Search results for: voluntary carbon offset
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3550

Search results for: voluntary carbon offset

2560 Amine Hardeners with Carbon Nanotubes Dispersing Ability for Epoxy Coating Systems

Authors: Szymon Kugler, Krzysztof Kowalczyk, Tadeusz Spychaj

Abstract:

An addition of carbon nanotubes (CNT) can simultaneously improve many features of epoxy coatings, i.e. electrical, mechanical, functional and thermal. Unfortunately, this nanofiller negatively affects visual properties of the coatings, such as transparency and gloss. The main reason for the low visual performance of CNT-modified epoxy coatings is the lack of compatibility between CNT and popular amine curing agents, although epoxy resins based on bisphenol A are indisputable good CNT dispersants. This is a serious obstacle in utilization of the coatings in advanced applications, demanding both high transparency and electrical conductivity. The aim of performed investigations was to find amine curing agents exhibiting affinity for CNT, and ensuring good performance of epoxy coatings with them. Commercially available CNT was dispersed in epoxy resin, as well as in different aliphatic, cycloaliphatic and aromatic amines, using one of two dispergation methods: ultrasonic or mechanical. The CNT dispersions were subsequently used in the preparation of epoxy coating compositions and coatings on a transparent substrate. It was found that amine derivative of bio-based cardanol, as well as modified o-tolylbiguanide exhibit significant CNT, dispersing properties, resulting in improved transparent/electroconductive performance of epoxy coatings. In one of prepared coating systems just 0.025 wt.% (250 ppm) of CNT was enough to obtain coatings with semi conductive properties, 83% of transparency as well as perfect chemical resistance to methyl-ethyl ketone and improved thermal stability. Additionally, a theory of the influence of amine chemical structure on CNT dispersing properties was proposed.

Keywords: bio-based cardanol, carbon nanotubes, epoxy coatings, tolylbiguanide

Procedia PDF Downloads 211
2559 Cenomanian-Turonian Oceanic Anoxic Event, Palynofacies and Optical Kerogen Analysis in Abu Gharadig Basin, Egypt

Authors: Mohamed Ibrahim, Suzan Kholeif

Abstract:

The Cenomanian-Turonian boundary was a ‘greenhouse’ period. The atmosphere at that time was characterized by high CO₂; in addition, there was the widespread deposition of organic-rich sediments anomalously rich in organic carbon. The sediments, palynological, total organic carbon (TOC), stable carbon and oxygen isotopes (δ¹³C, δ¹⁸O, organic) of the Cenomanian-Turonian Bahariya and basal Abu Roash formations at the southern Tethys margin were studied in two deep wells (AG5 and AG-13), Abu Gharadig Oil Field, North Western Desert, Egypt. Some of the marine (dinoflagellate cysts), as well as the terrestrial palynoflora (spores and pollen grains), reveal extinction and origination patterns that are known elsewhere, although other species may be survived across the Cenomanian-Turonian boundary. This implies control of global changes on the palynoflora, i.e., impact of Oceanic Anoxic Event OAE2 (Bonarelli Event), rather than changes in the local environmental conditions. The basal part of the Abu Roach Formation ('G' and 'F' members, late Cenomanian) shows a positive δ ¹³C excursion of the organic fraction. The TOC is generally high between 2.20 and 3.04 % in the basal Abu Roash Formation: shale of 'G' and carbonate of 'F' members, which indicates that these two members are the main Cretaceous source rocks in the Abu Gharadig Basin and have a type I-II kerogen composition. They are distinguished by an abundance of amorphous organic matter AOM and Chlorococcalean algae, mainly Pediastrum and Scenedesmus, along with subordinate dinoflagellate cysts.

Keywords: oceanic anoxic event, cenomanian-turonian, palynofacies, western desert, Egypt

Procedia PDF Downloads 132
2558 Assessment of Community Perceptions of Mangrove Ecosystem Services and Their Link to SDGs in Vanga, Kenya

Authors: Samson Obiene, Khamati Shilabukha, Geoffrey Muga, James Kairo

Abstract:

Mangroves play a vital role in the achievement of multiple goals of global sustainable development (SDG’s), particularly SDG SDG 14 (life under water). Their management, however, is faced with several shortcomings arising from inadequate knowledge on the perceptions of their ecosystem services, hence a need to map mangrove goods and services within SDGs while interrogating the disaggregated perceptions. This study therefore aimed at exploring the parities and disparities in attitudes and perceptions of mangrove ecosystem services among community members of Vanga and the link of the ecosystem services (ESs) to specific SDG targets. The study was based at the Kenya-Tanzania transboundary area in Vanga; where a carbon-offset project on mangroves is being up scaled. Mixed methods approach employing surveys, focus group discussions (FGDs) and reviews of secondary data were used in the study. A two stage cluster samplings was used to select the study population and the sample size. FGDs were conducted purposively selecting active participants in mangrove related activities with distinct socio-demographic characteristics. Sampled respondents comprised of males and females of different occupations and age groups. Secondary data review was used to select specific SDG targets against which mangrove ecosystem services identified through a value chain analysis were mapped. In Vanga, 20 ecosystem services were identified and categorized under supporting, cultural and aesthetic, provisioning and regulating services. According to the findings of this study, 63.9% (95% ci 56.6-69.3) perceived of the ESs as very important for economic development, 10.3% (95% ci 0-21.3) viewed them as important for environmental and ecological development while 25.8% (95% ci 2.2-32.8) were not sure of any role they play in development. In the social-economic disaggregation, ecosystem service values were found to vary with the level of interaction with the ecosystem which depended on gender and other social-economic classes within the study area. The youths, low income earners, women and those with low education levels were also identified as the primary beneficiaries of mangrove ecosystem services. The study also found that of the 17 SDGs, mangroves have a potential of influencing the achievement 12, including, SDGs 1, 2, 3, 4, 6, 8 10, 12, 13, 14, 15 and 17 either directly or indirectly. Generally therefore, the local community is aware of the critical importance mangroves for enhanced livelihood and ecological services but challenges in sustainability still occur as a result the diverse values and of the services and the contradicting interests of the different actors around the ecosystem. It is therefore important to consider parities in values and perception to avoid a ‘tragedy of the commons’ while striving to enhance sustainability of the Mangrove ecosystem.

Keywords: sustainable development, community values, socio-demographics, Vanga, mangrove ecosystem services

Procedia PDF Downloads 151
2557 Facile, Cost Effective and Green Synthesis of Graphene in Alkaline Aqueous Solution

Authors: Illyas Isa, Siti Nur Akmar Mohd Yazid, Norhayati Hashim

Abstract:

We report a simple, green and cost effective synthesis of graphene via chemical reduction of graphene oxide in alkaline aqueous solution. Extensive characterizations have been studied to confirm the formation of graphene in sodium carbonate solution. Cyclic voltammetry was used to study the electrochemical properties of the prepared graphene-modified glassy carbon electrode using potassium ferricyanide as a redox probe. Based on the result, with the addition of graphene to the glassy carbon electrode the current flow increases and the peak also broadens as compared to graphite and graphene oxide. This method is fast, cost effective, and green as nontoxic solvents are used which will not result in contamination of the products. Thus, this method can serve for the preparation of graphene which can be effectively used in sensors, electronic devices and supercapacitors.

Keywords: chemical reduction, electrochemical, graphene, green synthesis

Procedia PDF Downloads 337
2556 Microstructure of AlCrFeNiMn High Entropy Alloy and Its Corrosion Behavior in Supercritical CO₂ Environment

Authors: Yang Wanhuan, Zou Jichun, LI Shen, Zhong Weihua, Yang Wen

Abstract:

High entropy alloys (HEAs) have aroused significant concern in high-temperature supercritical carbon dioxide (S-CO2) environments due to their unique microstructures and outstanding properties. However, the anti-corrosion ability and mechanism of these HEAs in the S-CO₂ remain unclear. Herein, we developed a new AlCrFeNiMn (AM)-HEA with double phases by vacuum arc melting furnace. The corrosion behavior of AM-HEA in the S-CO₂ at 500 ℃ under 25 MPa for 400 hours was deciphered by multiple characterization techniques. The results show that the discrepancy of corrosion between the matrix and boundary was accounted for by their microstructure and components. The role and mechanism of Mn contents for their oxide scales in boundary zones were emphasized. More importantly, the nano-precipitated second phase and numerous boundaries for the outstanding anti-corrosion ability of the matrix were proposed.

Keywords: high entropy alloy, microstructure, corrosion, supercritical carbon oxide, AlCrFeNiMn

Procedia PDF Downloads 146
2555 Theoretical Evaluation of Oxirane and Aziridine Opening Regioselectivity, Solvent Effect, and Strength of Nucleophilic and Nucleofugal Groups for the Preparation of Benzimidazole-Fused 1,4-Benzoxazepine

Authors: M. Abdoul-Hakim, a. Zeroual, H. Garmes

Abstract:

In a route for the preparation of 1,4-benzoxazepine fused to benzimidazole, the use of 2-(2-methoxyphenyl)-benzimidazole or styrene-derived N-tosylaziridine does not give the desired products. On this basis, we theoretically studied this reaction using DFT at the B3LYP/6-31+G(d) level. The analysis of the results shows a preferential nucleophilic attack of 2-(2-fluorophenyl)-benzimidazole on the terminal carbon atom of the Alkylepoxides and on the substituted carbon of N-tosylaziridine. Taking into account the solvent effect (DMF) makes the reactions spontaneous for the opening of epoxides and N-tosylaziridine and disfavors the intramolecularnucleophilic aromatic substitution reaction step of the products of the attack of 2-(2-methoxyphenyl)benzimidazole on an epoxide and those of the opening of N-tosylaziridine, which is consistent with the experiment.

Keywords: alkylepoxides, 4-benzoxazepine fused to benzimidazole imine, benzonitrile N-oxide, DFT, intramolecular nucleophilic aromatic substitution, N-tosyl aziridine

Procedia PDF Downloads 142
2554 Mechanical and Tribological Performances of (Nb: H-D: a-C) Thin Films for Biomedical Applications

Authors: Sara Khamseh, Kambiz Javanruee, Hamid Khorsand

Abstract:

Plenty of metallic materials are used for biomedical applications like hip joints and screws. Besides, it is reported that metal platforms such as stainless steel show significant deterioration because of wear and friction. The surface of metal substrates has been coated with a variety of multicomponent coatings to prevail these problems. The carbon-based multicomponent coatings such as metal-added amorphous carbon and diamond coatings are crucially important because of their remarkable tribological performance and chemical stability. In the current study, H-D contained Nb: (a-C) multicomponent coatings (H-D: hexagonal diamond, a-C: amorphous carbon) coated on A 304 steel substrates using an unbalanced magnetron (UBM) sputtering system. The effects of Nb and H-D content and ID/IG ratio on microstructure, mechanical and tribological characteristics of (Nb: H-D: a-C) composite coatings were investigated. The results of Raman spectroscopy represented that a-C phase with a Graphite-like structure (GLC with high value of sp2 carbon bonding) is formed, and its domain size increased with increasing Nb content of the coatings. Moreover, the Nb played a catalyst for the formation of the H-D phase. The nanoindentation hardness value of the coatings ranged between ~17 to ~35 GPa and (Nb: H-D: a-C) composite coatings with more H-D content represented higher hardness and plasticity index. It seems that the existence of extra-hard H-D particles straightly increased hardness. The tribological performance of the coatings was evaluated using the pin-on-disc method under the wet environment of SBF (Simulated Body Fluid). The COF value of the (Nb: H-D: a-C) coatings decreased with an increasing ID/IG ratio. The lower coefficient of friction is a result of the lamelliform array of graphitic domains. Also, the wear rate of the coatings decreased with increasing H-D content of the coatings. Based on the literature, a-C coatings with high hardness and H3/E2 ratio represent lower wear rates and better tribological performance. According to the nanoindentation analysis, hardness and H3/E2 ratio of (Nb: H-D: a-C) multicomponent coatings increased with increasing H-D content, which in turn decreased the wear rate of the coatings. The mechanical and tribological potency of (Nb: H-D: a-C) composite coatings on A 304 steel substrates paved the way for the development of innovative advanced coatings to ameliorate the performance of A 304 steel for biomedical applications.

Keywords: COF, mechanical properties, (Nb: H-D: a-C) coatings, wear rate

Procedia PDF Downloads 103
2553 Ammonia Adsorption Properties of Composite Ammonia Carriers Obtained by Supporting Metal Chloride on Porous Materials

Authors: Cheng Shen, LaiHong Shen

Abstract:

Ammonia is an important carrier of hydrogen energy, with the characteristics of high hydrogen content density and no carbon dioxide emission. Ammonia synthesis by the Haber process is the main method for industrial ammonia synthesis, but the conversion rate of ammonia per pass is only about 12%, while the conversion rate of biomass synthesis ammonia is as high as 56%. Therefore, safe and efficient ammonia capture for ammonia synthesis from biomass is an important way to alleviate the energy crisis and solve the energy problem. Metal chloride has a chemical adsorption effect on ammonia, and can be desorbed at high temperature to obtain high-concentration ammonia after combining with ammonia, which has a good development prospect in ammonia capture and separation technology. In this paper, the ammonia adsorption properties of CuCl₂ were measured, and the composite adsorbents were prepared by using silicon and multi-walled carbon nanotubes respectively to support CuCl₂, and the ammonia adsorption properties of the composite adsorbents were studied. The study found that the ammonia adsorption capacity of the three adsorbents decreased with the increase in temperature, so metal chlorides were more suitable for the low-temperature adsorption of ammonia. Silicon and multi-walled carbon nanotubes have an enhanced effect on the ammonia adsorption of CuCl₂. The reason is that the porous material itself has a physical adsorption effect on ammonia, and silicon can play the role of skeleton support in cupric chloride particles, which enhances the pore structure of the adsorbent, thereby alleviating sintering.

Keywords: ammonia, adsorption properties, metal chloride, silicon, MWCNTs

Procedia PDF Downloads 112
2552 Reactivities of Turkish Lignites during Oxygen Enriched Combustion

Authors: Ozlem Uguz, Ali Demirci, Hanzade Haykiri-Acma, Serdar Yaman

Abstract:

Lignitic coal holds its position as Turkey’s most important indigenous energy source to generate energy in thermal power plants. Hence, efficient and environmental-friendly use of lignite in electricity generation is of great importance. Thus, clean coal technologies have been planned to mitigate emissions and provide more efficient burning in power plants. In this context, oxygen enriched combustion (oxy-combustion) is regarded as one of the clean coal technologies, which based on burning with oxygen concentrations higher than that in air. As it is known that the most of the Turkish coals are low rank with high mineral matter content, unburnt carbon trapped in ash is, unfortunately, high, and it leads significant losses in the overall efficiencies of the thermal plants. Besides, the necessity of burning huge amounts of these low calorific value lignites to get the desired amount of energy also results in the formation of large amounts of ash that is rich in unburnt carbon. Oxygen enriched combustion technology enables to increase the burning efficiency through the complete burning of almost all of the carbon content of the fuel. This also contributes to the protection of air quality and emission levels drop reasonably. The aim of this study is to investigate the unburnt carbon content and the burning reactivities of several different lignite samples under oxygen enriched conditions. For this reason, the combined effects of temperature and oxygen/nitrogen ratios in the burning atmosphere were investigated and interpreted. To do this, Turkish lignite samples from Adıyaman-Gölbaşı and Kütahya-Tunçbilek regions were characterized first by proximate and ultimate analyses and the burning profiles were derived using DTA (Differential Thermal Analysis) curves. Then, these lignites were subjected to slow burning process in a horizontal tube furnace at different temperatures (200ºC, 400ºC, 600ºC for Adıyaman-Gölbaşı lignite and 200ºC, 450ºC, 800ºC for Kütahya-Tunçbilek lignite) under atmospheres having O₂+N₂ proportions of 21%O₂+79%N₂, 30%O₂+70%N₂, 40%O₂+60%N₂, and 50%O₂+50%N₂. These burning temperatures were specified based on the burning profiles derived from the DTA curves. The residues obtained from these burning tests were also analyzed by proximate and ultimate analyses to detect the unburnt carbon content along with the unused energy potential. Reactivity of these lignites was calculated using several methodologies. Burning yield under air condition (21%O₂+79%N₂) was used a benchmark value to compare the effectiveness of oxygen enriched conditions. It was concluded that oxygen enriched combustion method enhanced the combustion efficiency and lowered the unburnt carbon content of ash. Combustion of low-rank coals under oxygen enriched conditions was found to be a promising way to improve the efficiency of the lignite-firing energy systems. However, cost-benefit analysis should be considered for a better justification of this method since the use of more oxygen brings an unignorable additional cost.

Keywords: coal, energy, oxygen enriched combustion, reactivity

Procedia PDF Downloads 274
2551 Simulation and Controller Tunning in a Photo-Bioreactor Applying by Taguchi Method

Authors: Hosein Ghahremani, MohammadReza Khoshchehre, Pejman Hakemi

Abstract:

This study involves numerical simulations of a vertical plate-type photo-bioreactor to investigate the performance of Microalgae Spirulina and Control and optimization of parameters for the digital controller by Taguchi method that MATLAB software and Qualitek-4 has been made. Since the addition of parameters such as temperature, dissolved carbon dioxide, biomass, and ... Some new physical parameters such as light intensity and physiological conditions like photosynthetic efficiency and light inhibitors are involved in biological processes, control is facing many challenges. Not only facilitate the commercial production photo-bioreactor Microalgae as feed for aquaculture and food supplements are efficient systems but also as a possible platform for the production of active molecules such as antibiotics or innovative anti-tumor agents, carbon dioxide removal and removal of heavy metals from wastewater is used. Digital controller is designed for controlling the light bioreactor until Microalgae growth rate and carbon dioxide concentration inside the bioreactor is investigated. The optimal values of the controller parameters of the S/N and ANOVA analysis software Qualitek-4 obtained With Reaction curve, Cohen-Con and Ziegler-Nichols method were compared. The sum of the squared error obtained for each of the control methods mentioned, the Taguchi method as the best method for controlling the light intensity was selected photo-bioreactor. This method compared to control methods listed the higher stability and a shorter interval to be answered.

Keywords: photo-bioreactor, control and optimization, Light intensity, Taguchi method

Procedia PDF Downloads 393
2550 Increasing Value Added and Competitive Advantage by Technology Adoption

Authors: Fidiana Suwitho

Abstract:

Research and community service is one of important lecturer assignment in Indonesia. This article was made to meet those needs by assisting home industry entrepreneurs of various chips in Banyuwangi. Community service in this scheme are intended to increase the revenue of craftsmen of chips by improving value added of chips through food engineering technology. Ibu Anisa has produced various kinds of chips that are breadfruit chips, banana chips, yam chips, and cassava chips. In business development, Ibu Anisa facing various problems both in terms of production and management aspects. The process of production and management and marketing are still conventional so that increased demand cannot be offset by production capacity. A researcher team of STIESIA has assist partners in the processing stage, from manually to the technologically. This activity has a positive impact to However, this process has not been reached on sustainable marketing aspect, which is where the partners are still difficult to reach a wider market because of limited access.

Keywords: food engineering technology, value added of chips, community service

Procedia PDF Downloads 274
2549 A Study on Marble Based Geopolymer Mortar / Concrete

Authors: Wei-Hao Lee, Ta-Wui Cheng, Yung-Chin Ding, Tai-Tien Wang

Abstract:

The purpose of this study is trying to use marble wastes as the raw material to fabricate geopolymer green mortar / concrete. Experiment results show that using marble to make geopolymer mortar and concrete, the compressive strength after 28 days curing can reach 35 MPa and 25 MPa, respectively. The characteristics of marble-based geopolymer green mortar and concrete will keep testing for a long term in order to understand the effect parameters. The study is based on resource recovery and recycling. Its basic characteristics are low consumption, low carbon dioxide emission and high efficiency that meet the international tendency 'Circular Economy.' By comparing with Portland cement mortar and concrete, production 1 ton of marble-based geopolymer mortar and concrete, they can be saved around 50.3% and 49.6% carbon dioxide emission, respectively. Production 1 m3 of marble-based geopolymer concrete costs about 62 USD that cheaper than that of traditional Portland concrete. It is proved that the marble-based geopolymer concrete has great potential for further engineering development.

Keywords: marble, geopolymer, geopolymer concrete, CO₂ emission

Procedia PDF Downloads 440
2548 Deposition of Size Segregated Particulate Matter in Human Respiratory Tract and Their Health Effects in Glass City Residents

Authors: Kalpana Rajouriya, Ajay Taneja

Abstract:

Particulates are ubiquitous in the air environment and cause serious threats to human beings, such as lung cancer, COPD, and Asthma. Particulates mainly arise from industrial effluent, vehicular emission, and other anthropogenic activities. In the glass industrial city Firozabad, real-time monitoring of size segregated Particulate Matter (PM) and black carbon was done by Aerosol Black Carbon Detector (ABCD) and GRIMM portable aerosol Spectrometer at two different sites in which one site is urban and another is rural. The average mass concentration of size segregated PM during the study period (March & April 2022) was recorded as PM10 (223.73 g/m⁻³), PM5.0 (44.955 g/m⁻³), PM2.5 (59.275 g/m⁻³), PM1.0 (33.02 g/m⁻³), PM0.5 (2.05 g/m⁻³), and PM0.25 (2.99 g/m⁻³). The highest concentration of BC was found in Urban due to the emissions from diesel engines and wood burning, while NO2 was highest at the rural sites. The average concentrations of PM10 (6.08 and 2.73 times) PM2.5 exceeded the NAAQS and WHO guidelines. Particulate Matter deposition and health risk assessment was done by MPPD and USEPA model to know about the particulate matter toxicity in industrial residents. Health risk assessment results showed that Children are most likely to be affected by exposure of PM10 and PM2.5 and may have various non-carcinogenic and carcinogenic diseases. Deposition results inferred that the sensitive exposed population, especially 9 years old children, have high PM deposition as well as visualization and may be at risk of developing health-related problems from exposure to size-segregated PM. They will be discussed during presentation.

Keywords: particulate matter, black carbon, NO2, deposition of PM, health risk

Procedia PDF Downloads 66
2547 Optimization of Process Parameters Affecting Biogas Production from Organic Fraction of Municipal Solid Waste via Anaerobic Digestion

Authors: B. Sajeena Beevi, P. P. Jose, G. Madhu

Abstract:

The aim of this study was to obtain the optimal conditions for biogas production from anaerobic digestion of organic fraction of municipal solid waste (OFMSW) using response surface methodology (RSM). The parameters studied were initial pH, substrate concentration and total organic carbon (TOC). The experimental results showed that the linear model terms of initial pH and substrate concentration and the quadratic model terms of the substrate concentration and TOC had significant individual effect (p < 0.05) on biogas yield. However, there was no interactive effect between these variables (p > 0.05). The highest level of biogas produced was 53.4 L/Kg VS at optimum pH, substrate concentration and total organic carbon of 6.5, 99gTS/L, and 20.32 g/L respectively.

Keywords: anaerobic digestion, biogas, optimization, response surface methodology

Procedia PDF Downloads 433
2546 Co-Hydrothermal Gasification of Microalgae Biomass and Solid Biofuel for Biogas Production

Authors: Daniel Fozer

Abstract:

Limiting global warming to 1.5°C to the pre-industrial levels urges the application of efficient and sustainable carbon dioxide removal (CDR) technologies. Microalgae based biorefineries offer scalable solutions for the biofixation of CO2, where the produced biomass can be transformed into value added products by applying thermochemical processes. In this paper we report on the utilization of hydrochar as a blending component in hydrothermal gasification (HTG) process. The effects of blending ratio and hydrochar quality were investigated on the biogas yield and and composition. It is found that co-gasifying the hydrochar and the algae biomass can increase significantly the total gas yield and influence the biogas (H2, CH4, CO2, CO, C2H4, C2H6) composition. It is determined that the carbon conversion ratio, hydrogen and methane selectivity can be increased by influencing the fuel ratio of hydrochar via hydrothermal carbonization. In conclusion, it is found that increasing the synergy between hydrothermal technologies result in elevated conversion efficiency.

Keywords: biogas, CDR, Co-HTG, hydrochar, microalgae

Procedia PDF Downloads 149
2545 Study on the Effect Cabbage (Brassica oleracea) and Ginger (Zingiber officinale) Extracts on Rat Liver Injuries Induced by Carbon tetrachloride (CCl4)

Authors: Asmaa F. Hamouda, Randa M Shrourou

Abstract:

Cabbage (Brassica oleracea) and Ginger (Zingiber officinale) constitute apportion of regular human diet. The effect of Cabbage(CE) and Ginger extracts(GE) separately on liver nitric oxide (NO), malondialdehyde (MDA), as well as serum aspartate aminotransferase (AST), alanine aminotransferase (ALT), total bilirubin, total cholesterol(TC), triglyceride(T.G), high density lipoprotein(HDL cholesterol), low density lipoprotein (LDL cholesterol), thyroid-stimulating hormone (TSH), Triiodothyronine (T3), Thyroxine (T4) in rats treated and untreated with carbon tetrachloride (CCl4) was studied. The levels of NO, MDA, as well as serum AST, ALT, total bilirubin, TC, T.G, LDLand TSH showed an elevation and decline in HDL, T3, and T4 in rats treated with CCl4 as compared to control. Treatment of rats with GE pre, during, and post CCl4 administration improved NO, MDA, as well as serum AST, ALT, total bilirubin, TC, T.G, HDL, LDL, TSH, T3, T4 as compared to CCl4, indicates that GE improve thyroid function and reduced oxidative stress as well as injuries induced by CCl4. Treatment of rats with CE pre, during, and post CCl4 administration did not improved in the thyroid hormones and lipid profile levels as compared to CCl4. These findings suggest that ginger treatment exerts a protective effect on metabolic disorders by decreasing oxidative stress.

Keywords: liver injuries, carbon tetrachloride (CCl4), cabbage (Brassica oleracea), ginger (Zingiber officinale), thyroid function

Procedia PDF Downloads 265
2544 Enhancement of Lignin Bio-Degradation through Homogenization with Dimethyl Sulfoxide

Authors: Ivana Brzonova, Asina Fnu, Alena Kubatova, Evguenii Kozliak, Yun Ji

Abstract:

Bio-decomposition of lignin by Basidiomycetes in the presence of dimethyl sulfoxide (DMSO) was investigated. The addition of 3-5 vol% DMSO to lignin aqueous media significantly increased the lignin solubility based on UV absorbance. After being dissolved in DMSO, the thermal evolution profile also changed significantly, yielding more high-MW organic carbon at the expense of recalcitrant elemental carbon. Medical fungi C. versicolor, G. lucidum and P. pulmonarius, were observed to grow on the lignin in media containing up to 15 vol. % DMSO. Further detailed product characterization by chromatographic methods corroborated these observations, as more low-MW phenolic products were observed with DMSO as a co-solvent. These results may be explained by the high solubility of lignin in DMSO; thus, the addition of DMSO to the medium increases the lignin availability for microorganisms. Some of these low-MW phenolic products host a big potential to be used in medicine. No significant inhibition of enzymatic activity (laccase, MnP, LiP) was observed by the addition of up to 3 vol% DMSO.

Keywords: basidiomycetes, bio-degradation, dimethyl sulfoxide, lignin

Procedia PDF Downloads 413
2543 Methane versus Carbon Dioxide Mitigation Prospects

Authors: Alexander J. Severinsky, Allen L. Sessoms

Abstract:

Atmospheric carbon dioxide (CO₂) has dominated the discussion about the causes of climate change. This is a reflection of the time horizon that has become the norm adopted by the IPCC as the planning horizon. Recently, it has become clear that a 100-year time horizon is much too long, and yet almost all mitigation efforts, including those in the near-term horizon of 30 years, are geared toward it. In this paper, we show that, for a 30-year time horizon, methane (CH₄) is the greenhouse gas whose radiative forcing exceeds that of CO₂. In our analysis, we used radiative forcing of greenhouse gases in the atmosphere since they directly affect the temperature rise on Earth. In 2019, the radiative forcing of methane was ~2.5 W/m² and that of carbon dioxide ~2.1 W/m². Under a business-as-usual (BAU) scenario until 2050, such forcing would be ~2.8 W/m² and ~3.1 W/m², respectively. There is a substantial spread in the data for anthropogenic and natural methane emissions as well as CH₄ leakages from production to consumption. We estimated the minimum and maximum effects of the reduction of these leakages. Such action may reduce the annual radiative forcing of all CH₄ emissions by between ~15% and ~30%. This translates into a reduction of the RF by 2050 from ~2.8 W/m² to ~2.5 W/m² in the case of the minimum effect and to ~2.15 W/m² in the case of the maximum. Under the BAU, we found that the RF of CO₂ would increase from ~2.1 W/m² nowadays to ~3.1 W/m² by 2050. We assumed a reduction of 50% of anthropogenic emission linearly over the next 30 years. That would reduce radiative forcing from ~3.1 W/m² to ~2.9 W/m². In the case of ‘net zero,’ the other 50% of reduction of only anthropogenic emissions would be limited to either from sources of emissions or directly from the atmosphere. The total reduction would be from ~3.1 to ~2.7, or ~0.4 W/m². To achieve the same radiative forcing as in the scenario of maximum reduction of methane leakages of ~2.15 W/m², then an additional reduction of radiative forcing of CO₂ would be approximately 2.7 -2.15=0.55 W/m². This is a much larger value than in expectations from ‘net zero’. In total, one needs to remove from the atmosphere ~660 GT to match the maximum reduction of current methane leakages and ~270 GT to achieve ‘net zero.’ This amounts to over 900 GT in total.

Keywords: methane leakages, methane radiative forcing, methane mitigation, methane net zero

Procedia PDF Downloads 146
2542 Electrochemical Behavior of Cocaine on Carbon Paste Electrode Chemically Modified with Cu(II) Trans 3-MeO Salcn Complex

Authors: Alex Soares Castro, Matheus Manoel Teles de Menezes, Larissa Silva de Azevedo, Ana Carolina Caleffi Patelli, Osmair Vital de Oliveira, Aline Thais Bruni, Marcelo Firmino de Oliveira

Abstract:

Considering the problem of the seizure of illicit drugs, as well as the development of electrochemical sensors using chemically modified electrodes, this work shows the study of the electrochemical activity of cocaine in carbon paste electrode chemically modified with Cu (II) trans 3-MeO salcn complex. In this context, cyclic voltammetry was performed on 0.1 mol.L⁻¹ KCl supporting electrolyte at a scan speed of 100 mV s⁻¹, using an electrochemical cell composed of three electrodes: Ag /AgCl electrode (filled KCl 3 mol.L⁻¹) from Metrohm® (reference electrode); a platinum spiral electrode, as an auxiliary electrode, and a carbon paste electrode chemically modified with Cu (II) trans 3-MeO complex (as working electrode). Two forms of cocaine were analyzed: cocaine hydrochloride (pH 3) and cocaine free base form (pH 8). The PM7 computational method predicted that the hydrochloride form is more stable than the free base form of cocaine, so with cyclic voltammetry, we found electrochemical signal only for cocaine in the form of hydrochloride, with an anodic peak at 1.10 V, with a linearity range between 2 and 20 μmol L⁻¹ had LD and LQ of 2.39 and 7.26x10-5 mol L⁻¹, respectively. The study also proved that cocaine is adsorbed on the surface of the working electrode, where through an irreversible process, where only anode peaks are observed, we have the oxidation of cocaine, which occurs in the hydrophilic region due to the loss of two electrons. The mechanism of this reaction was confirmed by the ab-inito quantum method.

Keywords: ab-initio computational method, analytical method, cocaine, Schiff base complex, voltammetry

Procedia PDF Downloads 194
2541 Statistical Optimization and Production of Rhamnolipid by P. aeruginosa PAO1 Using Prickly Pear Peel as a Carbon Source

Authors: Mostafa M. Abo Elsoud, Heba I. Elkhouly, Nagwa M. Sidkey

Abstract:

Production of rhamnolipids by Pseudomonas aeruginosa has attracted a growing interest during the last few decades due to its high productivity compared with other microorganisms. In the current work, rhamnolipids production by P. aeruginosa PAO1 was statistically modeled using Taguchi orthogonal array, numerically optimized and validated. Prickly Pear Peel (Opuntia ficus-indica) has been used as a carbon source for production of rhamnolipid. Finally, the optimum conditions for rhamnolipid production were applied in 5L working volume bioreactors at different aerations, agitation and controlled pH for maximum rhamnolipid production. In addition, kinetic studies of rhamnolipids production have been reported. At the end of the batch bioreactor optimization process, rhamnolipids production by P. aeruginosa PAO1 has reached the worldwide levels and can be applied for its industrial production.

Keywords: rhamnolipids, pseudomonas aeruginosa, statistical optimization, tagushi, opuntia ficus-indica

Procedia PDF Downloads 179
2540 Design Parameters Optimization of a Gas Turbine with Exhaust Gas Recirculation: An Energy and Exergy Approach

Authors: Joe Hachem, Marianne Cuif-Sjostrand, Thierry Schuhler, Dominique Orhon, Assaad Zoughaib

Abstract:

The exhaust gas recirculation, EGR, implementation on gas turbines is increasingly gaining the attention of many researchers. This emerging technology presents many advantages, such as lowering the NOx emissions and facilitating post-combustion carbon capture as the carbon dioxide concentration in the cycle increases. As interesting as this technology may seem, the gas turbine, or its thermodynamic equivalent, the Brayton cycle, shows an intrinsic efficiency decrease with increasing EGR rate. In this paper, a thermodynamic model is presented to show the cycle efficiency decrease with EGR, alternative values of design parameters of both the pressure ratio (PR) and the turbine inlet temperature (TIT) are then proposed to optimize the cycle efficiency with different EGR rates. Results show that depending on the given EGR rate, both the design PR & TIT should be increased to compensate for the deficit in efficiency.

Keywords: gas turbines, exhaust gas recirculation, design parameters optimization, thermodynamic approach

Procedia PDF Downloads 145
2539 Analyzing Brand Related Information Disclosure and Brand Value: Further Empirical Evidence

Authors: Yves Alain Ach, Sandra Rmadi Said

Abstract:

An extensive review of literature in relation to brands has shown that little research has focused on the nature and determinants of the information disclosed by companies with respect to the brands they own and use. The objective of this paper is to address this issue. More specifically, the aim is to characterize the nature of the information disclosed by companies in terms of estimating the value of brands and to identify the determinants of that information according to the company’s characteristics most frequently tested by previous studies on the disclosure of information on intangible capital, by studying the practices of a sample of 37 French companies. Our findings suggest that companies prefer to communicate accounting, economic and strategic information in relation to their brands instead of providing financial information. The analysis of the determinants of the information disclosed on brands leads to the conclusion that the groups which operate internationally and have chosen a category 1 auditing firm to communicate more information to investors in their annual report. Our study points out that the sector is not an explanatory variable for voluntary brand disclosure, unlike previous studies on intangible capital. Our study is distinguished by the study of an element that has been little studied in the financial literature, namely the determinants of brand-related information. With regard to the effect of size on brand-related information disclosure, our research does not confirm this link. Many authors point out that large companies tend to publish more voluntary information in order to respond to stakeholder pressure. Our study also establishes that the relationship between brand information supply and performance is insignificant. This relationship is already controversial by previous research, and it shows that higher profitability motivates managers to provide more information, as this strengthens investor confidence and may increase managers' compensation. Our main contribution focuses on the nature of the inherent characteristics of the companies that disclose the most information about brands. Our results show the absence of a link between size and industry on the one hand and the supply of brand information on the other, contrary to previous research. Our analysis highlights three types of information disclosed about brands: accounting, economics and strategy. We, therefore, question the reasons that may lead companies to voluntarily communicate mainly accounting, economic and strategic information in relation to our study from one year to the next and not to communicate detailed information that would allow them to reconstitute the financial value of their brands. Our results can be useful for companies and investors. Our results highlight, to our surprise, the lack of financial information that would allow investors to understand a better valuation of brands. We believe that additional information is needed to improve the quality of accounting and financial information related to brands. The additional information provided in the special report that we recommend could be called a "report on intangible assets”.

Keywords: brand related information, brand value, information disclosure, determinants

Procedia PDF Downloads 84
2538 Determination of Fatigue Limit in Post Impacted Carbon Fiber Reinforced Epoxy Polymer (CFRP) Specimens Using Self Heating Methodology

Authors: Deepika Sudevan, Patrick Rozycki, Laurent Gornet

Abstract:

This paper presents the experimental identification of the fatigue limit for pristine and impacted Carbon Fiber Reinforced Epoxy polymer (CFRP) woven composites based on the relatively new self-heating methodology for composites. CFRP composites of [0/90]8 and quasi isotropic configurations prepared using hand-layup technique are subjected to low energy impacts (20 J energy) simulating a barely visible impact damage (BVID). Runway debris strike, tool drop or hailstone impact can cause a BVID on an aircraft fuselage made of carbon composites and hence understanding the post-impact fatigue response of CFRP laminates is of immense importance to the aerospace community. The BVID zone on the specimens is characterized using X-ray Tomography technique. Both pristine and impacted specimens are subjected to several blocks of constant amplitude (CA) fatigue loading keeping R-ratio a constant but with increments in the mean loading stress after each block. The number of loading cycles in each block is a subjective parameter and it varies for pristine and impacted CFRP specimens. To monitor the temperature evolution during fatigue loading, thermocouples are pasted on the CFRP specimens at specific locations. The fatigue limit is determined by two strategies, first is by considering the stabilized temperature in every block and second is by considering the change in the temperature slope per block. The results show that both strategies can be adopted to determine the fatigue limit in both pristine and impacted CFRP composites.

Keywords: CFRP, fatigue limit, low energy impact, self-heating, WRM

Procedia PDF Downloads 232
2537 Improved Active Constellation Extension for the PAPR Reduction of FBMC-OQAM Signals

Authors: Mounira Laabidi, Rafik Zayani, Ridha Bouallegue, Daniel Roviras

Abstract:

The Filter Bank multicarrier with Offset Quadrature Amplitude Modulation (FBMC-OQAM) has been introduced to overcome the poor spectral characteristics and the waste in both bandwidth and energy caused by the use of the cyclic prefix. However, the FBMC-OQAM signals suffer from the high Peak to Average Power Ratio (PAPR) problem. Due to the overlapping structure of the FBMC-OQAM signals, directly applying the PAPR reduction schemes conceived for the OFDM one turns out to be ineffective. In this paper, we address the problem of PAPR reduction for FBMC-OQAM systems by suggesting a new scheme based on an improved version of Active Constellation Extension scheme (ACE) of OFDM. The proposed scheme, named Rolling Window ACE, takes into consideration the overlapping naturally emanating from the FBMC-OQAM signals.

Keywords: ACE, FBMC, OQAM, OFDM, PAPR, rolling-window

Procedia PDF Downloads 546
2536 Mitigating Nitrous Oxide Production from Nitritation/Denitritation: Treatment of Centrate from Pig Manure Co-Digestion as a Model

Authors: Lai Peng, Cristina Pintucci, Dries Seuntjens, José Carvajal-Arroyo, Siegfried Vlaeminck

Abstract:

Economic incentives drive the implementation of short-cut nitrogen removal processes such as nitritation/denitritation (Nit/DNit) to manage nitrogen in waste streams devoid of biodegradable organic carbon. However, as any biological nitrogen removal process, the potent greenhouse gas nitrous oxide (N2O) could be emitted from Nit/DNit. Challenges remain in understanding the fundamental mechanisms and development of engineered mitigation strategies for N2O production. To provide answers, this work focuses on manure as a model, the biggest wasted nitrogen mass flow through our economies. A sequencing batch reactor (SBR; 4.5 L) was used treating the centrate (centrifuge supernatant; 2.0 ± 0.11 g N/L of ammonium) from an anaerobic digester processing mainly pig manure, supplemented with a co-substrate. Glycerin was used as external carbon source, a by-product of vegetable oil. Out-selection of nitrite oxidizing bacteria (NOB) was targeted using a combination of low dissolved oxygen (DO) levels (down to 0.5 mg O2/L), high temperature (35ºC) and relatively high free ammonia (FA) (initially 10 mg NH3-N/L). After reaching steady state, the process was able to remove 100% of ammonium with minimum nitrite and nitrate in the effluent, at a reasonably high nitrogen loading rate (0.4 g N/L/d). Substantial N2O emissions (over 15% of the nitrogen loading) were observed at the baseline operational condition, which were even increased under nitrite accumulation and a low organic carbon to nitrogen ratio. Yet, higher DO (~2.2 mg O2/L) lowered aerobic N2O emissions and weakened the dependency of N2O on nitrite concentration, suggesting a shift of N2O production pathway at elevated DO levels. Limiting the greenhouse gas emissions (environmental protection) from such a system could be substantially minimized by increasing the external carbon dosage (a cost factor), but also through the implementation of an intermittent aeration and feeding strategy. Promising steps forward have been presented in this abstract, yet at the conference the insights of ongoing experiments will also be shared.

Keywords: mitigation, nitrous oxide, nitritation/denitritation, pig manure

Procedia PDF Downloads 249
2535 Characterization of High Phosphorus Gray Iron for the Stub- Anode Connection in the Aluminium Reduction Cells

Authors: Mohamed M. Ali, Adel Nofal, Amr Kandil, Mahmoud Agour

Abstract:

High phosphorus gray iron (HPGI) is used to connect the steel stub of an anode rod to a prebaked anode carbon block in the aluminium reduction cells. In this paper, a complete characterization for HPGI was done, includes studying the chemical composition of the HPGI collar, anodic voltage drop, collar temperature over 30 days anode life cycle, microstructure and mechanical properties. During anode life cycle, the carbon content in HPGI was lowed from 3.73 to 3.38%, and different changes in the anodic voltage drop at the stub- collar-anode connection were recorded. The collar temperature increases over the anode life cycle and reaches to 850°C in four weeks after anode changing. Significant changes in the HPGI microstructure were observed after 3 and 30 days from the anode changing. To simulate the actual operating conditions in the steel stub/collar/carbon anode connection, a bench-scale experimental set-up was designed and used for electrical resistance and resistivity respectively. The results showed the current HPGI properties needed to modify or producing new alloys with excellent electrical and mechanical properties. The steel stub and HPGI thermal expansion were measured and studied. Considerable permanent expansion was observed for the HPGI collar after the completion of the heating-cooling cycle.

Keywords: high phosphorus gray iron (HPGI), aluminium reduction cells, anodic voltage drop, microstructure, mechanical and electrical properties

Procedia PDF Downloads 456
2534 Optimizing Fermented Paper Production Using Spyrogira sp. Interpolating with Banana Pulp

Authors: Hadiatullah, T. S. D. Desak Ketut, A. A. Ayu, A. N. Isna, D. P. Ririn

Abstract:

Spirogyra sp. is genus of microalgae which has a high carbohydrate content that used as a best medium for bacterial fermentation to produce cellulose. This study objective to determine the effect of pulp banana in the fermented paper production process using Spirogyra sp. and characterizing of the paper product. The method includes the production of bacterial cellulose, assay of the effect fermented paper interpolating with banana pulp using Spirogyra sp., and the assay of paper characteristics include gram-mage paper, water assay absorption, thickness, power assay of tensile resistance, assay of tear resistance, density, and organoleptic assay. Experiments were carried out with completely randomized design with a variation of the concentration of sewage treatment in the fermented paper production interpolating banana pulp using Spirogyra sp. Each parameter data to be analyzed by Anova variance that continued by real difference test with an error rate of 5% using the SPSS. Nata production results indicate that different carbon sources (glucose and sugar) did not show any significant differences from cellulose parameters assay. Significantly different results only indicated for the control treatment. Although not significantly different from the addition of a carbon source, sugar showed higher potency to produce high cellulose. Based on characteristic assay of the fermented paper showed that the paper gram-mage indicated that the control treatment without interpolation of a carbon source and a banana pulp have better result than banana pulp interpolation. Results of control gram-mage is 260 gsm that show optimized by cardboard. While on paper gram-mage produced with the banana pulp interpolation is about 120-200 gsm that show optimized by magazine paper and art paper. Based on the density, weight, water absorption assays, and organoleptic assay of paper showing the highest results in the treatment of pulp banana interpolation with sugar source as carbon is 14.28 g/m2, 0.02 g and 0.041 g/cm2.minutes. The conclusion found that paper with nata material interpolating with sugar and banana pulp has the potential formulation to produce super-quality paper.

Keywords: cellulose, fermentation, grammage, paper, Spirogyra sp.

Procedia PDF Downloads 333
2533 CO2 Sequestration for Enhanced Coal Bed Methane Recovery: A New Approach

Authors: Abhinav Sirvaiya, Karan Gupta, Pankaj Garg

Abstract:

The global warming due to the increased atmospheric carbon dioxide (CO2) concentration is the most prominent issue of environment that the world is facing today. To solve this problem at global level, sequestration of CO2 in deep and unmineable coal seams has come out as one of the attractive alternatives to reduce concentration in atmosphere. This sequestration technology is not only going to help in storage of CO2 beneath the sub-surface but is also playing a major role in enhancing the coal bed methane recovery (ECBM) by displacing the adsorbed methane. This paper provides the answers for the need of CO2 injection in coal seams and how recovery is enhanced. We have discussed the recent development in enhancing the coal bed methane recovery and the economic scenario of the same. The effect of injection on the coal reservoir has also been discussed. Coal is a good absorber of CO2. That is why the sequestration of CO2 is emerged out to be a great approach, not only for storage purpose but also for enhancing coal bed methane recovery.

Keywords: global warming, carbon dioxide (CO2), CO2 sequestration, enhance coal bed methane (ECBM)

Procedia PDF Downloads 505
2532 A Comparative Study of Single- and Multi-Walled Carbon Nanotube Incorporation to Indium Tin Oxide Electrodes for Solar Cells

Authors: G. Gokceli, O. Eksik, E. Ozkan Zayim, N. Karatepe

Abstract:

Alternative electrode materials for optoelectronic devices have been widely investigated in recent years. Since indium tin oxide (ITO) is the most preferred transparent conductive electrode, producing ITO films by simple and cost-effective solution-based techniques with enhanced optical and electrical properties has great importance. In this study, single- and multi-walled carbon nanotubes (SWCNT and MWCNT) incorporated into the ITO structure to increase electrical conductivity, mechanical strength, and chemical stability. Carbon nanotubes (CNTs) were firstly functionalized by acid treatment (HNO3:H2SO4), and the thermal resistance of CNTs after functionalization was determined by thermogravimetric analysis (TGA). Thin films were then prepared by spin coating technique and characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), four-point probe measurement system and UV-Vis spectrophotometer. The effects of process parameters were compared for ITO, MWCNT-ITO, and SWCNT-ITO films. Two factors including CNT concentration and annealing temperature were considered. The UV-Vis measurements demonstrated that the transmittance of ITO films was 83.58% at 550 nm, which was decreased depending on the concentration of CNT dopant. On the other hand, both CNT dopants provided an enhancement in the crystalline structure and electrical conductivity. Due to compatible diameter and better dispersibility of SWCNTs in the ITO solution, the best result in terms of electrical conductivity was obtained by SWCNT-ITO films with the 0.1 g/L SWCNT dopant concentration and heat-treatment at 550 °C for 1 hour.

Keywords: CNT incorporation, ITO electrode, spin coating, thin film

Procedia PDF Downloads 115
2531 Investigation of Polypropylene Composite Films With Carbon Nanotubes and the Role of β Nucleating Agents for the Improvement of Their Water Vapor Permeability

Authors: Glykeria A. Visvini, George N. Mathioudakis, Amaia Soto Beobide, Aris E. Giannakas, George A. Voyiatzis

Abstract:

Polymeric nanocomposites have generated considerable interest in both academic research and industry because their properties can be tailored by adjusting the type & concentration of nano-inclusions, resulting in complementary and adaptable characteristics. The exceptional and/or unique properties of the nanocomposites, including the high mechanical strength and stiffness, the ease of processing, and their lightweight nature, are attributed to the high surface area, the electrical and/or thermal conductivity of the nano-fillers, which make them appealing materials for a wide range of engineering applications. Polymeric «breathable» membranes enabling water vapor permeability (WVP) can be designed either by using micro/nano-fillers with the ability to interrupt the continuity of the polymer phase generating micro/nano-porous structures or/and by creating micro/nano-pores into the composite material by uniaxial/biaxial stretching. Among the nanofillers, carbon nanotubes (CNTs) exhibit particular high WVP and for this reason, they have already been proposed for gas separation membranes. In a similar context, they could prove to be promising alternative/complementary filler nano-materials, for the development of "breathable" products. Polypropylene (PP) is a commonly utilized thermoplastic polymer matrix in the development of composite films, due to its easy processability and low price, combined with its good chemical & physical properties. PP is known to present several crystalline phases (α, β and γ), depending on the applied treatment process, which have a significant impact on its final properties, particularly in terms of WVP. Specifically, the development of the β-phase in PP in combination with stretching is anticipated to modify the crystalline behavior and extend the microporosity of the polymer matrix exhibiting enhanced WVP. The primary objective of this study is to develop breathable nano-carbon based (functionalized MWCNTs) PP composite membranes, potentially also avoiding the stretching process. This proposed alternative is expected to have a better performance/cost ratio over current stretched PP/CaCO3 composite benchmark membranes. The focus is to investigate the impact of both β-nucleator(s) and nano-carbon fillers on water vapor transmission rate properties of relevant PP nanocomposites.

Keywords: carbon nanotubes, nanocomposites, nucleating agents, polypropylene, water vapor permeability

Procedia PDF Downloads 73