Search results for: porous silica
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1171

Search results for: porous silica

181 Synthesis and Properties of Chitosan-Graft-Polyacrylamide/Gelatin Superabsorbent Composites for Wastewater Purification

Authors: Hafida Ferfera-Harrar, Nacera Aiouaz, Nassima Dairi

Abstract:

Super absorbents polymers received much attention and are used in many fields because of their superior characters to traditional absorbents, e.g., sponge and cotton. So, it is very important but challenging to prepare highly and fast-swelling super absorbents. A reliable, efficient and low-cost technique for removing heavy metal ions from waste water is the adsorption using bio-adsorbents obtained from biological materials, such as polysaccharides-based hydrogels super absorbents. In this study, novel multi-functional super absorbent composites type semi-interpenetrating polymer networks (Semi-IPNs) were prepared via graft polymerization of acrylamide onto chitosan backbone in presence of gelatin, CTS-g-PAAm/Ge, using potassium persulfate and N,N’ -methylenebisacrylamide as initiator and cross linker, respectively. These hydrogels were also partially hydrolyzed to achieve superabsorbents with ampholytic properties and uppermost swelling capacity. The formation of the grafted network was evidenced by Fourier Transform Infrared Spectroscopy (ATR-FTIR) and thermo gravimetric Analysis (TGA). The porous structures were observed by Scanning Electron Microscope (SEM). From TGA analysis, it was concluded that the incorporation of the Ge in the CTS-g-PAAm network has marginally affected its thermal stability. The effect of gelatin content on the swelling capacities of these super absorbent composites was examined in various media (distilled water, saline and pH-solutions).The water absorbency was enhanced by adding Ge in the network, where the optimum value was reached at 2 wt. % of Ge. Their hydrolysis has not only greatly optimized their absorption capacity but also improved the swelling kinetic. These materials have also showed reswelling ability. We believe that these super-absorbing materials would be very effective for the adsorption of harmful metal ions from waste water.

Keywords: chitosan, gelatin, superabsorbent, water absorbency

Procedia PDF Downloads 463
180 Hg Anomalies and Soil Temperature Distribution to Delineate Upflow and Outflow Zone in Bittuang Geothermal Prospect Area, south Sulawesi, Indonesia

Authors: Adhitya Mangala, Yobel

Abstract:

Bittuang geothermal prospect area located at Tana Toraja district, South Sulawesi. The geothermal system of the area related to Karua Volcano eruption product. This area has surface manifestation such as fumarole, hot springs, sinter silica and mineral alteration. Those prove that there are hydrothermal activities in the subsurface. However, the project and development of the area have not implemented yet. One of the important elements in geothermal exploration is to determine upflow and outflow zone. This information very useful to identify the target for geothermal wells and development which it is a risky task. The methods used in this research were Mercury (Hg) anomalies in soil, soil and manifestation temperature distribution and fault fracture density from 93 km² research area. Hg anomalies performed to determine the distribution of hydrothermal alteration. Soil and manifestation temperature distribution were conducted to estimate heat distribution. Fault fracture density (FFD) useful to determine fracture intensity and trend from surface observation. Those deliver Hg anomaly map, soil and manifestation temperature map that combined overlayed to fault fracture density map and geological map. Then, the conceptual model made from north – south, and east – west cross section to delineate upflow and outflow zone in this area. The result shows that upflow zone located in northern – northeastern of the research area with the increase of elevation and decrease of Hg anomalies and soil temperature. The outflow zone located in southern - southeastern of the research area which characterized by chloride, chloride - bicarbonate geothermal fluid type, higher soil temperature, and Hg anomalies. The range of soil temperature distribution from 16 – 19 °C in upflow and 19 – 26.5 °C in the outflow. The range of Hg from 0 – 200 ppb in upflow and 200 – 520 ppb in the outflow. Structural control of the area show northwest – southeast trend. The boundary between upflow and outflow zone in 1550 – 1650 m elevation. This research delivers the conceptual model with innovative methods that useful to identify a target for geothermal wells, project, and development in Bittuang geothermal prospect area.

Keywords: Bittuang geothermal prospect area, Hg anomalies, soil temperature, upflow and outflow zone

Procedia PDF Downloads 325
179 Improving the Corrosion Resistance of Magnesium by Application of TiO₂-MgO Coatings

Authors: Eric Noe Hernandez Rodriguez, Cristian Esneider Penuela Cruz

Abstract:

Magnesium is a biocompatible and biodegradable material that has gained increased interest for application in resorbable orthopedic implants. However, to date, much research is being conducted to overcome the main disadvantage: its low corrosion resistance. In this work, we report our findings on the development and application of TiO₂-MgO coatings to improve and modulate the corrosion resistance of magnesium pieces. The plasma electrolytic oxidation (PEO) technique was employed to obtain the TiO₂-MgO coatings. The effect of the experimental parameters on the modulation of the TiO₂:MgO ratio was investigated. The most critical parameters were the chemical composition of the precursor electrolytic solution and the current density. According to scanning electron microscopy (SEM) observations, the coatings were porous; however, they become more compact as the current density increases. XRD measurements showed that the coatings are formed by a composite consisting of TiO₂ and MgO oxides, whose ratio can be changed by the experimental conditions. TiO₂ had the anatase crystalline structure, while the MgO had the FCC crystalline structure. The corrosion resistance was evaluated through the corrosion current (Icorr) measured at room temperature by the polarization technique (Tafel). For doing it, Hank's solution was used in order to simulate the body fluids. Also, immersion tests were conducted. Tafel curves showed an improvement of the corrosion resistance at some coated magnesium pieces in contrast to control pieces (uncoated). Corrosion currents were lower, and the corrosion potential changed to positive values. It was observed that the experimental parameters allowed to modulate the protective capacity of the coatings by changing the TiO₂:MgO ratio. Coatings with a higher content of TiO₂ (measured by energy dispersive spectroscopy) showed higher corrosion resistance. Results showed that TiO₂-MgO coatings can be successfully applied to improve the corrosion resistance of Mg pieces in simulated body fluid; even more, the corrosion resistance can be tuned by changing the TiO₂:MgO ratio.

Keywords: biomaterials, PEO, corrosion resistance, magnesium

Procedia PDF Downloads 104
178 Effect of Wettability Alteration on Production Performance in Unconventional Tight Oil Reservoirs

Authors: Rashid S. Mohammad, Shicheng Zhang, Xinzhe Zhao

Abstract:

In tight oil reservoirs, wettability alteration has generally been considered as an effective way to remove fracturing fluid retention on the surface of the fracture and consequently improved oil production. However, there is a lack of a reliable productivity prediction model to show the relationship between the wettability and oil production in tight oil well. In this paper, a new oil productivity prediction model of immiscible oil-water flow and miscible CO₂-oil flow accounting for wettability is developed. This mathematical model is established by considering two different length scales: nonporous network and propped fractures. CO₂ flow diffuses in the nonporous network and high velocity non-Darcy flow in propped fractures are considered by taking into account the effect of wettability alteration on capillary pressure and relative permeability. A laboratory experiment is also conducted here to validate this model. Laboratory experiments have been designed to compare the water saturation profiles for different contact angle, revealing the fluid retention in rock pores that affects capillary force and relative permeability. Four kinds of brines with different concentrations are selected here to create different contact angles. In water-wet porous media, as the system becomes more oil-wet, water saturation decreases. As a result, oil relative permeability increases. On the other hand, capillary pressure which is the resistance for the oil flow increases as well. The oil production change due to wettability alteration is the result of the comprehensive changes of oil relative permeability and capillary pressure. The results indicate that wettability is a key factor for fracturing fluid retention removal and oil enhancement in tight reservoirs. By incorporating laboratory test into a mathematical model, this work shows the relationship between wettability and oil production is not a simple linear pattern but a parabolic one. Additionally, it can be used for a better understanding of optimization design of fracturing fluids.

Keywords: wettability, relative permeability, fluid retention, oil production, unconventional and tight reservoirs

Procedia PDF Downloads 236
177 Hierarchical Manganese and Nickel Selenide based Ultra-efficient Electrode Material for All-Solid-State Asymmetric Supercapacitors with Extended Energy Efficacy

Authors: Siddhant Srivastav, Soumyaranjan Mishra, Sumanta Kumar Meher

Abstract:

Researchers are attempting to develop extremely efficient electrochemical energy storage technologies as a result of the phenomenal advancement of portable electronic devices. Because of their improved electrical conductivity and narrower band gap, transition metal selenide-based nanostructures have piqued the interest of many researchers in this field. Based on this concept, we present a simple anion exchange hydrothermal synthesis method for synthesizing manganese and nickel based selenide (Mn/NiSe2) nanostructure for use in all-solid-state asymmetric supercapacitors. According to the comprehensive physicochemical characterizations, the material has lowly crystalline properties, a distinct porous microstructure, and a significant bonding contact between the metal and the selenium. The electrochemical investigations of the Mn/NiSe2 electrode material revealed supercapacitive charge discharge properties, excellent electro-kinetic reversibility, and minimal charge transfer resistance (Rct). Furthermore, the all-solid-state asymmetric supercapacitor device assembled using Mn/NiSe2 as positive electrode, nitrogen doped reduced graphene oxide (N-rGO) as negative electrode, and PVA-KOH gel as electrolyte/separator exhibit good redox behaviour, excellent charge-discharge properties with negligible voltage (IR) drop, and lower impedance characteristics. The solid state asymmetric supercapacitor device (Mn/NiSe2||N-rGO) demonstrated the power density of ultra-capacitors and the energy density of rechargeable batteries. Conclusively, the Mn/NiSe2 has been proposed as a potential outstanding electrode material for the next generation of all-solid-state asymmetric supercapacitors.

Keywords: anion exchange, asymmetric supercapacitor, supercapacitive charge-discharge, voltage drop

Procedia PDF Downloads 106
176 Thermal and Solar Performances of Adsorption Solar Refrigerating Machine

Authors: Nadia Allouache

Abstract:

Solar radiation is by far the largest and the most world’s abundant, clean and permanent energy source. The amount of solar radiation intercepted by the Earth is much higher than annual global energy use. The energy available from the sun is greater than about 5200 times the global world’s need in 2006. In recent years, many promising technologies have been developed to harness the sun's energy. These technologies help in environmental protection, economizing energy, and sustainable development, which are the major issues of the world in the 21st century. One of these important technologies is the solar cooling systems that make use of either absorption or adsorption technologies. The solar adsorption cooling systems are good alternative since they operate with environmentally benign refrigerants that are natural, free from CFCs, and therefore they have a zero ozone depleting potential (ODP). A numerical analysis of thermal and solar performances of an adsorption solar refrigerating system using different adsorbent/adsorbate pairs such as activated carbon AC35 and activated carbon BPL/Ammoniac; is undertaken in this study. The modeling of the adsorption cooling machine requires the resolution of the equation describing the energy and mass transfer in the tubular adsorber that is the most important component of the machine. The Wilson and Dubinin- Astakhov models of the solid-adsorbat equilibrium are used to calculate the adsorbed quantity. The porous medium is contained in the annular space and the adsorber is heated by solar energy. Effect of key parameters on the adsorbed quantity and on the thermal and solar performances are analysed and discussed. The performances of the system that depends on the incident global irradiance during a whole day depends on the weather conditions: the condenser temperature and the evaporator temperature. The AC35/methanol pair is the best pair comparing to the BPL/Ammoniac in terms of system performances.

Keywords: activated carbon-methanol pair, activated carbon-ammoniac pair, adsorption, performance coefficients, numerical analysis, solar cooling system

Procedia PDF Downloads 72
175 Effect of Climate Change Rate in Indonesia against the Shrinking Dimensions of Granules and Plasticity Index of Soils

Authors: Muhammad Rasyid Angkotasan

Abstract:

The soil is a dense granules and arrangement of the pores that are related to each other, so that the water can flow from one point which has higher energy to a point that has lower energy. The flow of water through the pores of the porous ground is urgently needed in water seepage estimates in ground water pumping problems, investigate for underground construction, as well as analyzing the stability of the construction of Weirs. Climate change resulted in long-term changes in the distribution of weather patterns are statistically throughout the period start time of decades to millions of years. In other words, changes in the average weather circumstances or a change in the distribution of weather events, on average, for example, the number of extreme weather events that increasingly a lot or a little. Climate change is limited to a particular regional or can occur in all regions of the Earth. Geographical location between two continents and two oceans and is located around the equator is klimatologis factor is the cause of flooding and drought in Indonesia. This caused Indonesia' geographical position is on a hemisphere with a tropical monsoon climate is very sensitive to climatic anomaly El Nino Southern Oscillation (ENSO). ENSO causes drought occurrence in sea surface temperature conditions in the Pacific Equator warms up to the middle part of the East (El Nino). Based on the analysis of the climate of the last 30 years show that there is a tendency, the formation of a new pattern of climate causes the onset of climate change. The impact of climate change on the occurrence of the agricultural sector is the bergesernya beginning of the dry season which led to the above-mentioned pattern planting due to drought. The impact of climate change (drought) which is very extreme in Indonesia affect the shrinkage dimensions grain land and reduced the value of a percentage of the soil Plasticity Index caused by climate change.

Keywords: climate change, soil shrinkage, plasticity index, shrinking dimensions

Procedia PDF Downloads 239
174 An Endophyte of Amphipterygium adstringens as Producer of Cytotoxic Compounds

Authors: Karol Rodriguez-Peña, Martha L. Macias-Rubalcava, Leticia Rocha-Zavaleta, Sergio Sanchez

Abstract:

A bioassay-guided study for anti-cancer compounds from endophytes of the Mexican medicinal plant Amphipteryygium adstringens resulted in the isolation of a streptomycete capable of producing a group of compounds with high cytotoxic activity. Microorganisms from surface sterilized samples of various sections of the plant were isolated and all the actinomycetes found were evaluated for their potential to produce compounds with cytotoxic activity against cancer cell lines MCF7 (breast cancer) and HeLa (cervical cancer) as well as the non-tumoural cell line HaCaT (keratinocyte). The most active microorganism was picked for further evaluation. The identification of the microorganism was carried out by 16S rDNA gene sequencing, finding the closest proximity to Streptomyces scabrisporus, but with the additional characteristic that the strain isolated in this study was capable of producing colorful compounds never described for this species. Crude extracts of dichloromethane and ethyl acetate showed IC50 values of 0.29 and 0.96 μg/mL for MCF7, 0.51 and 1.98 μg/mL for HeLa and 0.96 and 2.7 μg/mL for HaCaT. Scaling the fermentation to 10 L in a bioreactor generated 1 g of total crude extract, which was fractionated by silica gel open column to yield 14 fractions. Nine of the fractions showed cytotoxic activity. Fraction 4 was chosen for subsequent purification because of its high activity against cancerous cell lines, lower activity against keratinocytes. HPLC-UV-MS/ESI was used for the evaluation of this fraction, finding at least 10 different compounds with high values of m/z (≈588). Purification of the compounds was carried out by preparative thin-layer chromatography. The prevalent compound was Steffimycin B, a molecule known for its antibiotic and cytotoxic activities and also for its low solubility in aqueous solutions. Along with steffimycin B, another five compounds belonging to the steffimycin family were isolated and at this moment their structures are being elucidated, some of which display better solubility in water: an attractive property for the pharmaceutical industry. As a conclusion to this study, the isolation of endophytes resulted in the discovery of a strain capable of producing compounds with high cytotoxic activity that need to be studied for their possible utilization.

Keywords: amphipterygium adstringens, cytotoxicity, streptomyces scabrisporus, steffimycin

Procedia PDF Downloads 364
173 Micromechanical Modelling of Ductile Damage with a Cohesive-Volumetric Approach

Authors: Noe Brice Nkoumbou Kaptchouang, Pierre-Guy Vincent, Yann Monerie

Abstract:

The present work addresses the modelling and the simulation of crack initiation and propagation in ductile materials which failed by void nucleation, growth, and coalescence. One of the current research frameworks on crack propagation is the use of cohesive-volumetric approach where the crack growth is modelled as a decohesion of two surfaces in a continuum material. In this framework, the material behavior is characterized by two constitutive relations, the volumetric constitutive law relating stress and strain, and a traction-separation law across a two-dimensional surface embedded in the three-dimensional continuum. Several cohesive models have been proposed for the simulation of crack growth in brittle materials. On the other hand, the application of cohesive models in modelling crack growth in ductile material is still a relatively open field. One idea developed in the literature is to identify the traction separation for ductile material based on the behavior of a continuously-deforming unit cell failing by void growth and coalescence. Following this method, the present study proposed a semi-analytical cohesive model for ductile material based on a micromechanical approach. The strain localization band prior to ductile failure is modelled as a cohesive band, and the Gurson-Tvergaard-Needleman plasticity model (GTN) is used to model the behavior of the cohesive band and derived a corresponding traction separation law. The numerical implementation of the model is realized using the non-smooth contact method (NSCD) where cohesive models are introduced as mixed boundary conditions between each volumetric finite element. The present approach is applied to the simulation of crack growth in nuclear ferritic steel. The model provides an alternative way to simulate crack propagation using the numerical efficiency of cohesive model with a traction separation law directly derived from porous continuous model.

Keywords: ductile failure, cohesive model, GTN model, numerical simulation

Procedia PDF Downloads 149
172 Zinc Oxide Nanorods Decorated Nanofibers Based Flexible Electrodes for Capacitive Energy Storage Applications

Authors: Syed Kamran Sami, Saqib Siddiqui

Abstract:

In recent times, flexible supercapacitors retaining high electrochemical performance and steadiness along with mechanical endurance has developed as a spring of attraction due to the exponential progress and innovations in energy storage devices. To meet the rampant increasing demand of energy storage device with the small form factor, a unique, low cost and high-performance supercapacitor with considerably higher capacitance and mechanical robustness is required to recognize their real-life applications. Here in this report, synthesis route of electrode materials with low rigidity and high charge storage performance is reported using 1D-1D hybrid structure of zinc oxide (ZnO) nanorods, and conductive polymer smeared polyvinylidene fluoride–trifluoroethylene (P(VDF–TrFE)) electrospun nanofibers. The ZnO nanorods were uniformly grown on poly (3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT: PSS) coated P(VDF-TrFE) nanofibers using hydrothermal growth to manufacture light weight, permeable electrodes for supercapacitor. The PEDOT: PSS coated P(VDF-TrFE) porous web of nanofibers act as framework with high surface area. The incorporation of ZnO nanorods further boost the specific capacitance by 59%. The symmetric device using the fabricated 1D-1D hybrid electrodes reveals fairly high areal capacitance of 1.22mF/cm² at a current density of 0.1 mA/cm² with a power density of more than 1600 W/Kg. Moreover, the fabricated electrodes show exceptional flexibility and high endurance with 90% and 76% specific capacitance retention after 1000 and 5000 cycles respectively signifying the astonishing mechanical durability and long-term stability. All the properties exhibited by the fabricated electrode make it convenient for making flexible energy storage devices with the low form factor.

Keywords: ZnO nanorods, electrospinning, mechanical endurance, flexible supercapacitor

Procedia PDF Downloads 281
171 Numerical Investigation of Gas Leakage in RCSW-Soil Combinations

Authors: Mahmoud Y. M. Ahmed, Ahmed Konsowa, Mostafa Sami, Ayman Mosallam

Abstract:

Fukushima nuclear accident (Japan 2011) has drawn attention to the issue of gas leakage from hazardous facilities through building boundaries. The rapidly increasing investments in nuclear stations have made the ability to predict, and prevent, gas leakage a rather crucial issue both environmentally and economically. Leakage monitoring for underground facilities is rather complicated due to the combination of Reinforced Concrete Shear Wall (RCSW) and soil. In the framework of a recent research conducted by the authors, the gas insulation capabilities of RCSW-soil combination have been investigated via a lab-scale experimental work. Despite their accuracy, experimental investigations are expensive, time-consuming, hazardous, and lack for flexibility. Numerically simulating the gas leakage as a fluid flow problem based on Computational Fluid Dynamics (CFD) modeling approach can provide a potential alternative. This novel implementation of CFD approach is the topic of the present paper. The paper discusses the aspects of modeling the gas flow through porous media that resemble the RCSW both isolated and combined with the normal soil. A commercial CFD package is utilized in simulating this fluid flow problem. A fixed RCSW layer thickness is proposed, air is taken as the leaking gas, whereas the soil layer is represented as clean sand with variable properties. The variable sand properties include sand layer thickness, fine fraction ratio, and moisture content. The CFD simulation results almost demonstrate what has been found experimentally. A soil layer attached next to a cracked reinforced concrete section plays a significant role in reducing the gas leakage from that cracked section. This role is found to be strongly dependent on the soil specifications.

Keywords: RCSW, gas leakage, Pressure Decay Method, hazardous underground facilities, CFD

Procedia PDF Downloads 418
170 Mg Doped CuCrO₂ Thin Oxides Films for Thermoelectric Properties

Authors: I. Sinnarasa, Y. Thimont, L. Presmanes, A. Barnabé

Abstract:

The thermoelectricity is a promising technique to overcome the issues in recovering waste heat to electricity without using moving parts. In fact, the thermoelectric (TE) effect defines as the conversion of a temperature gradient directly into electricity and vice versa. To optimize TE materials, the power factor (PF = σS² where σ is electrical conductivity and S is Seebeck coefficient) must be increased by adjusting the carrier concentration, and/or the lattice thermal conductivity Kₜₕ must be reduced by introducing scattering centers with point defects, interfaces, and nanostructuration. The PF does not show the advantages of the thin film because it does not take into account the thermal conductivity. In general, the thermal conductivity of the thin film is lower than the bulk material due to their microstructure and increasing scattering effects with decreasing thickness. Delafossite type oxides CuᴵMᴵᴵᴵO₂ received main attention for their optoelectronic properties as a p-type semiconductor they exhibit also interesting thermoelectric (TE) properties due to their high electrical conductivity and their stability in room atmosphere. As there are few proper studies on the TE properties of Mg-doped CuCrO₂ thin films, we have investigated, the influence of the annealing temperature on the electrical conductivity and the Seebeck coefficient of Mg-doped CuCrO₂ thin films and calculated the PF in the temperature range from 40 °C to 220 °C. For it, we have deposited Mg-doped CuCrO₂ thin films on fused silica substrates by RF magnetron sputtering. This study was carried out on 300 nm thin films. The as-deposited Mg doped CuCrO₂ thin films have been annealed at different temperatures (from 450 to 650 °C) under primary vacuum. Electrical conductivity and Seebeck coefficient of the thin films have been measured from 40 to 220 °C. The highest electrical conductivity of 0.60 S.cm⁻¹ with a Seebeck coefficient of +329 µV.K⁻¹ at 40 °C have been obtained for the sample annealed at 550 °C. The calculated power factor of optimized CuCrO₂:Mg thin film was 6 µW.m⁻¹K⁻² at 40 °C. Due to the constant Seebeck coefficient and the increasing electrical conductivity with temperature it reached 38 µW.m⁻¹K⁻² at 220 °C that was a quite good result for an oxide thin film. Moreover, the degenerate behavior and the hopping mechanism of CuCrO₂:Mg thin film were elucidated. Their high and constant Seebeck coefficient in temperature and their stability in room atmosphere could be a great advantage for an application of this material in a high accuracy temperature measurement devices.

Keywords: thermoelectric, oxides, delafossite, thin film, power factor, degenerated semiconductor, hopping mode

Procedia PDF Downloads 199
169 NiFe-Type Catalysts for Anion Exchange Membrane (AEM) Electrolyzers

Authors: Boldin Roman, Liliana Analía Diaz

Abstract:

As the hydrogen economy continues to expand, reducing energy consumption and emissions while stimulating economic growth, the development of efficient and cost-effective hydrogen production technologies is critical. Among various methods, anion exchange membrane (AEM) water electrolysis stands out due to its potential for using non-noble metal catalysts. The exploration and enhancement of non-noble metal catalysts, such as NiFe-type catalysts, are pivotal for the advancement of AEM technology, ensuring its commercial viability and environmental sustainability. NiFe-type catalysts were synthesized through electrodeposition and characterized both electrochemically and physico-chemically. Various supports, including Ni foam and Ni mesh, were used as porous transport layers (PTLs) to evaluate the effective catalyst thickness and the influence of the PTL in a 5 cm² AEM electrolyzer. This methodological approach allows for a detailed assessment of catalyst performance under operational conditions typical of industrial hydrogen production. The study revealed that electrodeposited non-noble multi-metallic catalysts maintain stable performance as anodes in AEM water electrolysis. NiFe-type catalysts demonstrated superior activity, with the NiFeCoP alloy outperforming others by delivering the lowest overpotential and the highest current density. Furthermore, the use of different PTLs showed significant effects on the electrochemical behavior of the catalysts, indicating that PTL selection is crucial for optimizing performance and efficiency in AEM electrolyzers. Conclusion: The research underscores the potential of non-noble metal catalysts in enhancing efficiency and reducing the costs of AEM electrolysers. The findings highlight the importance of catalyst and PTL optimization in developing scalable and economically viable hydrogen production technologies. Continued innovation in this area is essential for supporting the growth of the hydrogen economy and achieving sustainable energy solutions.

Keywords: AEMWE, electrocatalyst, hydrogen production, water electrolysis.

Procedia PDF Downloads 26
168 Analysis of Sustainability of Groundwater Resources in Rote Island, Indonesia under HADCM3 Global Model Climate Scenarios: Groundwater Flow Simulation and Proposed Adaptive Strategies

Authors: Dua K. S. Y. Klaas, Monzur A. Imteaz, Ika Sudiayem, Elkan M. E. Klaas, Eldav C. M. Klaas

Abstract:

Developing tailored management strategies to ensure the sustainability of groundwater resource under climate and demographic changes is critical for tropical karst island, where relatively small watershed and highly porous soil nature make this natural resource highly susceptible and thus very sensitive to those changes. In this study, long-term impacts of climate variability on groundwater recharge and discharge at the Oemau spring, Rote Island, Indonesia were investigated. Following calibration and validation of groundwater model using MODFLOW code, groundwater flow was simulated for period of 2020-2090 under HadCM3 global model climate (GCM) scenarios, using input data of weather variables downscaled by Statistical Downscaling Model (SDSM). The reported analysis suggests that the sustainability of groundwater resources will be adversely affected by climate change during dry years. The area is projected to variably experience 2.53-22.80% decrease of spring discharge. A subsequent comprehensive set of management strategies as palliative and adaptive efforts was proposed to be implemented by relevant stakeholders to assist the community dealing with water deficit during the dry years. Three main adaptive strategies, namely socio-cultural, technical, and ecological measures, were proposed by incorporating physical and socio-economic characteristics of the area. This study presents a blueprint for assessing groundwater sustainability under climate change scenarios and developing tailored management strategies to cope with adverse impacts of climate change, which may become fundamental necessities across other tropical karst islands in the future.

Keywords: climate change, groundwater, management strategies, tropical karst island, Rote Island, Indonesia

Procedia PDF Downloads 155
167 Women's Vulnerability to Cross-Border Criminality in Saki/Iseyin Area of Oyo State in Nigeria: Insight and Experiences

Authors: Samuel Kehinde Okunade, Daniel Sunday Tolorunshagba

Abstract:

Globally women are classified to be part of the vulnerable group in any environment. In a conflict-ridden environment, women being vulnerable often suffer the consequences as it relates to security and access to basic social services such as medical care. This is the situation in border communities in Nigeria where cross-border crimes are on the rife, thus, putting women at a disadvantaged position and, eventually, victims of such inimical activities. Border communities in the Saki/Iseyin area of Oyo state are a case in point where the lives of inhabitants are daily threatened most, especially women. In light of the above, this article examined the security situation of the Saki/Iseyin area of Oyo State with a view to ascertaining its status in terms of safety of lives and property. This paper also explored the experiences of women in the border communities within the area as it relates to their safety, the safety of their children, access to good health facilities in their immediate environment, and above all, how they have been able to cope or manage the situation. The qualitative research model was adopted utilizing a phenomenological case study approach. A Focused Group Discussion was conducted with 10 pregnant women and 10 mothers in Okerete and Abugudu communities while a Key Informant Interview was conducted with the women leaders in both communities of the Saki/Iseyin border area of Oyo State. The findings of the study revealed the poor state of basic infrastructure. So bad to a point that inhabitants of these communities no longer see themselves as Nigerians because they have been neglected by the government for too long. The only solution is for the government to embark on developmental projects within these communities so that they can live a good life just as those in the cities do. More importantly, this will increase the loyalty of these communities to the Nigeria state by defending and resisting all forms of cross-border criminal activities that go on along the porous borders.

Keywords: security, women, Saki/Iseyin border area, cross-border criminalities, basic infrastructure

Procedia PDF Downloads 129
166 Adsorption of Congo Red from Aqueous Solution by Raw Clay: A Fixed Bed Column Study

Authors: A. Ghribi, M. Bagane

Abstract:

The discharge of dye in industrial effluents is of great concern because their presence and accumulation have a toxic or carcinogenic effect on living species. The removals of such compounds at such low levels are a difficult problem. Physicochemical technique such as coagulation, flocculation, ozonation, reverse osmosis and adsorption on activated carbon, manganese oxide, silica gel and clay are among the methods employed. The adsorption process is an effective and attractive proposition for the treatment of dye contaminated wastewater. Activated carbon adsorption in fixed beds is a very common technology in the treatment of water and especially in processes of decolouration. However, it is expensive and the powdered one is difficult to be separated from aquatic system when it becomes exhausted or the effluent reaches the maximum allowable discharge level. The regeneration of exhausted activated carbon by chemical and thermal procedure is also expensive and results in loss of the sorbent. Dye molecules also have very high affinity for clay surfaces and are readily adsorbed when added to clay suspension. The elimination of the organic dye by clay was studied by serval researchers. The focus of this research was to evaluate the adsorption potential of the raw clay in removing congo red from aqueous solutions using a laboratory fixed-bed column. The continuous sorption process was conducted in this study in order to simulate industrial conditions. The effect of process parameters, such as inlet flow rate, adsorbent bed height and initial adsorbate concentration on the shape of breakthrough curves was investigated. A glass column with an internal diameter of 1.5 cm and height of 30 cm was used as a fixed-bed column. The pH of feed solution was set at 7.Experiments were carried out at different bed heights (5-20 cm), influent flow rates (1.6- 8 mL/min) and influent congo red concentrations (10-50 mg/L). The obtained results showed that the adsorption capacity increases with the bed depth and the initial concentration and it decreases at higher flow rate. The column regeneration was possible for four adsorption–desorption cycles. The clay column study states the value of the excellent adsorption capacity for the removal of congo red from aqueous solution. Uptake of congo red through a fixed-bed column was dependent on the bed depth, influent congo red concentration and flow rate.

Keywords: adsorption, breakthrough curve, clay, congo red, fixed bed column, regeneration

Procedia PDF Downloads 333
165 Sustainable Development of Adsorption Solar Cooling Machine

Authors: N. Allouache, W. Elgahri, A. Gahfif, M. Belmedani

Abstract:

Solar radiation is by far the largest and the most world’s abundant, clean and permanent energy source. The amount of solar radiation intercepted by the Earth is much higher than annual global energy use. The energy available from the sun is greater than about 5200 times the global world’s need in 2006. In recent years, many promising technologies have been developed to harness the sun's energy. These technologies help in environmental protection, economizing energy, and sustainable development, which are the major issues of the world in the 21st century. One of these important technologies is the solar cooling systems that make use of either absorption or adsorption technologies. The solar adsorption cooling systems are a good alternative since they operate with environmentally benign refrigerants that are natural, free from CFCs, and therefore they have a zero ozone depleting potential (ODP). A numerical analysis of thermal and solar performances of an adsorption solar refrigerating system using different adsorbent/adsorbate pairs, such as activated carbon AC35 and activated carbon BPL/Ammoniac; is undertaken in this study. The modeling of the adsorption cooling machine requires the resolution of the equation describing the energy and mass transfer in the tubular adsorber, that is the most important component of the machine. The Wilson and Dubinin- Astakhov models of the solid-adsorbat equilibrium are used to calculate the adsorbed quantity. The porous medium is contained in the annular space, and the adsorber is heated by solar energy. Effect of key parameters on the adsorbed quantity and on the thermal and solar performances are analysed and discussed. The performances of the system that depends on the incident global irradiance during a whole day depends on the weather conditions: the condenser temperature and the evaporator temperature. The AC35/methanol pair is the best pair comparing to the BPL/Ammoniac in terms of system performances.

Keywords: activated carbon-methanol pair, activated carbon-ammoniac pair, adsorption, performance coefficients, numerical analysis, solar cooling system

Procedia PDF Downloads 77
164 Investigations on Geopolymer Concrete Slabs

Authors: Akhila Jose

Abstract:

The cement industry is one of the major contributors to the global warming due to the release of greenhouse gases. The primary binder in conventional concrete is Ordinary Portland cement (OPC) and billions of tons are produced annually all over the world. An alternative binding material to OPC is needed to reduce the environmental impact caused during the cement manufacturing process. Geopolymer concrete is an ideal material to substitute cement-based binder. Geopolymer is an inorganic alumino-silicate polymer. Geopolymer Concrete (GPC) is formed by the polymerization of aluminates and silicates formed by the reaction of solid aluminosilicates with alkali hydroxides or alkali silicates. Various Industrial bye- products like Fly Ash (FA), Rice Husk Ash (RHA), Ground granulated Blast Furnace Slag (GGBFS), Silica Fume (SF), Red mud (RM) etc. are rich in aluminates and silicates. Using by-products from other industries reduces the carbon dioxide emission and thus giving a sustainable way of reducing greenhouse gas emissions and also a way to dispose the huge wastes generated from the major industries like thermal plants, steel plants, etc. The earlier research about geopolymer were focused on heat cured fly ash based precast members and this limited its applications. The heat curing mechanism itself is highly cumbersome and costly even though they possess high compressive strength, low drying shrinkage and creep, and good resistance to sulphate and acid environments. GPC having comparable strength and durability characteristics of OPC were able to develop under ambient cured conditions is the solution making it a sustainable alternative in future. In this paper an attempt has been made to review and compare the feasibility of ambient cured GPC over heat cured geopolymer concrete with respect to strength and serviceability characteristics. The variation on the behavior of structural members is also reviewed to identify the research gaps for future development of ambient cured geopolymer concrete. The comparison and analysis of studies showed that GPC most importantly ambient cured type has a comparable behavior with respect to OPC based concrete in terms strength and durability criteria.

Keywords: geopolymer concrete, oven heated, durability properties, mechanical properties

Procedia PDF Downloads 183
163 A 3D Numerical Environmental Modeling Approach For Assessing Transport of Spilled Oil in Porous Beach Conditions under a Meso-Scale Tank Design

Authors: J. X. Dong, C. J. An, Z. Chen, E. H. Owens, M. C. Boufadel, E. Taylor, K. Lee

Abstract:

Shorelines are vulnerable to significant environmental impacts from oil spills. Stranded oil can cause potential short- to long-term detrimental effects along beaches that include injuries to the ecosystem, socio-economic and cultural resources. In this study, a three-dimensional (3D) numerical modeling approach is developed to evaluate the fate and transport of spilled oil for hypothetical oiled shoreline cases under various combinations of beach geomorphology and environmental conditions. The developed model estimates the spatial and temporal distribution of spilled oil for the various test conditions, using the finite volume method and considering the physical transport (dispersion and advection), sinks, and sorption processes. The model includes a user-friendly interface for data input on variables such as beach properties, environmental conditions, and physical-chemical properties of spilled oil. An experimental mesoscale tank design was used to test the developed model for dissolved petroleum hydrocarbon within shorelines. The simulated results for effects of different sediment substrates, oil types, and shoreline features for the transport of spilled oil are comparable to those obtained with a commercially available model. Results show that the properties of substrates and the oil removal by shoreline effects have significant impacts on oil transport in the beach area. Sensitivity analysis, through the application of the one-step-at-a-time method (OAT), for the 3D model identified hydraulic conductivity as the most sensitive parameter. The 3D numerical model allows users to examine the behavior of oil on and within beaches, assess potential environmental impacts, and provide technical support for decisions related to shoreline clean-up operations.

Keywords: dissolved petroleum hydrocarbons, environmental multimedia model, finite volume method, sensitivity analysis, total petroleum hydrocarbons

Procedia PDF Downloads 217
162 3D Numerical Modelling of a Pulsed Pumping Process of a Large Dense Non-Aqueous Phase Liquid Pool: In situ Pilot-Scale Case Study of Hexachlorobutadiene in a Keyed Enclosure

Authors: Q. Giraud, J. Gonçalvès, B. Paris

Abstract:

Remediation of dense non-aqueous phase liquids (DNAPLs) represents a challenging issue because of their persistent behaviour in the environment. This pilot-scale study investigates, by means of in situ experiments and numerical modelling, the feasibility of the pulsed pumping process of a large amount of a DNAPL in an alluvial aquifer. The main compound of the DNAPL is hexachlorobutadiene, an emerging organic pollutant. A low-permeability keyed enclosure was built at the location of the DNAPL source zone in order to isolate a finite undisturbed volume of soil, and a 3-month pulsed pumping process was applied inside the enclosure to exclusively extract the DNAPL. The water/DNAPL interface elevation at both the pumping and observation wells and the cumulated pumped volume of DNAPL were also recorded. A total volume of about 20m³ of purely DNAPL was recovered since no water was extracted during the process. The three-dimensional and multiphase flow simulator TMVOC was used, and a conceptual model was elaborated and generated with the pre/post-processing tool mView. Numerical model consisted of 10 layers of variable thickness and 5060 grid cells. Numerical simulations reproduce the pulsed pumping process and show an excellent match between simulated, and field data of DNAPL cumulated pumped volume and a reasonable agreement between modelled and observed data for the evolution of the water/DNAPL interface elevations at the two wells. This study offers a new perspective in remediation since DNAPL pumping system optimisation may be performed where a large amount of DNAPL is encountered.

Keywords: dense non-aqueous phase liquid (DNAPL), hexachlorobutadiene, in situ pulsed pumping, multiphase flow, numerical modelling, porous media

Procedia PDF Downloads 174
161 Cup-Cage Construct for Treatment of Severe Acetabular Bone Loss in Revision Total Hip Arthroplasty: Midterm Clinical and Radiographic Outcomes

Authors: Faran Chaudhry, Anser Daud, Doris Braunstein, Oleg Safir, Allan Gross, Paul Kuzyk

Abstract:

Background: Acetabular reconstruction in the context of massive acetabular bone loss is challenging. In rare scenarios where the extent of bone loss precludes shell placement (cup-cage), reconstruction at our center consisted of a cage combined with highly porous metal augments. This study evaluates survivorship, complications, and functional outcomes using this technique. Methods: A total of 131 cup-cage implants (129 patients) were included in our retrospective review of revisions of total hip arthroplasty from January 2003 to January 2022. Among these cases, 100/131 (76.3%) were women, the mean age at surgery time was 68.7 years (range, 29.0 to 92.0; SD, 12.4), and the mean follow-up was 7.7 years (range, 0.02 to 20.3; SD, 5.1). Kaplan-Meier survivorship analysis was conducted with failure defined as revision surgery and/or failure of the cup-cage reconstruction. Results: A total of 30 implants (23%) reached the study endpoint involving all-cause revision. Overall survivorship was 74.8% at 10 years and 69.8% at 15 years. Reasons for revision included infection 12/131 (9.1%), dislocation 10/131 (7.6%), aseptic loosening of cup and/or cage 5/131 (3.8%), and aseptic loosening of the femoral stem 2/131 (1.5%). The mean LLD improved from 12.2 ± 15.9 mm to 3.9 ± 11.8 (p<0.05). The horizontal and vertical hip centres on plain film radiographs were significantly improved (p<0.05). Functionally, there was a decrease in the number of patients requiring the use of gait aids, with fewer patients (34, 25.9%) using a cane, walker, or wheelchair post-operatively compared to pre-operatively (58, 44%). There was a significant increase in the number of independent ambulators from 24 to 47 (36%). Conclusion: The cup-cage construct is a reliable treatment option for the treatment of various acetabular defects. There are favourable survivorship, clinical and radiographic outcomes, with a satisfactory complication rate.

Keywords: revision total hip arthroplasty, acetabular defect, pelvic discontinuity, trabecular metal augment, cup-cage

Procedia PDF Downloads 67
160 Lanthanum Fluoride with Embedded Silicon Nanocrystals: A Novel Material for Future Electronic Devices

Authors: Golam Saklayen, Sheikh Rashel al Ahmed, Ferdous Rahman, Ismail Abu Bakar

Abstract:

Investigation on Lanthanum Fluoride LaF3 layer embedding Silicon Nanocrystals (Si-NCs) fabricated using a novel one-step chemical method has been reported in this presentation. Application of this material has been tested for low-voltage operating non-volatile memory and Schottkey-junction solar cell. Colloidal solution of Si-NCs in hydrofluoric acid (HF) was prepared from meso-porous silicon by ultrasonic vibration (sonication). This solution prevents the Si-NCs to be oxidized. On a silicon (Si) substrate, LaCl3 solution in HCl is allowed to react with the colloidal solution of prepared Si-NCs. Since this solution contains HF, LaCl3 reacts with HF and produces LaF3 crystals that deposits on the silicon substrate as a layer embedding Si-NCs. This a novel single step chemical way of depositing LaF3 insulating layer embedding Si-NCs. The X-Ray diffraction of the deposited layer shows a polycrystalline LaF3 deposition on silicon. A non-stoichiometric LaF3 layer embedding Si-NCs was found by EDX analysis. The presence of Si-NCs was confirmed by SEM. FTIR spectroscopy of the deposited LaF3 powder also confirmed the presence of Si-NCs. The size of Si-NCs was found to be inversely proportional to the ultrasonic power. After depositing proper contacts on the back of Si and LaF3, the devices have been tested as a non-volatile memory and solar cell. A memory window of 525 mV was obtained at a programming and erasing bias of 2V. The LaF3 films with Si NCs showed strong absorption and was also found to decrease optical transmittance than pure LaF3 film of same thickness. The I-V characteristics of the films showed a dependency on the incident light intensity where current changed under various light illumination. Experimental results show a lot of promise for Si-NCs-embedded LaF3 layer to be used as an insulating layer in MIS devices as well as an photoactive material in Schottkey junction solar cells.

Keywords: silicon nanocrystals (Si NCs), LaF3, colloidal solution, Schottky junction solar cell

Procedia PDF Downloads 392
159 Urea and Starch Detection on a Paper-Based Microfluidic Device Enabled on a Smartphone

Authors: Shashank Kumar, Mansi Chandra, Ujjawal Singh, Parth Gupta, Rishi Ram, Arnab Sarkar

Abstract:

Milk is one of the basic and primary sources of food and energy as we start consuming milk from birth. Hence, milk quality and purity and checking the concentration of its constituents become necessary steps. Considering the importance of the purity of milk for human health, the following study has been carried out to simultaneously detect and quantify the different adulterants like urea and starch in milk with the help of a paper-based microfluidic device integrated with a smartphone. The detection of the concentration of urea and starch is based on the principle of colorimetry. In contrast, the fluid flow in the device is based on the capillary action of porous media. The microfluidic channel proposed in the study is equipped with a specialized detection zone, and it employs a colorimetric indicator undergoing a visible color change when the milk gets in touch or reacts with a set of reagents which confirms the presence of different adulterants in the milk. In our proposed work, we have used iodine to detect the percentage of starch in the milk, whereas, in the case of urea, we have used the p-DMAB. A direct correlation has been found between the color change intensity and the concentration of adulterants. A calibration curve was constructed to find color intensity and subsequent starch and urea concentration. The device has low-cost production and easy disposability, which make it highly suitable for widespread adoption, especially in resource-constrained settings. Moreover, a smartphone application has been developed to detect, capture, and analyze the change in color intensity due to the presence of adulterants in the milk. The low-cost nature of the smartphone-integrated paper-based sensor, coupled with its integration with smartphones, makes it an attractive solution for widespread use. They are affordable, simple to use, and do not require specialized training, making them ideal tools for regulatory bodies and concerned consumers.

Keywords: paper based microfluidic device, milk adulteration, urea detection, starch detection, smartphone application

Procedia PDF Downloads 65
158 Metal-Organic Frameworks for Innovative Functional Textiles

Authors: Hossam E. Emam

Abstract:

Metal–organic frameworks (MOFs) are new hybrid materials investigated from 15 years ago; they synthesized from metals as inorganic center joined with multidentate organic linkers to form a 1D, 2D or 3D network structure. MOFs have unique properties such as pore crystalline structure, large surface area, chemical tenability and luminescent characters. These significant properties enable MOFs to be applied in many fields such like gas storage, adsorption/separation, drug delivery/biomedicine, catalysis, polymerization, magnetism and luminescence applications. Recently, many of published reports interested in superiority of MOFs for functionalization of textiles to exploit the unique properties of MOFs. Incorporation of MOFs is found to acquire the textiles some additional formidable functions to be used in considerable fields such like water treatment and fuel purification. Modification of textiles with MOFs could be easily performed by two main techniques; Ex-situ (preparation of MOFs then applied onto textiles) and in-situ (ingrowth of MOFs within textiles networks). Uniqueness of MOFs could be assimilated in acquirement of decorative color, antimicrobial character, anti-mosquitos character, ultraviolet radiation protective, self-clean, photo-luminescent and sensor character. Additionally, textiles treatment with MOFs make it applicable as filter in the adsorption of toxic gases, hazardous materials (such as pesticides, dyes and aromatics molecules) and fuel purification (such as removal of oxygenated, nitrogenated and sulfur compounds). Also, the porous structure of MOFs make it mostly utilized in control release of insecticides from the surface of the textile. Moreover, MOF@textiles as recyclable materials lead it applicable as photo-catalyst composites for photo-degradation of different dyes in the day light. Therefore, MOFs is extensively considered for imparting textiles with formidable properties as ingeniousness way for textile functionalization.

Keywords: MOF, functional textiles, water treatment, fuel purification, environmental applications

Procedia PDF Downloads 145
157 Laboratory Analysis of Stormwater Runoff Hydraulic and Pollutant Removal Performance of Pervious Concrete Based on Seashell By-Products

Authors: Jean-Jacques Randrianarimanana, Nassim Sebaibi, Mohamed Boutouil

Abstract:

In order to solve problems associated with stormwater runoff in urban areas and their effects on natural and artificial water bodies, the integration of new technical solutions to the rainwater drainage becomes even more essential. Permeable pavement systems are one of the most widely used techniques. This paper presents a laboratory analysis of stormwater runoff hydraulic and pollutant removal performance of permeable pavement system using pervious pavements based on seashell products. The laboratory prototype is a square column of 25 cm of side and consists of the surface in pervious concrete, a bedding of 3 cm in height, a geotextile and a subbase layer of 50 cm in height. A series of constant simulated rain events using semi-synthetic runoff which varied in intensity and duration were carried out. The initial vertical saturated hydraulic conductivity of the entire pervious pavement system was 0.25 cm/s (148 L/m2/min). The hydraulic functioning was influenced by both the inlet flow rate value and the test duration. The total water losses including evaporation ranged between 9% to 20% for all hydraulic experiments. The temporal and vertical variability of the pollutant removal efficiency (PRE) of the system were studied for total suspended solids (TSS). The results showed that the PRE along the vertical profile was influenced by the size of the suspended solids, and the pervious paver has the highest capacity to trap pollutant than the other porous layers of the permeable pavement system after the geotextile. The TSS removal efficiency was about 80% for the entire system. The first-flush effect of TSS was observed, but it appeared only at the beginning (2 to 6 min) of the experiments. It has been shown that the PPS can capture first-flush. The project in which this study is integrated aims to contribute to both the valorization of shellfish waste and the sustainable management of rainwater.

Keywords: hydraulic, pervious concrete, pollutant removal efficiency, seashell by-products, stormwater runoff

Procedia PDF Downloads 216
156 Sustainable Membranes Based on 2D Materials for H₂ Separation and Purification

Authors: Juan A. G. Carrio, Prasad Talluri, Sergio G. Echeverrigaray, Antonio H. Castro Neto

Abstract:

Hydrogen as a fuel and environmentally pleasant energy carrier is part of this transition towards low-carbon systems. The extensive deployment of hydrogen production, purification and transport infrastructures still represents significant challenges. Independent of the production process, the hydrogen generally is mixed with light hydrocarbons and other undesirable gases that need to be removed to obtain H₂ with the required purity for end applications. In this context, membranes are one of the simplest, most attractive, sustainable, and performant technologies enabling hydrogen separation and purification. They demonstrate high separation efficiencies and low energy consumption levels in operation, which is a significant leap compared to current energy-intensive options technologies. The unique characteristics of 2D laminates have given rise to a diversity of research on their potential applications in separation systems. Specifically, it is already known in the scientific literature that graphene oxide-based membranes present the highest reported selectivity of H₂ over other gases. This work explores the potential of a new type of 2D materials-based membranes in separating H₂ from CO₂ and CH₄. We have developed nanostructured composites based on 2D materials that have been applied in the fabrication of membranes to maximise H₂ selectivity and permeability, for different gas mixtures, by adjusting the membranes' characteristics. Our proprietary technology does not depend on specific porous substrates, which allows its integration in diverse separation modules with different geometries and configurations, looking to address the technical performance required for industrial applications and economic viability. The tuning and precise control of the processing parameters allowed us to control the thicknesses of the membranes below 100 nanometres to provide high permeabilities. Our results for the selectivity of new nanostructured 2D materials-based membranes are in the range of the performance reported in the available literature around 2D materials (such as graphene oxide) applied to hydrogen purification, which validates their use as one of the most promising next-generation hydrogen separation and purification solutions.

Keywords: membranes, 2D materials, hydrogen purification, nanocomposites

Procedia PDF Downloads 134
155 Robust Numerical Solution for Flow Problems

Authors: Gregor Kosec

Abstract:

Simple and robust numerical approach for solving flow problems is presented, where involved physical fields are represented through the local approximation functions, i.e., the considered field is approximated over a local support domain. The approximation functions are then used to evaluate the partial differential operators. The type of approximation, the size of support domain, and the type and number of basis function can be general. The solution procedure is formulated completely through local computational operations. Besides local numerical method also the pressure velocity is performed locally with retaining the correct temporal transient. The complete locality of the introduced numerical scheme has several beneficial effects. One of the most attractive is the simplicity since it could be understood as a generalized Finite Differences Method, however, much more powerful. Presented methodology offers many possibilities for treating challenging cases, e.g. nodal adaptivity to address regions with sharp discontinuities or p-adaptivity to treat obscure anomalies in physical field. The stability versus computation complexity and accuracy can be regulated by changing number of support nodes, etc. All these features can be controlled on the fly during the simulation. The presented methodology is relatively simple to understand and implement, which makes it potentially powerful tool for engineering simulations. Besides simplicity and straightforward implementation, there are many opportunities to fully exploit modern computer architectures through different parallel computing strategies. The performance of the method is presented on the lid driven cavity problem, backward facing step problem, de Vahl Davis natural convection test, extended also to low Prandtl fluid and Darcy porous flow. Results are presented in terms of velocity profiles, convergence plots, and stability analyses. Results of all cases are also compared against published data.

Keywords: fluid flow, meshless, low Pr problem, natural convection

Procedia PDF Downloads 233
154 RPM-Synchronous Non-Circular Grinding: An Approach to Enhance Efficiency in Grinding of Non-Circular Workpieces

Authors: Matthias Steffan, Franz Haas

Abstract:

The production process grinding is one of the latest steps in a value-added manufacturing chain. Within this step, workpiece geometry and surface roughness are determined. Up to this process stage, considerable costs and energy have already been spent on components. According to the current state of the art, therefore, large safety reserves are calculated in order to guarantee a process capability. Especially for non-circular grinding, this fact leads to considerable losses of process efficiency. With present technology, various non-circular geometries on a workpiece must be grinded subsequently in an oscillating process where X- and Q-axis of the machine are coupled. With the approach of RPM-Synchronous Noncircular Grinding, such workpieces can be machined in an ordinary plung grinding process. Therefore, the workpieces and the grinding wheels revolutionary rate are in a fixed ratio. A non-circular grinding wheel is used to transfer its geometry onto the workpiece. The authors use a worldwide unique machine tool that was especially designed for this technology. Highest revolution rates on the workpiece spindle (up to 4500 rpm) are mandatory for the success of this grinding process. This grinding approach is performed in a two-step process. For roughing, a highly porous vitrified bonded grinding wheel with medium grain size is used. It ensures high specific material removal rates for efficiently producing the non-circular geometry on the workpiece. This process step is adapted by a force control algorithm, which uses acquired data from a three-component force sensor located in the dead centre of the tailstock. For finishing, a grinding wheel with a fine grain size is used. Roughing and finishing are performed consecutively among the same clamping of the workpiece with two locally separated grinding spindles. The approach of RPM-Synchronous Noncircular Grinding shows great efficiency enhancement in non-circular grinding. For the first time, three-dimensional non-circular shapes can be grinded that opens up various fields of application. Especially automotive industries show big interest in the emerging trend in finishing machining.

Keywords: efficiency enhancement, finishing machining, non-circular grinding, rpm-synchronous grinding

Procedia PDF Downloads 283
153 Nanotechnology for Flame Retardancy of Thermoset Resins

Authors: Ewa Kicko Walczak, Grazyna Rymarz

Abstract:

In recent years, nanotechnology has been successfully applied for flame retardancy of polymers, in particular for construction materials. The consumption of thermoset resins as a construction polymers materials is approximately over one million tone word wide. Excellent mechanical, relatively high heat and thermal stability of their type of polymers are proven for variety applications, e.g. transportation, electrical, electronic, building part industry. Above applications in addition to the strength and thermal properties also requires -referring to the legal regulation or recommendation - an adequate level of flammability of the materials. This publication present the evaluation was made of effectiveness of flame retardancy of halogen-free hybrid flame retardants(FR) as compounds nitric/phosphorus modifiers that act with nanofillers (nano carbons, organ modified montmorillonite, nano silica, microsphere) in relation to unsaturated polyester/epoxy resins and glass-reinforced on base this resins laminates(GRP) as a final products. The analysis of the fire properties provided proof of effective flame retardancy of the tested composites by defining oxygen indices values (LOI), with the use of thermogravimetric methods (TGA) and combustion head (CH). An analysis of the combustion process with Cone Calorimeter (CC) method included in the first place N/P units and nanofillers with the observed phenomenon of synergic action of compounds. The fine-plates, phase morphology and rheology of composites were assessed by SEM/ TEM analysis. Polymer-matrix glass reinforced laminates with modified resins meet LOI over 30%, reduced in a decrease by 70% HRR (according to CC analysis), positive description of the curves TGA and values CH; no adverse negative impact on mechanical properties. The main objective of our current project is to contribute to the general understanding of the flame retardants mechanism and to investigate the corresponding structure/properties relationships. We confirm that nanotechnology systems are successfully concept for commercialized forms for non-flammable GRP pipe, concrete composites, and flame retardant tunnels constructions.

Keywords: fire retardants, FR, halogen-free FR nanofillers, non-flammable pipe/concrete, thermoset resins

Procedia PDF Downloads 284
152 Multicellular Cancer Spheroids as an in Vitro Model for Localized Hyperthermia Study

Authors: Kamila Dus-Szachniewicz, Artur Bednarkiewicz, Katarzyna Gdesz-Birula, Slawomir Drobczynski

Abstract:

In modern oncology hyperthermia (HT) is defined as a controlled tumor heating. HT treatment temperatures range between 40–48 °C and can selectively damage heat-sensitive cancer cells or limit their further growth, usually with minimal injury to healthy tissues. Despite many advantages, conventional whole-body and regional hyperthermia have clinically relevant side effects, including cardiac and vascular disorders. Additionally, the lack of accessibility of deep-seated tumor sites and impaired targeting micrometastases renders HT less effective. It is believed that above disadvantages can significantly overcome by the application of biofunctionalized microparticles, which can specifically target tumor sites and become activated by an external stimulus to provide a sufficient cellular response. In our research, the unique optical tweezers system have enabled capturing the silica microparticles, primary cells and tumor spheroids in highly controllable and reproducible environment to study the impact of localized heat stimulation on normal and pathological cell and within multicellular tumor spheroid. High throughput spheroid model was introduced to better mimic the response to HT treatment on tumors in vivo. Additionally, application of local heating of tumor spheroids was performed in strictly controlled conditions resembling tumor microenvironment (temperature, pH, hypoxia, etc.), in response to localized and nonhomogeneous hyperthermia in the extracellular matrix, which promotes tumor progression and metastatic spread. The lack of precise control over these well- defined parameters in basic research leads to discrepancies in the response of tumor cells to the new treatment strategy in preclinical animal testing. The developed approach enables also sorting out subclasses of cells, which exhibit partial or total resistance to therapy, in order to understand fundamental aspects of the resistance shown by given tumor cells in response to given therapy mode and conditions. This work was funded by the National Science Centre (NCN, Poland) under grant no. UMO-2017/27/B/ST7/01255.

Keywords: cancer spheroids, hyperthermia, microparticles, optical tweezers

Procedia PDF Downloads 133