Search results for: waste compaction and type
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9275

Search results for: waste compaction and type

8285 Approximation by Generalized Lupaş-Durrmeyer Operators with Two Parameter α and β

Authors: Preeti Sharma

Abstract:

This paper deals with the Stancu type generalization of Lupaş-Durrmeyer operators. We establish some direct results in the polynomial weighted space of continuous functions defined on the interval [0, 1]. Also, Voronovskaja type theorem is studied.

Keywords: Lupas-Durrmeyer operators, polya distribution, weighted approximation, rate of convergence, modulus of continuity

Procedia PDF Downloads 335
8284 Studies on the Mechanical Behavior of Bottom Ash for a Sustainable Environment

Authors: B. A. Mir, Asim Malik

Abstract:

Bottom ash is a by-product of the combustion process of coal in furnaces in the production of electricity in thermal power plants. In India, about 75% of total power is produced by using pulverized coal. The coal of India has a high ash content which leads to the generation of a huge quantity of bottom ash per year posing the dual problem of environmental pollution and difficulty in disposal. This calls for establishing strategies to use this industry by-product effectively and efficiently. However, its large-scale utilization is possible only in geotechnical applications, either alone or with soil. In the present investigation, bottom ash was collected from National Capital Power Station Dadri, Uttar Pradesh, India. Test samples of bottom ash admixed with 20% clayey soil were prepared and treated with different cement content by weight and subjected to various laboratory tests for assessing its suitability as an engineered construction material. This study has shown that use of 10% cement content is a viable chemical additive to enhance the mechanical properties of bottom ash, which can be used effectively as an engineered construction material in various geotechnical applications. More importantly, it offers an interesting potential for making use of an industrial waste to overcome challenges posed by bottom ash for a sustainable environment.

Keywords: bottom ash, environmental pollution, solid waste, sustainable environment, waste utilization

Procedia PDF Downloads 249
8283 Experimental Exploration of Recycled Materials for Potential Application in Interior Design

Authors: E. P. Bhowmik, R. Singh

Abstract:

Certain materials casually thrown away as by-product household waste, such as used tea leaves, used coffee remnants, eggshells, peanut husks, coconut coir, unwanted paper, and pencil shavings- have scope in the hidden properties that they offer as recyclable raw ingredients. This paper aims to explore and experiment with the sustainable potential of such disposed wastes, obtained from domestic and commercial backgrounds, that could otherwise contribute to the field of interior design if mass-collected and repurposed. Research has been conducted on available recorded methods of mass-collection, storage, and processing of such materials by certain brands, designers, and researchers, as well as the various application and angles possible with regards to re-usage. A questionnaire survey was carried out to understand the willingness of the demographics for efforts of the mass collection and their openness to such unconventional materials for interiors. An experiment was also conducted where the selected waste ingredients were used to create small samples that could be used as decorative panels. Comparisons were made for properties like color, smell, texture, relative durability, and weight- and accordingly, applications were suggested. The experiment, therefore, helped to propose to recycle of the common household as a potential surface finish for floors, walls, and ceilings, and even founding material for furniture and decor accessories such as pottery and lamp shades; for non-structural application in both residential and commercial interiors. Common by-product wastes often see their ends at landfills- laymen unaware of their sustainable possibilities dispose of them. However, processing these waste materials and repurposing them by incorporating them into interiors would serve as a sustainable alternative to ethical dilemmas in the construction of interior design/architecture elements.

Keywords: interior materials, mass-collection, sustainable, waste recycle

Procedia PDF Downloads 97
8282 Structure and Magnetic Properties of Low-Temperature Synthesized M-W Hexaferrite Composites

Authors: Young-Min Kang

Abstract:

M-type Sr-hexaferrites (SrFe12O19) is one of the most utilized materials in permanent magnets due to their low price, outstanding chemical stability, and appropriate hard magnetic properties. For a M-type Sr-hexaferrite with a saturation magnetization (MS) of ~74.0 emu/g the practical limits of remanent flux density (Br) and maximum energy product (BH) max are ~4.6 kG and ~5.3 MGOe. Meanwhile, W-type hexaferrite (SrFe18O27) with higher MS ~81emu/g can be a good candidate for the development of enhanced ferrite magnet. However the W-type hexaferrite is stable at the temperature over 1350 ºC in air, and thus it is hard to control grain size and the coercivity. We report here high-MS M-W composite hexaferrites synthesized at 1250 ºC in air by doping Ca, Co, Mn, and Zn into the hexaferrite structures. The hexaferrites samples of stoichiometric SrFe12O19 (SrM) and Ca-Co-Mn-Zn doped hexaferrite (Sr0.7Ca0.3Fen-0.6Co0.2Mn0.2Zn0.2Oa) were prepared by conventional solid state reaction process with varying Fe content (10 ≤ n ≤ 17). Analysis by x-ray diffraction (XRD) and field emission scanning electron microscopy (FE-SEM) were performed for phase identification and microstructural observation respectively. Magnetic hysteresis curves were measured using vibrating sample magnetometer (VSM) at room temperature (300 K). Single M-type phase could be obtained in the non-doped SrM sample after calcinations at the range of 1200 ºC ~ 1300 ºC, showing MS in the range of 72 ~ 72.6 emu/g. The Ca-Co-Mn-Zn doped SrM with Fe content, 10 ≤ n ≤ 13, showed both M and W-phases peaks in the XRD after respective calcinations at 1250 ºC. The sample with n=13 showed the MS of 70.7, 75.3, 78.0 emu/g, respectively, after calcination at 1200, 1250, 1300 ºC. The high MS over that of non-doped SrM (~72 emu/g) is attributed to the volume portion of W-phase. It is also revealed that the high MS W-phase could not formed if only one of the Ca, Co, Zn is missed in the substitution. These elements are critical to form the W-phase at the calcinations temperature of 1250 ºC, which is 100 ºC lower than the calcinations temperature for non-doped Sr-hexaferrites.

Keywords: M-type hexaferrite, W-type hexaferrite, saturation magnetization, low-temperature synthesis

Procedia PDF Downloads 163
8281 Generalized Hyperbolic Functions: Exponential-Type Quantum Interactions

Authors: Jose Juan Peña, J. Morales, J. García-Ravelo

Abstract:

In the search of potential models applied in the theoretical treatment of diatomic molecules, some of them have been constructed by using standard hyperbolic functions as well as from the so-called q-deformed hyperbolic functions (sc q-dhf) for displacing and modifying the shape of the potential under study. In order to transcend the scope of hyperbolic functions, in this work, a kind of generalized q-deformed hyperbolic functions (g q-dhf) is presented. By a suitable transformation, through the q deformation parameter, it is shown that these g q-dhf can be expressed in terms of their corresponding standard ones besides they can be reduced to the sc q-dhf. As a useful application of the proposed approach, and considering a class of exactly solvable multi-parameter exponential-type potentials, some new q-deformed quantum interactions models that can be used as interesting alternative in quantum physics and quantum states are presented. Furthermore, due that quantum potential models are conditioned on the q-dependence of the parameters that characterize to the exponential-type potentials, it is shown that many specific cases of q-deformed potentials are obtained as particular cases from the proposal.

Keywords: diatomic molecules, exponential-type potentials, hyperbolic functions, q-deformed potentials

Procedia PDF Downloads 176
8280 Reverse Logistics in Clothing Recycling: A Case Study in Chengdu

Authors: Guo Yan

Abstract:

Clothing recycling bin is a traditional way to collect textile waste in many areas. In the clothing recycling business, the transportation cost normally takes over 50% of total costs. This case gives a good way to reduce transportation cost by reverse logistics system. In this reverse logistics system, there are offline strategic alliance partners, such as transport firms, convenience stores, laundries, and post office which are integrated onto the mobile APP. Offline strategic alliance partners provide the service of textile waste collection, and transportation by their vacant vehicles return journey from convenience stores, laundries and post offices to sorting centers. The results of the case study provide the strategic alliance with a valuable and light - asset business model by using the logistics of offline memberships. The company in this case just focuses on textile waste sorting, reuse, recycling etc. The research method of this paper is a case study of a clothing recycling company in Chengdu by field research and interview; the analysis is based on the theory of the reverse logistics system.

Keywords: closed-loop recycles system, clothing recycling, end-of-life clothing, sharing economy, strategic alliance, reverse logistics.

Procedia PDF Downloads 143
8279 Permanent Deformation Resistance of Asphalt Mixtures with Red Mud as a Filler

Authors: Liseane Padilha Thives, Mayara S. S. Lima, João Victor Staub De Melo, Glicério Trichês

Abstract:

Red mud is a waste resulting from the processing of bauxite to alumina, the raw material of the production of aluminum. The large quantity of red mud generated and inadequately disposed in the environment has motivated researchers to develop methods for reinsertion of this waste into the productive cycle. This work aims to evaluate the resistance to permanent deformation of dense asphalt mixtures with red mud filler. The red mud was characterized by tests of X-ray diffraction, fluorescence, specific mass, laser granulometry, pH and scanning electron microscopy. For the analysis of the influence of the quantity of red mud in the mechanical performance of asphalt mixtures, a total filler content of 7% was established. Asphalt mixtures with 3%, 5% and 7% red mud were produced. A conventional mixture with 7% stone powder filler was used as reference. The asphalt mixtures were evaluated for performance to permanent deformation in the French Rutting Tester (FRT) traffic simulator. The mixture with 5% red mud presented greater resistance to permanent deformation with rutting depth at 30,000 cycles of 3.50%. The asphalt mixtures with red mud presented better performance, with reduction of the rutting of 12.63 to 42.62% in relation to the reference mixture. This study confirmed the viability of reinserting the red mud in the production chain and possible usage in the construction industry. The red mud as filler in asphalt mixtures is a reuse option of this waste and mitigation of the disposal problems, as well as being an environmentally friendly alternative.

Keywords: asphalt mixtures, permanent deformation, red mud, pavements

Procedia PDF Downloads 280
8278 A Conceptual Framework of Impact of Lean on the Performance of Construction Industry

Authors: Jaber Shurrab, Matloub Hussain

Abstract:

The rapid pace of changes in the construction industry, technological advancements, and rising costs present tremendous challenges for project managers. Project managers are under severe pressure to minimize the waste, improve the efficiency of the entire operations and the philosophy of ‘lean thinking’ so that ‘more could be achieved with less’ is becoming very popular. Though, lean management has strong roots in manufacturing industry and over the last decade lean philosophy has started gaining attention in the service industry as well. However, little has been known in the context of waste minimization and lean implementation in the construction industry and this paper deals with this important issue. The primary objective of this paper is to propose a conceptual framework for the exploration of appropriate lean techniques applicable to medium and large construction companies and measure their impact on the competitiveness and economic performance of construction companies of United Arab Emirates (UAE). To this end, a comprehensive literature review and interviews with eight project managers of medium and large construction companies of UAE have been conducted. It has been found that competitive, reduce waste and costs are critical to the construction industry. This is an ongoing research in lean management, giving project managers a practical framework for improving the efficiency of their project through various lean techniques. Originality/value: Research significance emphasizes increasing the effectiveness of the construction industry, influences the development of lean construction framework which improves lean construction practices using the lean techniques. This contributes to the effort of applying lean techniques in the construction industry. Limited publications were done in the construction industry mainly in United Arab Emirates (UAE) compared to the lean manufacturing. This research will recommend a systematic approach for the implementing of the anticipated framework within a cyclical look-ahead period and emphasizes the practical implications of the proposed approach.

Keywords: construction, lean, lean manufacturing, waste

Procedia PDF Downloads 276
8277 A Mixed Integer Linear Programming Model for Container Collection

Authors: J. Van Engeland, C. Lavigne, S. De Jaeger

Abstract:

In the light of the transition towards a more circular economy, recovery of products, parts or materials will gain in importance. Additionally, the EU proximity principle related to waste management and emissions generated by transporting large amounts of end-of-life products, shift attention to local recovery networks. The Flemish inter-communal cooperation for municipal solid waste management Meetjesland (IVM) is currently investigating the set-up of such a network. More specifically, the network encompasses the recycling of polyvinyl chloride (PVC), which is collected in separate containers. When these containers are full, a truck should transport them to the processor which can recycle the PVC into new products. This paper proposes a model to optimize the container collection. The containers are located at different Civic Amenity sites (CA sites) in a certain region. Since people can drop off their waste at these CA sites, the containers will gradually fill up during a planning horizon. If a certain container is full, it has to be collected and replaced by an empty container. The collected waste is then transported to a single processor. To perform this collection and transportation of containers, the responsible firm has a set of vehicles stationed at a single depot and different personnel crews. A vehicle can load exactly one container. If a trailer is attached to the vehicle, it can load an additional container. Each day of the planning horizon, the different crews and vehicles leave the depot to collect containers at the different sites. After loading one or two containers, the crew has to drive to the processor for unloading the waste and to pick up empty containers. Afterwards, the crew can again visit sites or it can return to the depot to end its collection work for that day. All along the collection process, the crew has to respect the opening hours of the sites. In order to allow for some flexibility, a crew is allowed to wait a certain amount of time at the gate of a site until it opens. The problem described can be modelled as a variant to the PVRP-TW (Periodic Vehicle Routing Problem with Time Windows). However, a vehicle can at maximum load two containers, hence only two subsequent site visits are possible. For that reason, we will refer to the model as a model for building tactical waste collection schemes. The goal is to a find a schedule describing which crew should visit which CA site on which day to minimize the number of trucks and the routing costs. The model was coded in IBM CPLEX Optimization studio and applied to a number of test instances. Good results were obtained, and specific suggestions concerning route and truck costs could be made. For a large range of input parameters, collection schemes using two trucks are obtained.

Keywords: container collection, crew scheduling, mixed integer linear programming, waste management

Procedia PDF Downloads 126
8276 Determination of Gross Alpha and Gross Beta Activity in Water Samples by iSolo Alpha/Beta Counting System

Authors: Thiwanka Weerakkody, Lakmali Handagiripathira, Poshitha Dabare, Thisari Guruge

Abstract:

The determination of gross alpha and beta activity in water is important in a wide array of environmental studies and these parameters are considered in international legislations on the quality of water. This technique is commonly applied as screening method in radioecology, environmental monitoring, industrial applications, etc. Measuring of Gross Alpha and Beta emitters by using iSolo alpha beta counting system is an adequate nuclear technique to assess radioactivity levels in natural and waste water samples due to its simplicity and low cost compared with the other methods. Twelve water samples (Six samples of commercially available bottled drinking water and six samples of industrial waste water) were measured by standard method EPA 900.0 consisting of the gas-less, firm wear based, single sample, manual iSolo alpha beta counter (Model: SOLO300G) with solid state silicon PIPS detector. Am-241 and Sr90/ Y90 calibration standards were used to calibrate the detector. The minimum detectable activities are 2.32mBq/L and 406mBq/L, for alpha and beta activity, respectively. Each of the 2L water samples was evaporated (at low heat) to a small volume and transferred into 50mm stainless steel counting planchet evenly (for homogenization) and heated by IR lamp and the constant weighted residue was obtained. Then the samples were counted for gross alpha and beta. Sample density on the planchet area was maintained below 5mg/cm. Large quantities of solid wastes sludges and waste water are generated every year due to various industries. This water can be reused for different applications. Therefore implementation of water treatment plants and measuring water quality parameters in industrial waste water discharge is very important before releasing them into the environment. This waste may contain different types of pollutants, including radioactive substances. All these measured waste water samples having gross alpha and beta activities, lower than the maximum tolerance limits for industrial waste water discharge of industrial waste in to inland surface water, that is 10-9µCi/mL and 10-8µCi/mL for gross alpha and beta respectively (National Environmental Act, No. 47 of 1980). This is according to extraordinary gazette of the democratic socialist republic of Sri Lanka in February 2008. The measured water samples were below the recommended radioactivity levels and do not pose any radiological hazard when releasing the environment. Drinking water is an essential requirement of life. All the drinking water samples were below the permissible levels of 0.5Bq/L for gross alpha activity and 1Bq/L for gross beta activity. The values have been proposed by World Health Organization in 2011; therefore the water is acceptable for consumption of humans without any further clarification with respect to their radioactivity. As these screening levels are very low, the individual dose criterion (IDC) would usually not be exceeded (0.1mSv y⁻¹). IDC is a criterion for evaluating health risks from long term exposure to radionuclides in drinking water. Recommended level of 0.1mSv/y expressed a very low level of health risk. This monitoring work will be continued further for environmental protection purposes.

Keywords: drinking water, gross alpha, gross beta, waste water

Procedia PDF Downloads 191
8275 Reasons for Food Losses and Waste in Basic Production of Meat Sector in Poland

Authors: Sylwia Laba, Robert Laba, Krystian Szczepanski, Mikolaj Niedek, Anna Kaminska-Dworznicka

Abstract:

Meat and its products are considered food products, having the most unfavorable effect on the environment that requires rational management of these products and waste, originating throughout the whole chain of manufacture, processing, transport, and trade of meat. From the economic and environmental viewpoints, it is important to limit the losses and food wastage and the food waste in the whole meat sector. The link to basic production includes obtaining raw meat, i.e., animal breeding, management, and transport of animals to the slaughterhouse. Food is any substance or product, intended to be consumed by humans. It was determined (for the needs of the present studies) when the raw material is considered as a food. It is the moment when the animals are prepared to loading with the aim to be transported to a slaughterhouse and utilized for food purposes. The aim of the studies was to determine the reasons for loss generation in the basic production of the meat sector in Poland during the years 2017 – 2018. The studies on food losses and waste in the meat sector in basic production were carried out in two areas: red meat i.e., pork and beef and poultry meat. The studies of basic production were conducted in the period of March-May 2019 at the territory of the whole country on a representative trial of 278 farms, including 102 pork production, 55–beef production, and 121 poultry meat production. The surveys were carried out with the utilization of questionnaires by the PAPI (Paper & Pen Personal Interview) method; the pollsters conducted direct questionnaire interviews. Research results indicate that it is followed that any losses were not recorded during the preparation, loading, and transport of the animals to the slaughterhouse in 33% of the visited farms. In the farms where the losses were indicated, the crushing and suffocations, occurring during the production of pigs, beef cattle and poultry, were the main reasons for these losses. They constituted ca. 40% of the reported reasons. The stress generated by loading and transport caused 16 – 17% (depending on the season of the year) of the loss reasons. In the case of poultry production, in 2017, additionally, 10.7% of losses were caused by inappropriate conditions of loading and transportation, while in 2018 – 11.8%. The diseases were one of the reasons for the losses in pork and beef production (7% of the losses). The losses and waste, generated during livestock production and in meat processing and trade cannot be managed or recovered. They have to be disposed of. It is, therefore, important to prevent and minimize the losses throughout the whole production chain. It is possible to introduce the appropriate measures, connected mainly with the appropriate conditions and methods of animal loading and transport.

Keywords: food losses, food waste, livestock production, meat sector

Procedia PDF Downloads 136
8274 The Role of Defense Mechanisms in Treatment Adherence in Type 2 Diabetes Mellitus: An Exploratory Study

Authors: F. Marchini, A. Caputo, J. Balonan, F. Fedele, A. Napoli, V. Langher

Abstract:

Aim: The present study aims to explore the specific role of defense mechanisms in persons with type 2 diabetes mellitus in treatment adherence. Materials and methods: A correlational study design was employed. Thirty-two persons with type 2 diabetes mellitus were enrolled and assessed with Defense Mechanism Inventory, Beck Depression Inventory-II, Toronto Alexithymia Scale and Self-Care Inventory-Revised. Bivariate correlation and two-step regression analyses were performed. Results: Treatment adherence negatively correlates with hetero-directed hostility (r= -.537; p < .01), whereas it is positively associated with principalization (r= .407; p < .05). These two defense mechanisms overall explain an incremental variance of 26.9% in treatment adherence (ΔF=4.189, df1=2, df2 =21, p < .05), over and above the control variables for depression and alexithymia. However, only higher hetero-directed hostility is found to be a solid predictor of a decreased treatment adherence (β=-.497, p < .05). Conclusions: Despite providing preliminary results, this pilot study highlights the original contribution of defense mechanisms in adherence to type 2 diabetes regimens. Specifically, hetero-directed hostility may relate to an unconscious process, according to which disease-related painful feelings are displaced onto care relationships with negative impacts on adherence.

Keywords: alexithymia, defense mechanisms, treatment adherence, type 2 diabetes mellitus

Procedia PDF Downloads 312
8273 Physical, Chemical and Mineralogical Characterization of Construction and Demolition Waste Produced in Greece

Authors: C. Alexandridou, G. N. Angelopoulos, F. A. Coutelieris

Abstract:

Construction industry in Greece consumes annually more than 25 million tons of natural aggregates originating mainly from quarries. At the same time, more than 2 million tons of construction and demolition waste are deposited every year, usually without control, therefore increasing the environmental impact of this sector. A potential alternative for saving natural resources and minimize landfilling, could be the recycling and re-use of Concrete and Demolition Waste (CDW) in concrete production. Moreover, in order to conform to the European legislation, Greece is obliged to recycle non-hazardous construction and demolition waste to a minimum of 70% by 2020. In this paper characterization of recycled materials - commercially and laboratory produced, coarse and fine, Recycled Concrete Aggregates (RCA) - has been performed. Namely, X-Ray Fluorescence and X-ray diffraction (XRD) analysis were used for chemical and mineralogical analysis respectively. Physical properties such as particle density, water absorption, sand equivalent and resistance to fragmentation were also determined. This study, first time made in Greece, aims at outlining the differences between RCA and natural aggregates and evaluating their possible influence in concrete performance. Results indicate that RCA’s chemical composition is enriched in Si, Al, and alkali oxides compared to natural aggregates. X-ray diffraction (XRD) analyses results indicated the presence of calcite, quartz and minor peaks of mica and feldspars. From all the evaluated physical properties of coarse RCA, only water absorption and resistance to fragmentation seem to have a direct influence on the properties of concrete. Low Sand Equivalent and significantly high water absorption values indicate that fine fractions of RCA cannot be used for concrete production unless further processed. Chemical properties of RCA in terms of water soluble ions are similar to those of natural aggregates. Four different concrete mixtures were produced and examined, replacing natural coarse aggregates with RCA by a ratio of 0%, 25%, 50% and 75% respectively. Results indicate that concrete mixtures containing recycled concrete aggregates have a minor deterioration of their properties (3-9% lower compression strength at 28 days) compared to conventional concrete containing the same cement quantity.

Keywords: chemical and physical characterization, compressive strength, mineralogical analysis, recycled concrete aggregates, waste management

Procedia PDF Downloads 229
8272 Modelling of Recovery and Application of Low-Grade Thermal Resources in the Mining and Mineral Processing Industry

Authors: S. McLean, J. A. Scott

Abstract:

The research topic is focusing on improving sustainable operation through recovery and reuse of waste heat in process water streams, an area in the mining industry that is often overlooked. There are significant advantages to the application of this topic, including economic and environmental benefits. The smelting process in the mining industry presents an opportunity to recover waste heat and apply it to alternative uses, thereby enhancing the overall process. This applied research has been conducted at the Sudbury Integrated Nickel Operations smelter site, in particular on the water cooling towers. The aim was to determine and optimize methods for appropriate recovery and subsequent upgrading of thermally low-grade heat lost from the water cooling towers in a manner that makes it useful for repurposing in applications, such as within an acid plant. This would be valuable to mining companies as it would be an opportunity to reduce the cost of the process, as well as decrease environmental impact and primary fuel usage. The waste heat from the cooling towers needs to be upgraded before it can be beneficially applied, as lower temperatures result in a decrease of the number of potential applications. Temperature and flow rate data were collected from the water cooling towers at an acid plant over two years. The research includes process control strategies and the development of a model capable of determining if the proposed heat recovery technique is economically viable, as well as assessing any environmental impact with the reduction in net energy consumption by the process. Therefore, comprehensive cost and impact analyses are carried out to determine the best area of application for the recovered waste heat. This method will allow engineers to easily identify the value of thermal resources available to them and determine if a full feasibility study should be carried out. The rapid scoping model developed will be applicable to any site that generates large amounts of waste heat. Results show that heat pumps are an economically viable solution for this application, allowing for reduced cost and CO₂ emissions.

Keywords: environment, heat recovery, mining engineering, sustainability

Procedia PDF Downloads 103
8271 Practical Guide To Design Dynamic Block-Type Shallow Foundation Supporting Vibrating Machine

Authors: Dodi Ikhsanshaleh

Abstract:

When subjected to dynamic load, foundation oscillates in the way that depends on the soil behaviour, the geometry and inertia of the foundation and the dynamic exctation. The practical guideline to analysis block-type foundation excitated by dynamic load from vibrating machine is presented. The analysis use Lumped Mass Parameter Method to express dynamic properties such as stiffness and damping of soil. The numerical examples are performed on design block-type foundation supporting gas turbine compressor which is important equipment package in gas processing plant

Keywords: block foundation, dynamic load, lumped mass parameter

Procedia PDF Downloads 480
8270 Performance Analysis of a Shell and Tube Heat Exchanger in the Organic Rankine Cycle Power Plant

Authors: Yogi Sirodz Gaos, Irvan Wiradinata

Abstract:

In the 500 kW Organic Rankine Cycle (ORC) power plant in Indonesia, an AFT (according to the Tubular Exchanger Manufacturers Association – TEMA) type shell and tube heat exchanger device is used as a pre-heating system for the ORC’s hot water circulation system. The pre-heating source is a waste heat recovery of the brine water, which is tapped from a geothermal power plant. The brine water itself has 5 MWₜₕ capacities, with average temperature of 170ᵒC, and 7 barg working pressure. The aim of this research is to examine the performance of the heat exchanger in the ORC system in a 500 kW ORC power plant. The data for this research were collected during the commissioning on the middle of December 2016. During the commissioning, the inlet temperature and working pressure of the brine water to the shell and tube type heat exchanger was 149ᵒC, and 4.4 barg respectively. Furthermore, the ΔT for the hot water circulation of the ORC system to the heat exchanger was 27ᵒC, with the inlet temperature of 140ᵒC. The pressure in the hot circulation system was dropped slightly from 7.4ᵒC to 7.1ᵒC. The flow rate of the hot water circulation was 80.5 m³/h. The presentation and discussion of a case study on the performance of the heat exchanger on the 500 kW ORC system is presented as follows: (1) the heat exchange duty is 2,572 kW; (2) log mean temperature of the heat exchanger is 13.2ᵒC; (3) the actual overall thermal conductivity is 1,020.6 W/m².K (4) the required overall thermal conductivity is 316.76 W/m².K; and (5) the over design for this heat exchange performance is 222.2%. An analysis of the heat exchanger detailed engineering design (DED) is briefly discussed. To sum up, this research concludes that the shell and tube heat exchangers technology demonstrated a good performance as pre-heating system for the ORC’s hot water circulation system. Further research need to be conducted to examine the performance of heat exchanger system on the ORC’s hot water circulation system.

Keywords: shell and tube, heat exchanger, organic Rankine cycle, performance, commissioning

Procedia PDF Downloads 140
8269 Use of Industrial Wastes for Production of Low-Cost Building Material

Authors: Frank Aneke, Elizabeth Theron

Abstract:

Demand for building materials in the last decade due to growing population, has caused scarcity of low-cost housing in South Africa. The investigation thoroughly examined dolomitic waste (DW), silica fume (SF) and River sand (RS) effects on the geotechnical behaviour of fly ash bricks. Bricks samples were prepared at different ratios as follows: I. FA1 contained FA70% + RS30%, II. FA2 contained FA60% + DW10%+RS30%, III. FA3 has a mix proportion of FA50% + DW20%+RS30%, IV. FA4 has a mix ratio FA40% + DW30%+RS30%, V. FA5 contained FA20% + DW40% + SF10%+RS30% by mass percentage of the FA material. However, utilization of this wastes in production of bricks, does not only produce a valuable commercial product that is cost effective, but also reduces a major waste disposal problem from the surrounding environment.

Keywords: bricks, dolomite, fly ash, industrial wastes

Procedia PDF Downloads 221
8268 The Use of Building Energy Simulation Software in Case Studies: A Literature Review

Authors: Arman Ameen, Mathias Cehlin

Abstract:

The use of Building Energy Simulation (BES) software has increased in the last two decades, parallel to the development of increased computing power and easy to use software applications. This type of software is primarily used to simulate the energy use and the indoor environment for a building. The rapid development of these types of software has raised their level of user-friendliness, better parameter input options and the increased possibility of analysis, both for a single building component or an entire building. This, in turn, has led to many researchers utilizing BES software in their research in various degrees. The aim of this paper is to carry out a literature review concerning the use of the BES software IDA Indoor Climate and Energy (IDA ICE) in the scientific community. The focus of this paper will be specifically the use of the software for whole building energy simulation, number and types of articles and publications dates, the area of application, types of parameters used, the location of the studied building, type of building, type of analysis and solution methodology. Another aspect that is examined, which is of great interest, is the method of validations regarding the simulation results. The results show that there is an upgoing trend in the use of IDA ICE and that researchers use the software in their research in various degrees depending on case and aim of their research. The satisfactory level of validation of the simulations carried out in these articles varies depending on the type of article and type of analysis.

Keywords: building simulation, IDA ICE, literature review, validation

Procedia PDF Downloads 128
8267 Effect of Saffron Extract and Aerobic Exercises on Troponin T and Heart-Type Fatty Acid Binding Protein in Men with Type 2 Diabetes

Authors: Ahmad Abdi, M. Golzadeh Gangeraj, Alireza Barari, S. Shirali, S. Amini

Abstract:

Aims: Diabetes is one of the common metabolic diseases in the world that has the dire adverse effects such as nephropathy, retinopathy and cardiovascular problems. Pharmaceutical and non-pharmaceutical strategies for control and treatment of diabetes are provided. Exercise and nutrition as non-drug strategies for the prevention and control of diabetes are considered. Exercises may increase oxidative stress and myocardium injury, thus it is necessary to take nutrition strategies to help diabetic athletes. Methods: This study was a semi-experimental research. Therefore, 24 men with type 2 diabetes were selected and randomly divided in four groups (1. control, 2. saffron extract, 3. aerobic exercises, 4. compound aerobic exercises and saffron extract). Saffron extract with 100 mg/day was used. Aerobic exercises, three days a week, for eight weeks, with 55-70% of maximum heart rate were performed. At the end, levels of Heart-type fatty acid-binding protein (HFABP) and Troponin T were measured. Data were analyzed by Paired t, One-way ANOVA and Tukey tests. Results: The serum Troponin T increased significantly in saffron extract, aerobic exercises and compound saffron extract -aerobic exercises in type 2 diabetic men(P=0.024, P =0.013, P=0.005 respectively). Saffron extract consumption (100 mg/day) and aerobic exercises did not significantly influence the serum HFABP (P =0.365, P =0.188 respectively). But serum HFABP decreased significantly in compound saffron extract -aerobic exercises group (P =0.003). Conclusions: Raised cardiac Troponin T and HFABP concentration accepted as the standard biochemical markers for the diagnosis of cardiac injury. Saffron intake may beneficially protect the myocardium from injuries. Compound saffron extract -aerobic exercises can decrease levels of Troponin T and HFABP in men with type 2 diabetes.

Keywords: Saffron, aerobic exercises, type 2 diabetes, HFABP, troponin T

Procedia PDF Downloads 264
8266 Managing the Effects of Wet Coal on Generation in Thermal Power Station: A Case Study

Authors: Ravindra Gohane, S. V. Deshmukh

Abstract:

The coal acts as a fuel on a very large scale. Coal forms the basis of any thermal power plant. Different types of coal are available for utilization. The moisture content, volatile nature and ash content determines the type of the coal. Out of these moisture plays a very important part as it is present naturally within the coal and is added while handling the coal and is termed as wet coal. The problems of wet coal are many and more particularly during rainy season such as generation loss, jamming of crusher, reduction in calorific value, transportation of coal etc. Efforts are made to resolve the problems arising out of wet coal worldwide. This paper highlights the issue of resolving the problem due to wet coal with the help of a case study involving installation of V-type wiper on the conveyer belt.

Keywords: coal handling plant, wet coal, v-type, generation

Procedia PDF Downloads 348
8265 Eggshell Waste Bioprocessing for Sustainable Acid Phosphatase Production and Minimizing Environmental Hazards

Authors: Soad Abubakr Abdelgalil, Gaber Attia Abo-Zaid, Mohamed Mohamed Yousri Kaddah

Abstract:

Background: The Environmental Protection Agency has listed eggshell waste as the 15th most significant food industry pollution hazard. The utilization of eggshell waste as a source of renewable energy has been a hot topic in recent years. Therefore, finding a sustainable solution for the recycling and valorization of eggshell waste by investigating its potential to produce acid phosphatase (ACP) and organic acids by the newly-discovered B. sonorensis was the target of the current investigation. Results: The most potent ACP-producing B. sonorensis strain ACP2 was identified as a local bacterial strain obtained from the effluent of paper and pulp industries on basis of molecular and morphological characterization. The use of consecutive statistical experimental approaches of Plackett-Burman Design (PBD), and Orthogonal Central Composite Design (OCCD), followed by pH-uncontrolled cultivation conditions in a 7 L bench-top bioreactor, revealed an innovative medium formulation that substantially improved ACP production, reaching 216 U L⁻¹ with ACP yield coefficient Yp/x of 18.2 and a specific growth rate (µ) of 0.1 h⁻¹. The metals Ag+, Sn+, and Cr+ were the most efficiently released from eggshells during the solubilization process by B. sonorensis. The uncontrolled pH culture condition is the most suited and favored setting for improving the ACP and organic acids production simultaneously. Quantitative and qualitative analyses of produced organic acids were carried out using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Lactic acid, citric acid, and hydroxybenzoic acid isomer were the most common organic acids produced throughout the cultivation process. The findings of thermogravimetric analysis (TGA), differential scan calorimeter (DSC), scanning electron microscope (SEM), energy-dispersive spectroscopy (EDS), Fourier-Transform Infrared Spectroscopy (FTIR), and X-Ray Diffraction (XRD) analysis emphasize the significant influence of organic acids and ACP activity on the solubilization of eggshells particles. Conclusions: This study emphasized robust microbial engineering approaches for the large-scale production of a newly discovered acid phosphatase accompanied by organic acids production from B. sonorensis. The biovalorization of the eggshell waste and the production of cost-effective ACP and organic acids were integrated into the current study, and this was done through the implementation of a unique and innovative medium formulation design for eggshell waste management, as well as scaling up ACP production on a bench-top scale.

Keywords: chicken eggshells waste, bioremediation, statistical experimental design, batch fermentation

Procedia PDF Downloads 368
8264 Comparative Study of Urban Structure between an Island-Type and a General-Type City

Authors: Tomoya Oshiro, Hiroko Ono

Abstract:

Japan's aging population is increasing due to the decrease in birthrate. It causes various problems like the decrease in the gross domestic product of the country. The reason is why the local government of Japan has been on the way to a sustainable city recently. Then it is essential to get control of an urban structure to make the compact city successful. There are many kinds of paper about the compact city; however, the paper about a compact city of the island-type city is less. The purpose of this study is to clarify difference of urban structure between an island-type and a general city type. The method which has conducted in this research has two steps. First of all, by using evaluation indexes in the handbook, we evaluated the urban structures among each same -population-class cities from 50,000 to 100,000 people. Next, to clear the difference about the urban structure and feature between island-type and general-type cities compare the radar chart which is composed with each evaluation indexes of urban structure. Moreover, in order to clarify the relationship between evaluation indexes and the place of residence by using GIS software to show up population density on the map. As a result of this research, the management of local government and the local economy in evaluation indexes are indicated to be negative point in comparison of island-type cities with general cities. However, evaluation indexes of safety/security and low-carbon/energy are proved to be positive point. The research to find the difference features of the island-type of urban structure proves that the management of local government or the local economy is negative point in these island-type cities. In addition, the public transportation coverage in Miyako Island, Sado Island, and Amakusa Island show low value compare with other islands and average value. Relationship between evaluation indexes of an urban structure and the place of residence prove that the place of residence is related to public transportation coverage. If the place of residence is spread out, the public transportation coverage will be decreased. The results of this research reveal that the finances in island-type cities are negative point compare to general cities. This problem is caused by declining population. In addition, the place of residence is related to the public transportation coverage. Even though, it needs a much money to increase the public transportation coverage. It is possibly to cause other problems furthermore the aspect of finance is influenced by that as well. The conclusion in this research suggests that it is important for creating the compact city in island-type cities that we first need to address solving the problems about the management of local government and the local economy.

Keywords: sustainable city, comparative analysis, geographic information system, urban structure

Procedia PDF Downloads 145
8263 Comparative Analysis of Pit Composting and Vermicomposting in a Tropical Environment

Authors: E. Ewemoje Oluseyi, T. A. Ewemoje, A. A. Adedeji

Abstract:

Biodegradable solid waste disposal and management has been a major problem in Nigeria and indiscriminate dumping of this waste either into watercourses or drains has led to environmental hazards affecting public health. The study investigated the nutrients level of pit composting and vermicomposting. Wooden bins 60 cm × 30 cm × 30 cm3 in size were constructed and bedding materials (sawdust, egg shell, paper and grasses) and red worms (Eisenia fetida) introduced to facilitate the free movement and protection of the worms against harsh weather. A pit of 100 cm × 100 cm × 100 cm3 was dug and worms were introduced into the pit, which was turned every two weeks. Food waste was fed to the red worms in the bin and pit, respectively. The composts were harvested after 100 days and analysed. The analyses gave: nitrogen has average value 0.87 % and 1.29 %; phosphorus 0.66 % and 1.78 %; potassium 4.35 % and 6.27 % for the pit and vermicomposting, respectively. Higher nutrient status of vermicomposting over pit composting may be attributed to the secretions in the intestinal tracts of worms which are more readily available for plant growth. However, iron and aluminium were more in the pit compost than the vermin compost and this may be attributed to the iron and aluminium already present in the soil before the composting took place. Other nutrients in ppm concentrations were aluminium 4,999.50 and 3,989.33; iron 2,131.83 and 633.40 for the pit and vermicomposting, respectively. These nutrients are only needed by plants in small quantities. Hence, vermicomposting has the higher concentration of essential nutrients necessary for healthy plant growth.

Keywords: food wastes, pit composting, plant nutrient status, tropical environment, vermicomposting

Procedia PDF Downloads 325
8262 A Proof of the Fact that a Finite Morphism is Proper

Authors: Ying Yi Wu

Abstract:

In this paper, we present a proof of the fact that a finite morphism is proper. We show that a finite morphism is universally closed and of finite type, which are the conditions for properness. Our proof is based on the theory of schemes and involves the use of the projection formula and the base change theorem. We first show that a finite morphism is of finite type and then proceed to show that it is universally closed. We use the fact that a finite morphism is also an affine morphism, which allows us to use the theory of coherent sheaves and their modules. We then show that the map induced by a finite morphism is flat and that the module it induces is of finite type. We use these facts to show that a finite morphism is universally closed. Our proof is constructive, and we provide details for each step of the argument.

Keywords: finite, morphism, schemes, projection.

Procedia PDF Downloads 99
8261 Extraction of Essential Oil and Pectin from Lime and Waste Technology Development

Authors: Wilaisri Limphapayom

Abstract:

Lime is one of the economically important produced in Thailand. The objective of this research is to increase utilization in food and cosmetic. Extraction of essential oil and pectin from lime (Citrus aurantifolia (Christm & Panz ) Swing) have been studied. Extraction of essential oil has been made by using hydro-distillation .The essential oil ranged from 1.72-2.20%. The chemical composition of essential oil composed of alpha-pinene , beta-pinene , D-limonene , comphene , a-phellandrene , g-terpinene , a-ocimene , O-cymene , 2-carene , Linalool , trans-ocimenol , Geraniol , Citral , Isogeraniol , Verbinol , and others when analyzed by using GC-MS method. Pectin extraction from lime waste , boiled water after essential oil extraction. Pectin extraction were found 40.11-65.81 g /100g of lime peel. The best extraction condition was found to be higher in yield by using ethanol extraction. The potential of this study had satisfactory results to improve lime processing system for value-added . The present study was also focused on Lime powder production as source of vitamin C or ascorbic acid and the potential of lime waste as a source of essential oil and pectin. Lime powder produced from Spray Dryer . Lime juice with 2 different level of maltodextrins DE 10 , 30 and 50% w/w was sprayed at 150 degrees celsius inlet air temperature and at 90-degree celsius outlet temperature. Lime powder with 50% maltodextrin gave the most desirable quality product. This product has vitamin C contents of 25 mg/100g (w/w).

Keywords: extraction, pectin, essential oil, lime

Procedia PDF Downloads 292
8260 Utilising Reuse and Recycling Strategies for Costume Design in Kuwait Theatre

Authors: Ali Dashti

Abstract:

Recycling materials within the realms of theatrical costume design and production is important. When a Kuwaiti play finishes its run, costumes are thrown away and new ones are designed when necessary. This practice indicates a lack of awareness of recycling strategies. This is a serious matter; tons of textile materials are being wasted rather than recycled. The current process of producing costumes for Kuwait theatre productions involves the conception and sketching of costumes, the purchase of new fabrics, and the employment of tailors for production. Since tailoring is outsourced, there is a shortage of designers who can make costumes autonomously. The current process does not incorporate any methods for recycling costumes. This combined with high levels of textile waste, results in significant ecological issues that demand immediate attention. However, data collected for this research paper, from a series of semi-structured interviews, have indicated that a lack of recycling facilities and increased textile waste do not present an area of concern within the Kuwaiti theatrical costume industry. This paper will review the findings of this research project and investigate the production processes used by costume designers in Kuwait. It will indicate how their behaviors, coupled with their lack of knowledge with using recycling strategies to create costumes, had increased textile waste and negatively affected Kuwait theatre costume design industry.

Keywords: costume, recycle, reuse, theatre

Procedia PDF Downloads 158
8259 LogiSun: An Interactive Robot to Reduce Pollution on the Beach

Authors: Ruth Manzanares, Victor Honores, Hugo Zapata, Javier Cansaya, Deivid Yavar, Junior Meza

Abstract:

LogiSum is a robot focused on education like a solution to the ecological crisis. This robot allows reducing the pollution on the beaches by stimulating environmental awareness of not contaminating through the collection of waste. Through the use of the methodology of design thinking, it is intended to reinforce values in adults and with a greater focus on children, so as not to contaminate the beaches. The goal is to encourage the use of the container of the robot LogiSum to put the garbage, with visual interaction and simulation of dialogue with the function of the robot. The results obtained of the testings of the interaction of children with the robot showed an encouraging behavior. With the robot, children left the waste in the right places and not bury it in the sand or in the floor.

Keywords: interaction human-robot, pollution reduction, social robot, robot container, beach pollution

Procedia PDF Downloads 257
8258 Partial Replacement for Cement and Coarse Aggregate in Concrete by Using Egg Shell Powder and Coconut Shell

Authors: A. K. Jain, M. C. Paliwal

Abstract:

The production of cement leads to the emission of large amounts of carbon-dioxide gas into the atmosphere which is a major contributor for the greenhouse effect and the global warming; hence it is mandatory either to quest for another material or partly replace it with some other material. According to the practical demonstrations and reports, Egg Shell Powder (ESP) can be used as a binding material for different field applications as it contains some of the properties of lime. It can partially replace the cement and further; it can be used in different proportion for enhancing the performance of cement. It can be used as a first-class alternative, for material reuse and waste recycling practices. Eggshell is calcium rich and analogous to limestone in chemical composition. Therefore, use of eggshell waste for partial replacement of cement in concrete is feasible. Different studies reveal that plasticity index of the soil can be improved by adding eggshell wastes in all the clay soil and it has wider application in construction projects including earth canals and earthen dams. The scarcity of aggregates is also increasing nowadays. Utilization of industrial waste or secondary materials is increasing in different construction applications. Coconut shell was successfully used in the construction industry for partial or full replacement for coarse aggregates. The use of coconut shell gives advantage of using waste material to partially replace the coarse aggregate. Studies carried on coconut shell indicate that it can partially replace the aggregate. It has good strength and modulus properties along with the advantage of high lignin content. It absorbs relatively low moisture due to its low cellulose content. In the paper, study carried out on eggshell powder and coconut shell will be discussed. Optimum proportions of these materials to be used for partial replacement of cement and aggregate will also be discussed.

Keywords: greenhouse, egg shell powder, binding material, aggregates, coconut shell, coarse aggregates

Procedia PDF Downloads 244
8257 Electrodeposition of NiO Films from Organic Solvent-Based Electrolytic Solutions for Solar Cell Application

Authors: Thierry Pauporté, Sana Koussi, Fabrice Odobel

Abstract:

The preparation of semiconductor oxide layers and structures by soft techniques is an important field of research. Higher performances are expected from the optimizing of the oxide films and then use of new methods of preparation for a better control of their chemical, morphological, electrical and optical properties. We present the preparation of NiO by electrodeposition from pure polar aprotic medium and mixtures with water. The effect of the solvent, of the electrochemical deposition parameters and post-deposition annealing treatment on the structural, morphological and optical properties of the films is investigated. We remarkably show that the solvent is inserted in the deposited layer and act as a blowing agent, giving rise to mesoporous films after elimination by thermal annealing. These layers of p-type oxide have been successfully used, after sensitization by a dye, in p-type dye-sensitized solar cells. The effects of the solvent on the layer properties and the application of these layers in p-type dye-sensitized solar cells are described.

Keywords: NiO, layer, p-type sensitized solar cells, electrodeposition

Procedia PDF Downloads 291
8256 Use of Waste Tire Rubber Alkali-Activated-Based Mortars in Repair of Concrete Structures

Authors: Mohammad Ebrahim Kianifar, Ehsan Ahmadi

Abstract:

Reinforced concrete structures experience local defects such as cracks over their lifetime under various environmental loadings. Consequently, they are repaired by mortars to avoid detrimental effects such as corrosion of reinforcement, which in long-term may lead to strength loss of a member or collapse of structures. However, repaired structures may need multiple repairs due to changes in load distribution, and thus, lack of compatibility between mortar and substrate concrete. On the other hand, waste tire rubber alkali-activated (WTRAA)-based materials have very high potential to be used as repair mortars because of their ductility and flexibility, which may delay the failure of repair mortar and thus, provide sufficient compatibility. Hence, this work presents a pioneering study on suitability of WTRAA-based materials as mortars for the repair of concrete structures through an experimental program. To this end, WTRAA mortars with 15% aggregate replacement, alkali-activated (AA) mortars, and ordinary mortars are made to repair a number of concrete beams. The WTRAA mortars are composed of slag as base material, sodium hydroxide as an alkaline activator, and different gradations of waste tire rubber (fine and coarse gradations). Flexural tests are conducted on the concrete beams repaired by the ordinary, AA, and WTRAA mortars. It is found that, despite having lower compressive strength and modulus of elasticity, the WTRAA and AA mortars increase the flexural strength of the repaired beams, give compatible failures, and provide sufficient mortar-concrete interface bondings. The ordinary mortars, however, show incompatible failure modes. This study demonstrates the promising application of WTRAA mortars in the practical repairs of concrete structures.

Keywords: alkali-activated mortars, concrete repair, mortar compatibility, flexural strength, waste tire rubber

Procedia PDF Downloads 142