of several ties. Three key relationships were identified as being shaped by CMC use: parent-child; extended family; and friendships. Over the years there were substantial instances of relationship conflict: for parents renegotiating their dynamic with their child as they tried to both restrict and encourage their child’s technology use; for estranged family members ‘forced’ together in the online sphere; and for friendships compelled to publicly display their relationship on social media, for fear of social exclusion. However, it was also evident that CMC acted as a crucial lifeline for these participants, providing opportunities to strengthen and maintain their bonds via previously unachievable means, both over time and distance. A longitudinal study of this length and nature utilising the same participants does not currently exist, thus provides crucial insight into how and why relationship dynamics alter over time. This unique and topical piece of research draws together Sociology and Media Studies, illustrating how the UK’s changing technological landscape can reshape one of the most basic human compulsions. This collaboration with Ofcom allows for insight that can be utilised in both academia and policymaking alike, making this research relevant and impactful across a range of academic fields and industries.

Keywords: computer mediated communication, longitudinal research, personal relationships, qualitative data

Procedia PDF Downloads 104
450 Life Cycle Assessment to Study the Acidification and Eutrophication Impacts of Sweet Cherry Production

Authors: G. Bravo, D. Lopez, A. Iriarte

Abstract:

Several organizations and governments have created a demand for information about the environmental impacts of agricultural products. Today, the export oriented fruit sector in Chile is being challenged to quantify and reduce their environmental impacts. Chile is the largest southern hemisphere producer and exporter of sweet cherry fruit. Chilean sweet cherry production reached a volume of 80,000 tons in 2012. The main destination market for the Chilean cherry in 2012 was Asia (including Hong Kong and China), taking in 69% of exported volume. Another important market was the United States with 16% participation, followed by Latin America (7%) and Europe (6%). Concerning geographical distribution, the Chilean conventional cherry production is focused in the center-south area, between the regions of Maule and O’Higgins; both regions represent 81% of the planted surface. The Life Cycle Assessment (LCA) is widely accepted as one of the major methodologies for assessing environmental impacts of products or services. The LCA identifies the material, energy, material, and waste flows of a product or service, and their impact on the environment. There are scant studies that examine the impacts of sweet cherry cultivation, such as acidification and eutrophication. Within this context, the main objective of this study is to evaluate, using the LCA, the acidification and eutrophication impacts of sweet cherry production in Chile. The additional objective is to identify the agricultural inputs that contributed significantly to the impacts of this fruit. The system under study included all the life cycle stages from the cradle to the farm gate (harvested sweet cherry). The data of sweet cherry production correspond to nationwide representative practices and are based on technical-economic studies and field information obtained in several face-to-face interviews. The study takes into account the following agricultural inputs: fertilizers, pesticides, diesel consumption for agricultural operations, machinery and electricity for irrigation. The results indicated that the mineral fertilizers are the most important contributors to the acidification and eutrophication impacts of the sheet cherry cultivation. Improvement options are suggested for the hotspot in order to reduce the environmental impacts. The results allow planning and promoting low impacts procedures across fruit companies, as well as policymakers, and other stakeholders on the subject. In this context, this study is one of the first assessments of the environmental impacts of sweet cherry production. New field data or evaluation of other life cycle stages could further improve the knowledge on the impacts of this fruit. This study may contribute to environmental information in other countries where there is similar agricultural production for sweet cherry.

Keywords: acidification, eutrophication, life cycle assessment, sweet cherry production

Procedia PDF Downloads 252
449 Wear Resistance in Dry and Lubricated Conditions of Hard-anodized EN AW-4006 Aluminum Alloy

Authors: C. Soffritti, A. Fortini, E. Baroni, M. Merlin, G. L. Garagnani

Abstract:

Aluminum alloys are widely used in many engineering applications due to their advantages such ashigh electrical and thermal conductivities, low density, high strength to weight ratio, and good corrosion resistance. However, their low hardness and poor tribological properties still limit their use in industrial fields requiring sliding contacts. Hard anodizing is one of the most common solution for overcoming issues concerning the insufficient friction resistance of aluminum alloys. In this work, the tribological behavior ofhard-anodized AW-4006 aluminum alloys in dry and lubricated conditions was evaluated. Three different hard-anodizing treatments were selected: a conventional one (HA) and two innovative golden hard-anodizing treatments (named G and GP, respectively), which involve the sealing of the porosity of anodic aluminum oxides (AAO) with silver ions at different temperatures. Before wear tests, all AAO layers were characterized by scanning electron microscopy (VPSEM/EDS), X-ray diffractometry, roughness (Ra and Rz), microhardness (HV0.01), nanoindentation, and scratch tests. Wear tests were carried out according to the ASTM G99-17 standard using a ball-on-disc tribometer. The tests were performed in triplicate under a 2 Hz constant frequency oscillatory motion, a maximum linear speed of 0.1 m/s, normal loads of 5, 10, and 15 N, and a sliding distance of 200 m. A 100Cr6 steel ball10 mm in diameter was used as counterpart material. All tests were conducted at room temperature, in dry and lubricated conditions. Considering the more recent regulations about the environmental hazard, four bio-lubricants were considered after assessing their chemical composition (in terms of Unsaturation Number, UN) and viscosity: olive, peanut, sunflower, and soybean oils. The friction coefficient was provided by the equipment. The wear rate of anodized surfaces was evaluated by measuring the cross-section area of the wear track with a non-contact 3D profilometer. Each area value, obtained as an average of four measurements of cross-section areas along the track, was used to determine the wear volume. The worn surfaces were analyzed by VPSEM/EDS. Finally, in agreement with DoE methodology, a statistical analysis was carried out to identify the most influencing factors on the friction coefficients and wear rates. In all conditions, results show that the friction coefficient increased with raising the normal load. Considering the wear tests in dry sliding conditions, irrespective of the type of anodizing treatments, metal transfer between the mating materials was observed over the anodic aluminum oxides. During sliding at higher loads, the detachment of the metallic film also caused the delamination of some regions of the wear track. For the wear tests in lubricated conditions, the natural oils with high percentages of oleic acid (i.e., olive and peanut oils) maintained high friction coefficients and low wear rates. Irrespective of the type of oil, smallmicrocraks were visible over the AAO layers. Based on the statistical analysis, the type of anodizing treatment and magnitude of applied load were the main factors of influence on the friction coefficient and wear rate values. Nevertheless, an interaction between bio-lubricants and load magnitude could occur during the tests.

Keywords: hard anodizing treatment, silver ions, bio-lubricants, sliding wear, statistical analysis

Procedia PDF Downloads 117
448 Improved Anatomy Teaching by the 3D Slicer Platform

Authors: Ahmedou Moulaye Idriss, Yahya Tfeil

Abstract:

Medical imaging technology has become an indispensable tool in many branches of the biomedical, health area, and research and is vitally important for the training of professionals in these fields. It is not only about the tools, technologies, and knowledge provided but also about the community that this training project proposes. In order to be able to raise the level of anatomy teaching in the medical school of Nouakchott in Mauritania, it is necessary and even urgent to facilitate access to modern technology for African countries. The role of technology as a key driver of justifiable development has long been recognized. Anatomy is an essential discipline for the training of medical students; it is a key element for the training of medical specialists. The quality and results of the work of a young surgeon depend on his better knowledge of anatomical structures. The teaching of anatomy is difficult as the discipline is being neglected by medical students in many academic institutions. However, anatomy remains a vital part of any medical education program. When anatomy is presented in various planes medical students approve of difficulties in understanding. They do not increase their ability to visualize and mentally manipulate 3D structures. They are sometimes not able to correctly identify neighbouring or associated structures. This is the case when they have to make the identification of structures related to the caudate lobe when the liver is moved to different positions. In recent decades, some modern educational tools using digital sources tend to replace old methods. One of the main reasons for this change is the lack of cadavers in laboratories with poorly qualified staff. The emergence of increasingly sophisticated mathematical models, image processing, and visualization tools in biomedical imaging research have enabled sophisticated three-dimensional (3D) representations of anatomical structures. In this paper, we report our current experience in the Faculty of Medicine in Nouakchott Mauritania. One of our main aims is to create a local learning community in the fields of anatomy. The main technological platform used in this project is called 3D Slicer. 3D Slicer platform is an open-source application available for free for viewing, analysis, and interaction with biomedical imaging data. Using the 3D Slicer platform, we created from real medical images anatomical atlases of parts of the human body, including head, thorax, abdomen, liver, and pelvis, upper and lower limbs. Data were collected from several local hospitals and also from the website. We used MRI and CT-Scan imaging data from children and adults. Many different anatomy atlases exist, both in print and digital forms. Anatomy Atlas displays three-dimensional anatomical models, image cross-sections of labelled structures and source radiological imaging, and a text-based hierarchy of structures. Open and free online anatomical atlases developed by our anatomy laboratory team will be available to our students. This will allow pedagogical autonomy and remedy the shortcomings by responding more fully to the objectives of sustainable local development of quality education and good health at the national level. To make this work a reality, our team produced several atlases available in our faculty in the form of research projects.

Keywords: anatomy, education, medical imaging, three dimensional

Procedia PDF Downloads 215
447 Photobleaching Kinetics and Epithelial Distribution of Hexylaminoleuilinate Induced PpIX in Rat Bladder Cancer

Authors: Sami El Khatib, Agnès Leroux, Jean-Louis Merlin, François Guillemin, Marie-Ange D’Hallewin

Abstract:

Photodynamic therapy (PDT) is a treatment modality based on the cytotoxic effect occurring on the target tissues by interaction of a photosensitizer with light in the presence of oxygen. One of the major advances in PDT can be attributed to the use of topical aminolevulinic (ALA) to induce Protoporphyrin IX (PpIX) for the treatment of early stage cancers as well as diagnosis. ALA is a precursor of the heme synthesis pathway. Locally delivered to the target tissue ALA overcomes the negative feedback exerted by heme and promotes the transient formation of PpIX in situ to reach critical effective levels in cells and tissue. Whereas early steps of the heme pathway occur in the cytosol, PpIX synthesis is shown to be held in the mitochondrial membranes and PpIX fluorescence is expected to accumulate in close vicinity of the initial building site and to progressively diffuse to the neighboring cytoplasmic compartment or other lipophylic organelles. PpIX is known to be highly reactive and will be degraded when irradiated with light. PpIX photobleaching is believed to be governed by a singlet oxygen mediated mechanism in the presence of oxidized amino acids and proteins. PpIX photobleaching and subsequent spectral phototransformation were described widely in tumor cells incubated in vitro with ALA solution, or ex vivo in human and porcine mucosa superfused with hexylaminolevulinate (hALA). PpIX photobleaching was also studied in vivo, using animal models such as normal or tumor mice skin and orthotopic rat bladder model. Hexyl aminolevulinate a more potent lipophilic derivative of ALA was proposed as an adjunct to standard cystoscopy in the fluorescence diagnosis of bladder cancer and other malignancies. We have previously reported the effectiveness of hALA mediated PDT of rat bladder cancer. Although normal and tumor bladder epithelium exhibit similar fluorescence intensities after intravesical instillation of two hALA concentrations (8 and 16 mM), the therapeutic response at 8mM and 20J/cm2 was completely different from the one observed at 16mM irradiated with the same light dose. Where the tumor is destroyed, leaving the underlying submucosa and muscle intact after an 8 mM instillation, 16mM sensitization and subsequent illumination results in the complete destruction of the underlying bladder wall but leaves the tumor undamaged. The object of the current study is to try to unravel the underlying mechanism for this apparent contradiction. PpIX extraction showed identical amounts of photosensitizer in tumor bearing bladders at both concentrations. Photobleaching experiments revealed mono-exponential decay curves in both situations but with a two times faster decay constant in case of 16mM bladders. Fluorescence microscopy shows an identical fluorescence pattern for normal bladders at both concentrations and tumor bladders at 8mM with bright spots. Tumor bladders at 16 mM exhibit a more diffuse cytoplasmic fluorescence distribution. The different response to PDT with regard to the initial pro-drug concentration can thus be attributed to the different cellular localization.

Keywords: bladder cancer, hexyl-aminolevulinate, photobleaching, confocal fluorescence microscopy

Procedia PDF Downloads 384
446 Characterization of Double Shockley Stacking Fault in 4H-SiC Epilayer

Authors: Zhe Li, Tao Ju, Liguo Zhang, Zehong Zhang, Baoshun Zhang

Abstract:

In-grow stacking-faults (IGSFs) in 4H-SiC epilayers can cause increased leakage current and reduce the blocking voltage of 4H-SiC power devices. Double Shockley stacking fault (2SSF) is a common type of IGSF with double slips on the basal planes. In this study, a 2SSF in the 4H-SiC epilayer grown by chemical vaper deposition (CVD) is characterized. The nucleation site of the 2SSF is discussed, and a model for the 2SSF nucleation is proposed. Homo-epitaxial 4H-SiC is grown on a commercial 4 degrees off-cut substrate by a home-built hot-wall CVD. Defect-selected-etching (DSE) is conducted with melted KOH at 500 degrees Celsius for 1-2 min. Room temperature cathodoluminescence (CL) is conducted at a 20 kV acceleration voltage. Low-temperature photoluminescence (LTPL) is conducted at 3.6 K with the 325 nm He-Cd laser line. In the CL image, a triangular area with bright contrast is observed. Two partial dislocations (PDs) with a 20-degree angle in between show linear dark contrast on the edges of the IGSF. CL and LTPL spectrums are conducted to verify the IGSF’s type. The CL spectrum shows the maximum photoemission at 2.431 eV and negligible bandgap emission. In the LTPL spectrum, four phonon replicas are found at 2.468 eV, 2.438 eV, 2.420 eV and 2.410 eV, respectively. The Egx is estimated to be 2.512 eV. A shoulder with a red-shift to the main peak in CL, and a slight protrude at the same wavelength in LTPL are verified as the so called Egx- lines. Based on the CL and LTPL results, the IGSF is identified as a 2SSF. Back etching by neutral loop discharge and DSE are conducted to track the origin of the 2SSF, and the nucleation site is found to be a threading screw dislocation (TSD) in this sample. A nucleation mechanism model is proposed for the formation of the 2SSF. Steps introduced by the off-cut and the TSD on the surface are both suggested to be two C-Si bilayers height. The intersections of such two types of steps are along [11-20] direction from the TSD, while a four-bilayer step at each intersection. The nucleation of the 2SSF in the growth is proposed as follows. Firstly, the upper two bilayers of the four-bilayer step grow down and block the lower two at one intersection, and an IGSF is generated. Secondly, the step-flow grows over the IGSF successively, and forms an AC/ABCABC/BA/BC stacking sequence. Then a 2SSF is formed and extends by the step-flow growth. In conclusion, a triangular IGSF is characterized by CL approach. Base on the CL and LTPL spectrums, the estimated Egx is 2.512 eV and the IGSF is identified to be a 2SSF. By back etching, the 2SSF nucleation site is found to be a TSD. A model for the 2SSF nucleation from an intersection of off-cut- and TSD- introduced steps is proposed.

Keywords: cathodoluminescence, defect-selected-etching, double Shockley stacking fault, low-temperature photoluminescence, nucleation model, silicon carbide

Procedia PDF Downloads 292
445 Mapping Context, Roles, and Relations for Adjudicating Robot Ethics

Authors: Adam J. Bowen

Abstract:

Abstract— Should robots have rights or legal protections. Often debates concerning whether robots and AI should be afforded rights focus on conditions of personhood and the possibility of future advanced forms of AI satisfying particular intrinsic cognitive and moral attributes of rights-holding persons. Such discussions raise compelling questions about machine consciousness, autonomy, and value alignment with human interests. Although these are important theoretical concerns, especially from a future design perspective, they provide limited guidance for addressing the moral and legal standing of current and near-term AI that operate well below the cognitive and moral agency of human persons. Robots and AI are already being pressed into service in a wide range of roles, especially in healthcare and biomedical contexts. The design and large-scale implementation of robots in the context of core societal institutions like healthcare systems continues to rapidly develop. For example, we bring them into our homes, hospitals, and other care facilities to assist in care for the sick, disabled, elderly, children, or otherwise vulnerable persons. We enlist surgical robotic systems in precision tasks, albeit still human-in-the-loop technology controlled by surgeons. We also entrust them with social roles involving companionship and even assisting in intimate caregiving tasks (e.g., bathing, feeding, turning, medicine administration, monitoring, transporting). There have been advances to enable severely disabled persons to use robots to feed themselves or pilot robot avatars to work in service industries. As the applications for near-term AI increase and the roles of robots in restructuring our biomedical practices expand, we face pressing questions about the normative implications of human-robot interactions and collaborations in our collective worldmaking, as well as the moral and legal status of robots. This paper argues that robots operating in public and private spaces be afforded some protections as either moral patients or legal agents to establish prohibitions on robot abuse, misuse, and mistreatment. We already implement robots and embed them in our practices and institutions, which generates a host of human-to-machine and machine-to-machine relationships. As we interact with machines, whether in service contexts, medical assistance, or home health companions, these robots are first encountered in relationship to us and our respective roles in the encounter (e.g., surgeon, physical or occupational therapist, recipient of care, patient’s family, healthcare professional, stakeholder). This proposal aims to outline a framework for establishing limiting factors and determining the extent of moral or legal protections for robots. In doing so, it advocates for a relational approach that emphasizes the priority of mapping the complex contextually sensitive roles played and the relations in which humans and robots stand to guide policy determinations by relevant institutions and authorities. The relational approach must also be technically informed by the intended uses of the biomedical technologies in question, Design History Files, extensive risk assessments and hazard analyses, as well as use case social impact assessments.

Keywords: biomedical robots, robot ethics, robot laws, human-robot interaction

Procedia PDF Downloads 89
444 Using Lysosomal Immunogenic Cell Death to Target Breast Cancer via Xanthine Oxidase/Micro-Antibody Fusion Protein

Authors: Iulianna Taritsa, Kuldeep Neote, Eric Fossel

Abstract:

Lysosome-induced immunogenic cell death (LIICD) is a powerful mechanism of targeting cancer cells that kills circulating malignant cells and primes the host’s immune cells against future remission. Current immunotherapies for cancer are limited in preventing recurrence – a gap that can be bridged by training the immune system to recognize cancer neoantigens. Lysosomal leakage can be induced therapeutically to traffic antigens from dying cells to dendritic cells, which can later present those tumorigenic antigens to T cells. Previous research has shown that oxidative agents administered in the tumor microenvironment can initiate LIICD. We generated a fusion protein between an oxidative agent known as xanthine oxidase (XO) and a mini-antibody specific for EGFR/HER2-sensitive breast tumor cells. The anti-EGFR single domain antibody fragment is uniquely sourced from llama, which is functional without the presence of a light chain. These llama micro-antibodies have been shown to be better able to penetrate tissues and have improved physicochemical stability as compared to traditional monoclonal antibodies. We demonstrate that the fusion protein created is stable and can induce early markers of immunogenic cell death in an in vitro human breast cancer cell line (SkBr3). Specifically, we measured overall cell death, as well as surface-expressed calreticulin, extracellular ATP release, and HMGB1 production. These markers are consensus indicators of ICD. Flow cytometry, luminescence assays, and ELISA were used respectively to quantify biomarker levels between treated versus untreated cells. We also included a positive control group of SkBr3 cells dosed with doxorubicin (a known inducer of LIICD) and a negative control dosed with cisplatin (a known inducer of cell death, but not of the immunogenic variety). We looked at each marker at various time points after cancer cells were treated with the XO/antibody fusion protein, doxorubicin, and cisplatin. Upregulated biomarkers after treatment with the fusion protein indicate an immunogenic response. We thus show the potential for this fusion protein to induce an anticancer effect paired with an adaptive immune response against EGFR/HER2+ cells. Our research in human cell lines here provides evidence for the success of the same therapeutic method for patients and serves as the gateway to developing a new treatment approach against breast cancer.

Keywords: apoptosis, breast cancer, immunogenic cell death, lysosome

Procedia PDF Downloads 182
443 Lightweight Sheet Molding Compound Composites by Coating Glass Fiber with Cellulose Nanocrystals

Authors: Amir Asadi, Karim Habib, Robert J. Moon, Kyriaki Kalaitzidou

Abstract:

There has been considerable interest in cellulose nanomaterials (CN) as polymer and polymer composites reinforcement due to their high specific modulus and strength, low density and toxicity, and accessible hydroxyl side groups that can be readily chemically modified. The focus of this study is making lightweight composites for better fuel efficiency and lower CO2 emission in auto industries with no compromise on mechanical performance using a scalable technique that can be easily integrated in sheet molding compound (SMC) manufacturing lines. Light weighting will be achieved by replacing part of the heavier components, i.e. glass fibers (GF), with a small amount of cellulose nanocrystals (CNC) in short GF/epoxy composites made using SMC. CNC will be introduced as coating of the GF rovings prior to their use in the SMC line. The employed coating method is similar to the fiber sizing technique commonly used and thus it can be easily scaled and integrated to industrial SMC lines. This will be an alternative route to the most techniques that involve dispersing CN in polymer matrix, in which the nanomaterials agglomeration limits the capability for scaling up in an industrial production. We have demonstrated that incorporating CNC as a coating on GF surface by immersing the GF in CNC aqueous suspensions, a simple and scalable technique, increases the interfacial shear strength (IFSS) by ~69% compared to the composites produced by uncoated GF, suggesting an enhancement of stress transfer across the GF/matrix interface. As a result of IFSS enhancement, incorporation of 0.17 wt% CNC in the composite results in increases of ~10% in both elastic modulus and tensile strength, and 40 % and 43 % in flexural modulus and strength respectively. We have also determined that dispersing 1.4 and 2 wt% CNC in the epoxy matrix of short GF/epoxy SMC composites by sonication allows removing 10 wt% GF with no penalty on tensile and flexural properties leading to 7.5% lighter composites. Although sonication is a scalable technique, it is not quite as simple and inexpensive as coating the GF by passing through an aqueous suspension of CNC. In this study, the above findings are integrated to 1) investigate the effect of CNC content on mechanical properties by passing the GF rovings through CNC aqueous suspension with various concentrations (0-5%) and 2) determine the optimum ratio of the added CNC to the removed GF to achieve the maximum possible weight reduction with no cost on mechanical performance of the SMC composites. The results of this study are of industrial relevance, providing a path toward producing high volume lightweight and mechanically enhanced SMC composites using cellulose nanomaterials.

Keywords: cellulose nanocrystals, light weight polymer-matrix composites, mechanical properties, sheet molding compound (SMC)

Procedia PDF Downloads 202
442 Validating Quantitative Stormwater Simulations in Edmonton Using MIKE URBAN

Authors: Mohamed Gaafar, Evan Davies

Abstract:

Many municipalities within Canada and abroad use chloramination to disinfect drinking water so as to avert the production of the disinfection by-products (DBPs) that result from conventional chlorination processes and their consequential public health risks. However, the long-lasting monochloramine disinfectant (NH2Cl) can pose a significant risk to the environment. As, it can be introduced into stormwater sewers, from different water uses, and thus freshwater sources. Little research has been undertaken to monitor and characterize the decay of NH2Cl and to study the parameters affecting its decomposition in stormwater networks. Therefore, the current study was intended to investigate this decay starting by building a stormwater model and validating its hydraulic and hydrologic computations, and then modelling water quality in the storm sewers and examining the effects of different parameters on chloramine decay. The presented work here is only the first stage of this study. The 30th Avenue basin in Southern Edmonton was chosen as a case study, because the well-developed basin has various land-use types including commercial, industrial, residential, parks and recreational. The City of Edmonton has already built a MIKE-URBAN stormwater model for modelling floods. Nevertheless, this model was built to the trunk level which means that only the main drainage features were presented. Additionally, this model was not calibrated and known to consistently compute pipe flows higher than the observed values; not to the benefit of studying water quality. So the first goal was to complete modelling and updating all stormwater network components. Then, available GIS Data was used to calculate different catchment properties such as slope, length and imperviousness. In order to calibrate and validate this model, data of two temporary pipe flow monitoring stations, collected during last summer, was used along with records of two other permanent stations available for eight consecutive summer seasons. The effect of various hydrological parameters on model results was investigated. It was found that model results were affected by the ratio of impervious areas. The catchment length was tested, however calculated, because it is approximate representation of the catchment shape. Surface roughness coefficients were calibrated using. Consequently, computed flows at the two temporary locations had correlation coefficients of values 0.846 and 0.815, where the lower value pertained to the larger attached catchment area. Other statistical measures, such as peak error of 0.65%, volume error of 5.6%, maximum positive and negative differences of 2.17 and -1.63 respectively, were all found in acceptable ranges.

Keywords: stormwater, urban drainage, simulation, validation, MIKE URBAN

Procedia PDF Downloads 274
441 In-Plume H₂O, CO₂, H₂S and SO₂ in the Fumarolic Field of La Fossa Cone (Vulcano Island, Aeolian Archipelago)

Authors: Cinzia Federico, Gaetano Giudice, Salvatore Inguaggiato, Marco Liuzzo, Maria Pedone, Fabio Vita, Christoph Kern, Leonardo La Pica, Giovannella Pecoraino, Lorenzo Calderone, Vincenzo Francofonte

Abstract:

The periods of increased fumarolic activity at La Fossa volcano have been characterized, since early 80's, by changes in the gas chemistry and in the output rate of fumaroles. Excepting the direct measurements of the steam output from fumaroles performed from 1983 to 1995, the mass output of the single gas species has been recently measured, with various methods, only sporadically or for short periods. Since 2008, a scanning DOAS system is operating in the Palizzi area for the remote measurement of the in-plume SO₂ flux. On these grounds, the need of a cross-comparison of different methods for the in situ measurement of the output rate of different gas species is envisaged. In 2015, two field campaigns have been carried out, aimed at: 1. The mapping of the concentration of CO₂, H₂S and SO₂ in the fumarolic plume at 1 m from the surface, by using specific open-path diode tunable lasers (GasFinder Boreal Europe Ltd.) and an Active DOAS for SO₂, respectively; these measurements, coupled to simultaneous ultrasonic wind speed and meteorological data, have been elaborated to obtain the dispersion map and the output rate of single species in the overall fumarolic field; 2. The mapping of the concentrations of CO₂, H₂S, SO₂, H₂O in the fumarolic plume at 0.5 m from the soil, by using an integrated system, including IR spectrometers and specific electrochemical sensors; this has provided the concentration ratios of the analysed gas species and their distribution in the fumarolic field; 3. The in-fumarole sampling of vapour and measurement of the steam output, to validate the remote measurements. The dispersion map of CO₂, obtained from the tunable laser measurements, shows a maximum CO₂ concentration at 1m from the soil of 1000 ppmv along the rim, and 1800 ppmv in the inner slopes. As observed, the largest contribution derives from a wide fumarole of the inner-slope, despite its present outlet temperature of 230°C, almost 200°C lower than those measured at the rim fumaroles. Actually, fumaroles in the inner slopes are among those emitting the largest amount of magmatic vapour and, during the 1989-1991 crisis, reached the temperature of 690°C. The estimated CO₂ and H₂S fluxes are 400 t/d and 4.4 t/d, respectively. The coeval SO₂ flux, measured by the scanning DOAS system, is 9±1 t/d. The steam output, recomputed from CO₂ flux measurements, is about 2000 t/d. The various direct and remote methods (as described at points 1-3) have produced coherent results, which encourage to the use of daily and automatic DOAS SO₂ data, coupled with periodic in-plume measurements of different acidic gases, to obtain the total mass rates.

Keywords: DOAS, fumaroles, plume, tunable laser

Procedia PDF Downloads 376
440 Fly ash Contamination in Groundwater and its Implications on Local Climate Change

Authors: Rajkumar Ghosh

Abstract:

Fly ash, a byproduct of coal combustion, has become a prevalent environmental concern due to its potential impact on both groundwater quality and local climate change. This study aims to provide an in-depth analysis of the various mechanisms through which fly ash contaminates groundwater, as well as the possible consequences of this contamination on local climate change. The presence of fly ash in groundwater not only poses a risk to human health but also has the potential to influence local climate change through complex interactions. Although fly ash has various applications in construction and other industries, improper disposal and lack of containment measures have led to its infiltration into groundwater systems. Through a comprehensive review of existing literature and case studies, the interactions between fly ash and groundwater systems, assess the effects on hydrology, and discuss the implications for the broader climate. This section reviews the pathways through which fly ash enters groundwater, including leaching from disposal sites, infiltration through soil, and migration from surface water bodies. The physical and chemical characteristics of fly ash that contribute to its mobility and persistence in groundwater. The introduction of fly ash into groundwater can alter its chemical composition, leading to an increase in the concentration of heavy metals, metalloids, and other potentially toxic elements. The mechanisms of contaminant transport and highlight the potential risks to human health and ecosystems. Fly ash contamination in groundwater may influence the hydrological cycle through changes in groundwater recharge, discharge, and flow dynamics. This section examines the implications of altered hydrology on local water availability, aquatic habitats, and overall ecosystem health. The presence of fly ash in groundwater may have direct and indirect effects on local climate change. The role of fly ash as a potent greenhouse gas absorber and its contribution to radiative forcing. Additionally, investigation of the possible feedback mechanisms between groundwater contamination and climate change, such as altered vegetation patterns and changes in local temperature and precipitation patterns. In this section, potential mitigation and remediation techniques to minimize fly ash contamination in groundwater are analyzed. These may include improved waste management practices, engineered barriers, groundwater remediation technologies, and sustainable fly ash utilization. This paper highlights the critical link between fly ash contamination in groundwater and its potential contribution to local climate change. It emphasizes the importance of addressing this issue promptly through a combination of preventive measures, effective management strategies, and continuous monitoring. By understanding the interconnections between fly ash contamination, groundwater quality, and local climate, towards creating a more resilient and sustainable environment for future generations. The findings of this research can assist policymakers and environmental managers in formulating sustainable strategies to mitigate fly ash contamination and minimize its contribution to climate change.

Keywords: groundwater, climate, sustainable environment, fly ash contamination

Procedia PDF Downloads 58
439 Developing of Ecological Internal Insulation Composite Boards for Innovative Retrofitting of Heritage Buildings

Authors: J. N. Nackler, K. Saleh Pascha, W. Winter

Abstract:

WHISCERS™ (Whole House In-Situ Carbon and Energy Reduction Solution) is an innovative process for Internal Wall Insulation (IWI) for energy-efficient retrofitting of heritage building, which uses laser measuring to determine the dimensions of a room, off-site insulation board cutting and rapid installation to complete the process. As part of a multinational investigation consortium the Austrian part adapted the WHISCERS system to local conditions of Vienna where most historical buildings have valuable stucco facades, precluding the application of an external insulation. The Austrian project contribution addresses the replacement of commonly used extruded polystyrene foam (XPS) with renewable materials such as wood and wood products to develop a more sustainable IWI system. As the timber industry is a major industry in Austria, a new innovative and more sustainable IWI solution could also open up new markets. The first approach of investigation was the Life Cycle Assessment (LCA) to define the performance of wood fibre board as insulation material in comparison to normally used XPS-boards. As one of the results the global-warming potential (GWP) of wood-fibre-board is 15 times less the equivalent to carbon dioxide while in the case of XPS it´s 72 times more. The hygrothermal simulation program WUFI was used to evaluate and simulate heat and moisture transport in multi-layer building components of the developed IWI solution. The results of the simulations prove in examined boundary conditions of selected representative brickwork constructions to be functional and usable without risk regarding vapour diffusion and liquid transport in proposed IWI. In a further stage three different solutions were developed and tested (1 - glued/mortared, 2 - with soft board, connected to wall with gypsum board as top layer, 3 - with soft board and clay board as top layer). All three solutions presents a flexible insulation layer out of wood fibre towards the existing wall, thus compensating irregularities of the wall surface. From first considerations at the beginning of the development phase, three different systems had been developed and optimized according to assembly technology and tested as small specimen in real object conditions. The built prototypes are monitored to detect performance and building physics problems and to validate the results of the computer simulation model. This paper illustrates the development and application of the Internal Wall Insulation system.

Keywords: internal insulation, wood fibre, hygrothermal simulations, monitoring, clay, condensate

Procedia PDF Downloads 201
438 Solar Cell Packed and Insulator Fused Panels for Efficient Cooling in Cubesat and Satellites

Authors: Anand K. Vinu, Vaishnav Vimal, Sasi Gopalan

Abstract:

All spacecraft components have a range of allowable temperatures that must be maintained to meet survival and operational requirements during all mission phases. Due to heat absorption, transfer, and emission on one side, the satellite surface presents an asymmetric temperature distribution and causes a change in momentum, which can manifest in spinning and non-spinning satellites in different manners. This problem can cause orbital decays in satellites which, if not corrected, will interfere with its primary objective. The thermal analysis of any satellite requires data from the power budget for each of the components used. This is because each of the components has different power requirements, and they are used at specific times in an orbit. There are three different cases that are run, one is the worst operational hot case, the other one is the worst non-operational cold case, and finally, the operational cold case. Sunlight is a major source of heating that takes place on the satellite. The way in which it affects the spacecraft depends on the distance from the Sun. Any part of a spacecraft or satellite facing the Sun will absorb heat (a net gain), and any facing away will radiate heat (a net loss). We can use the state-of-the-art foldable hybrid insulator/radiator panel. When the panels are opened, that particular side acts as a radiator for dissipating the heat. Here the insulator, in our case, the aerogel, is sandwiched with solar cells and radiator fins (solar cells outside and radiator fins inside). Each insulated side panel can be opened and closed using actuators depending on the telemetry data of the CubeSat. The opening and closing of the panels are dependent on the special code designed for this particular application, where the computer calculates where the Sun is relative to the satellites. According to the data obtained from the sensors, the computer decides which panel to open and by how many degrees. For example, if the panels open 180 degrees, the solar panels will directly face the Sun, in turn increasing the current generator of that particular panel. One example is when one of the corners of the CubeSat is facing or if more than one side is having a considerable amount of sun rays incident on it. Then the code will analyze the optimum opening angle for each panel and adjust accordingly. Another means of cooling is the passive way of cooling. It is the most suitable system for a CubeSat because of its limited power budget constraints, low mass requirements, and less complex design. Other than this fact, it also has other advantages in terms of reliability and cost. One of the passive means is to make the whole chase act as a heat sink. For this, we can make the entire chase out of heat pipes and connect the heat source to this chase with a thermal strap that transfers the heat to the chassis.

Keywords: passive cooling, CubeSat, efficiency, satellite, stationary satellite

Procedia PDF Downloads 77
437 The One, the Many, and the Doctrine of Divine Simplicity: Variations on Simplicity in Essentialist and Existentialist Metaphysics

Authors: Mark Wiebe

Abstract:

One of the tasks contemporary analytic philosophers have focused on (e.g., Wolterstorff, Alston, Plantinga, Hasker, and Crisp) is the analysis of certain medieval metaphysical frameworks. This growing body of scholarship has helped clarify and prevent distorted readings of medieval and ancient writers. However, as scholars like Dolezal, Duby, and Brower have pointed out, these analyses have been incomplete or inaccurate in some instances, e.g., with regard to analogical speech or the doctrine of divine simplicity (DDS). Additionally, contributors to this work frequently express opposing claims or fail to note substantial differences between ancient and medieval thinkers. This is the case regarding the comparison between Thomas Aquinas and others. Anton Pegis and Étienne Gilson have argued along this line that Thomas’ metaphysical framework represents a fundamental shift. Gilson describes Thomas’ metaphysics as a turn from a form of “essentialism” to “existentialism.” One should argue that this shift distinguishes Thomas from many Analytic philosophers as well as from other classical defenders of the DDS. Moreover, many of the objections Analytic Philosophers make against Thomas presume the same metaphysical principles undergirding the above-mentioned form of essentialism. This weakens their force against Thomas’ positions. In order to demonstrate these claims, it will be helpful to consider Thomas’ metaphysical outlook alongside that of two other prominent figures: Augustine and Ockham. One area of their thinking which brings their differences to the surface has to do with how each relates to Platonic and Neo-Platonic thought. More specifically, it is illuminating to consider whether and how each distinguishes or conceives essence and existence. It is also useful to see how each approaches the Platonic conflicts between essence and individuality, unity and intelligibility. In both of these areas, Thomas stands out from Augustine and Ockham. Although Augustine and Ockham diverge in many ways, both ultimately identify being with particularity and pit particularity against both unity and intelligibility. Contrastingly, Thomas argues that being is distinct from and prior to essence. Being (i.e., Being in itself) rather than essence or form must therefore serve as the ground and ultimate principle for the existence of everything in which being and essence are distinct. Additionally, since change, movement, and addition improve and give definition to finite being, multitude and distinction are, therefore, principles of being rather than non-being. Consequently, each creature imitates and participates in God’s perfect Being in its own way; the perfection of each genus exists pre-eminently in God without being at odds with God’s simplicity, God has knowledge, power, and will, and these and the many other terms assigned to God refer truly to the being of God without being either meaningless or synonymous. The existentialist outlook at work in these claims distinguishes Thomas in a noteworthy way from his contemporaries and predecessors as much as it does from many of the analytic philosophers who have objected to his thought. This suggests that at least these kinds of objections do not apply to Thomas’ thought.

Keywords: theology, philosophy of religion, metaphysics, philosophy

Procedia PDF Downloads 53
436 Immunomodulatory Role of Heat Killed Mycobacterium indicus pranii against Cervical Cancer

Authors: Priyanka Bhowmik, Subrata Majumdar, Debprasad Chattopadhyay

Abstract:

Background: Cervical cancer is the third major cause of cancer in women and the second most frequent cause of cancer related deaths causing 300,000 deaths annually worldwide. Evasion of immune response by Human Papilloma Virus (HPV), the key contributing factor behind cancer and pre-cancerous lesions of the uterine cervix, makes immunotherapy a necessity to treat this disease. Objective: A Heat killed fraction of Mycobacterium indicus pranii (MIP), a non-pathogenic Mycobacterium has been shown to exhibit cytotoxic effects on different cancer cells, including human cervical carcinoma cell line HeLa. However, the underlying mechanisms remain unknown. The aim of this study is to decipher the mechanism of MIP induced HeLa cell death. Methods: The cytotoxicity of Mycobacterium indicus pranii against HeLa cells was evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Apoptosis was detected by annexin V and Propidium iodide (PI) staining. The assessment of reactive oxygen species (ROS) generation and cell cycle analysis were measured by flow cytometry. The expression of apoptosis associated genes was analyzed by real time PCR. Result: MIP could inhibit the proliferation of HeLa cell in a time and dose dependent manner but caused minor damage to normal cells. The induction of apoptosis was confirmed by the cell surface presentation of phosphatidyl serine, DNA fragmentation, and mitochondrial damage. MIP caused very early (as early as 30 minutes) transcriptional activation of p53, followed by a higher activation (32 fold) at 24 hours suggesting prime importance of p53 in MIP-induced apoptosis in HeLa cell. The up regulation of p53 dependent pro-apoptotic genes Bax, Bak, PUMA, and Noxa followed a lag phase that was required for the transcriptional p53 program. MIP also caused the transcriptional up regulation of Toll like receptor 2 and 4 after 30 minutes of MIP treatment suggesting recognition of MIP by toll like receptors. Moreover, MIP caused the inhibition of expression of HPV anti apoptotic gene E6, which is known to interfere with p53/PUMA/Bax apoptotic cascade. This inhibition might have played a role in transcriptional up regulation of PUMA and subsequently apoptosis. ROS was generated transiently which was concomitant with the highest transcription activation of p53 suggesting a plausible feedback loop network of p53 and ROS in the apoptosis of HeLa cells. Scavenger of ROS, such as N-acetyl-L-cysteine, decreased apoptosis suggesting ROS is an important effector of MIP induced apoptosis. Conclusion: Taken together, MIP possesses full potential to be a novel therapeutic agent in the clinical treatment of cervical cancer.

Keywords: cancer, mycobacterium, immunity, immunotherapy.

Procedia PDF Downloads 232
435 Acceleration of Adsorption Kinetics by Coupling Alternating Current with Adsorption Process onto Several Adsorbents

Authors: A. Kesraoui, M. Seffen

Abstract:

Applications of adsorption onto activated carbon for water treatment are well known. The process has been demonstrated to be widely effective for removing dissolved organic substances from wastewaters, but this treatment has a major drawback is the high operating cost. The main goal of our research work is to improve the retention capacity of Tunisian biomass for the depollution of industrial wastewater and retention of pollutants considered toxic. The biosorption process is based on the retention of molecules and ions onto a solid surface composed of biological materials. The evaluation of the potential use of these materials is important to propose as an alternative to the adsorption process generally expensive, used to remove organic compounds. Indeed, these materials are very abundant in nature and are low cost. Certainly, the biosorption process is effective to remove the pollutants, but it presents a slow kinetics. The improvement of the biosorption rates is a challenge to make this process competitive with respect to oxidation and adsorption onto lignocellulosic fibers. In this context, the alternating current appears as a new alternative, original and a very interesting phenomenon in the acceleration of chemical reactions. Our main goal is to increase the retention acceleration of dyes (indigo carmine, methylene blue) and phenol by using a new alternative: alternating current. The adsorption experiments have been performed in a batch reactor by adding some of the adsorbents in 150 mL of pollutants solution with the desired concentration and pH. The electrical part of the mounting comprises a current source which delivers an alternating current voltage of 2 to 15 V. It is connected to a voltmeter that allows us to read the voltage. In a 150 mL capacity cell, we plunged two zinc electrodes and the distance between two Zinc electrodes has been 4 cm. Thanks to alternating current, we have succeeded to improve the performance of activated carbon by increasing the speed of the indigo carmine adsorption process and reducing the treatment time. On the other hand, we have studied the influence of the alternating current on the biosorption rate of methylene blue onto Luffa cylindrica fibers and the hybrid material (Luffa cylindrica-ZnO). The results showed that the alternating current accelerated the biosorption rate of methylene blue onto the Luffa cylindrica and the Luffa cylindrica-ZnO hybrid material and increased the adsorbed amount of methylene blue on both adsorbents. In order to improve the removal of phenol, we performed the coupling between the alternating current and the biosorption onto two adsorbents: Luffa cylindrica and the hybrid material (Luffa cylindrica-ZnO). In fact, the alternating current has succeeded to improve the performance of adsorbents by increasing the speed of the adsorption process and the adsorption capacity and reduce the processing time.

Keywords: adsorption, alternating current, dyes, modeling

Procedia PDF Downloads 135
434 Existential and Possessive Constructions in Modern Standard Arabic Two Strategies Reflecting the Ontological (Non-)Autonomy of Located or Possessed Entities

Authors: Fayssal Tayalati

Abstract:

Although languages use very divergent constructional strategies, all existential constructions appear to invariably involve an implicit or explicit locative constituent. This locative constituent either surface as a true locative phrase or are realized as a possessor noun phrase. However, while much research focuses on the supposed underlying syntactic relation of locative and possessive existential constructions, not much is known about possible semantic factors that could govern the choice between these constructions. The main question that we address in this talk concerns the choice between the two related constructions in Modern Standard Arabic (MAS). Although both are used to express the existence of something somewhere, we can distinguish three contexts: First, for some types of entities, only the EL construction is possible (e.g. (1a) ṯammata raǧulun fī l-ḥadīqati vs. (1b) *(kāna) ladā l-ḥadīqati raǧulun). Second, for other types of entities, only the possessive construction is possible (e.g. (2a) ladā ṭ-ṭawilati aklun dāʾiriyyun vs. (2b) *ṯammata šaklun dāʾiriyyun ladā/fī ṭ-ṭawilati). Finally, for still other entities, both constructions can be found (e.g. (3a) ṯammata ḥubbun lā yūṣafu ladā ǧārī li-zawǧati-hi and (3b) ladā ǧārī ḥubbun lā yūṣafu li-zawǧati-hi). The data covering a range of ontologically different entities (concrete objects, events, body parts, dimensions, essential qualities, feelings, etc.) shows that the choice between the existential locative and the possessive constructions is closely linked to the conceptual autonomy of the existential theme with respect to its location or to the whole that it is a part of. The construction with ṯammata is the only possible one to express the existence of a fully autonomous (i.e. nondependent) entity (concrete objects (e.g.1) and abstract objects such as events, especially the ones that Grimshaw called ‘simple events’). The possessive construction with (kāna) ladā is the only one used to express the existence of fully non-autonomous (i.e. fully dependent on a whole) entities (body parts, dimensions (e.g. 2), essential qualities). The two constructions alternate when the existential theme is conceptually dependent but separable of the whole, either because it has an autonomous (independent) existence of the given whole (spare parts of an object), or because it receives a relative autonomy in the speech through a modifier (accidental qualities, feelings (e.g. 3a, 3b), psychological states, among some other kinds of themes). In this case, the modifier expresses an approximate boundary on a scale, and provides relative autonomy to the entity. Finally, we will show that kinship terms (e.g. son), which at first sight may seem to constitute counterexamples to our hypothesis, are nonetheless supported by it. The ontological (non-)autonomy of located or possessed entities is also reflected by morpho-syntactic properties, among them the use and the choice of determiners, pluralisation and the behavior of entities in the context of associative anaphora.

Keywords: existence, possession, autonomous entities, non-autonomous entities

Procedia PDF Downloads 329
433 Frankie Adams’s Sexuality in the Member of the Wedding: Focusing on Musical References

Authors: Saori Iwatsuka

Abstract:

In The Member of the Wedding, Carson McCullers starts with the words, “It happened,” without telling the reader what happens to a twelve-year-old protagonist, Frankie Adams. The reader feels confused and incomprehensible. However, he or she later realizes that the confusing phrase is connected to the scene where Frankie feels “the thing happened” after listening to the melodic lines of jazz and blues. Yet, the reader cannot really comprehend what happens to Frankie and feels puzzled till the end. And the story ends with Frankie’s words, “I am simply mad about . . .” Implying her queer desire for her new friend Mary Littlejohn, McCullers never tells the reader whom Frankie is mad about. Despite McCullers’s ambiguous way of depicting Frankie’s sexuality, recent critics and reviewers have come to discuss her sexuality as anti-heterosexual because Frankie expresses her hatred for Barney, whom she has had some type of sexual encounter, and feels wrong with her brother Jarvis’s wedding. After giving up her sexual desire for Jarvis’s bride, Janice, Frankie changes her name to Frances, becomes engrossed with Michelangelo, and enjoys reading Tennyson’s poetry with Mary. Michelangelo and Tennyson are well-known homosexual artists, which suggests that Frankie has an anti-heterosexual orientation. As McCullers does not precisely describe Frankie’s sexuality, the reader can only assume it by connecting fragmentary descriptions. However, this discussion is more clarified to show Frankie’s sexuality because analyzing the musical references of jazz and blues and interpreting them from a musicological viewpoint will illuminate it. In her works, McCullers frequently uses musical references and descriptions, which have a significant and psychological impact on the protagonists and portrays their bodily reactions to the impact to reveal what the reader cannot see on the surface. Thus, in this story, too, Frankie’s bodily reaction to music is portrayed to cue her feelings. After seeing the chimney swifts, known as monogamous birds, Frankie feels “a jazz sadness,” quivers her nerves and stiffens her heart. After listening to Berenice’s “dark jazz voice,” Frankie feels dizzy and throws a knife because Berenice’s voice jazzes (excites) her heart that beats in her head. Calming herself, she fantasizes that Jarvis, Jarvis’s bride, Janice, and herself are members of “the we of me.” Then in the evening, listening to the blues and jazz being played by a black horn player somewhere in her neighborhood, Frankie realizes “the thing happened” and discovers “a new feeling.” Following the musical references “jazz” and “blues” and examining them from the viewpoint of musicology and terminology leads the reader to explore what “it” is in “it happened” and what her “new feeling” is when “the thing happened” with the blues tune breaking off. Those discussions will illuminate Frankie’s sexuality. As McCullers does not clearly name her sexuality, this paper uses the word queer to express Frankie’s anti-sexual orientation.

Keywords: jazz and blues, musical references, queer sexuality, “we of me”

Procedia PDF Downloads 61