Search results for: normalized least mean square (NLMS)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2003

Search results for: normalized least mean square (NLMS)

1013 Gas Flaring in the Niger Delta Nigeria: An Act of Inhumanity to Man and His Environment

Authors: Okorowo Cyril Agochi

Abstract:

The Niger Delta Region of Nigeria is home to about 20 million people and 40 different ethnic groups. The region has an area of seventy thousand square kilometers (70,000 KM2) of wetlands, formed primarily by sediments deposition and makes up 7.5 percent of Nigeria's total landmass. The notable ecological zones in this region includes: coastal barrier islands; mangrove swamp forests; fresh water swamps; and lowland rainforests. This incredibly naturally-endowed ecosystem region, which contains one of the highest concentrations of biodiversity on the planet, in addition to supporting abundant flora and fauna, is threatened by the inhuman act known as gas flaring. Gas flaring is the combustion of natural gas that is associated with crude oil when it is pumped up from the ground. In petroleum-producing areas such as the Niger Delta region of Nigeria where insufficient investment was made in infrastructure to utilize natural gas, flaring is employed to dispose of this associated gas. This practice has impoverished the communities where it is practiced, with attendant environmental, economic and health challenges. This paper discusses the adverse environmental and health implication associated with the practice, the role of Government, Policy makers, Oil companies and the Local communities aimed at bring this inhuman practice to a prompt end.

Keywords: natural combustion, emission, environment, flaring, gas, health, Niger Delta

Procedia PDF Downloads 263
1012 An Analysis of the Need of Training for Indian Textile Manufacturing Sector

Authors: Shipra Sharma, Jagat Jerath

Abstract:

Human resource training is an essential element of talent management in the current era of global competitiveness and dynamic trade in the manufacturing industry. Globally, India is behind only China as the largest textile manufacturer. The major challenges faced by the Indian textile manufacturing Industry are low technology levels, growing skill gaps, unorganized structure, lower efficiencies, etc. indicating the need for constant talent up-gradation. Assessment of training needs from a strategic perspective is an essential step for the formulation of effective training. The paper established the significance of training in the Indian textile industry and to determine the training needs on various parameters as presented. 40 HR personnel/s working in the textile and apparel companies based in the industrial region of Punjab, India, were the respondents for the study. The research tool used in this case was a structured questionnaire as per five-point Likert scale. Statistical analysis through descriptive statistics and chi-square test indicated the increased need for training whenever there were technical changes in the organizations. As per the data presented in this study, most of the HR personnel/s agreed that the variables associated with organizational analysis, task analysis, and individual analysis have a statistically significant role to play in determining the need for training in an organization.

Keywords: Indian textile manufacturing industry, significance of training, training needs analysis, parameters for training needs assessment

Procedia PDF Downloads 165
1011 Supervised/Unsupervised Mahalanobis Algorithm for Improving Performance for Cyberattack Detection over Communications Networks

Authors: Radhika Ranjan Roy

Abstract:

Deployment of machine learning (ML)/deep learning (DL) algorithms for cyberattack detection in operational communications networks (wireless and/or wire-line) is being delayed because of low-performance parameters (e.g., recall, precision, and f₁-score). If datasets become imbalanced, which is the usual case for communications networks, the performance tends to become worse. Complexities in handling reducing dimensions of the feature sets for increasing performance are also a huge problem. Mahalanobis algorithms have been widely applied in scientific research because Mahalanobis distance metric learning is a successful framework. In this paper, we have investigated the Mahalanobis binary classifier algorithm for increasing cyberattack detection performance over communications networks as a proof of concept. We have also found that high-dimensional information in intermediate features that are not utilized as much for classification tasks in ML/DL algorithms are the main contributor to the state-of-the-art of improved performance of the Mahalanobis method, even for imbalanced and sparse datasets. With no feature reduction, MD offers uniform results for precision, recall, and f₁-score for unbalanced and sparse NSL-KDD datasets.

Keywords: Mahalanobis distance, machine learning, deep learning, NS-KDD, local intrinsic dimensionality, chi-square, positive semi-definite, area under the curve

Procedia PDF Downloads 78
1010 Optimization of Laser Doping Selective Emitter for Silicon Solar Cells

Authors: Meziani Samir, Moussi Abderrahmane, Chaouchi Sofiane, Guendouzi Awatif, Djema Oussama

Abstract:

Laser doping has a large potential for integration into silicon solar cell technologies. The ability to process local, heavily diffused regions in a self-aligned manner can greatly simplify processing sequences for the fabrication of selective emitter. The choice of laser parameters for a laser doping process with 532nm is investigated. Solid state lasers with different power and speed were used for laser doping. In this work, the aim is the formation of selective emitter solar cells with a reduced number of technological steps. In order to have a highly doped localized emitter region, we used a 532 nm laser doping. Note that this region will receive the metallization of the Ag grid by screen printing. For this, we use SOLIDWORKS software to design a single type of pattern for square silicon cells. Sheet resistances, phosphorus doping concentration and silicon bulk lifetimes of irradiated samples are presented. Additionally, secondary ion mass spectroscopy (SIMS) profiles of the laser processed samples were acquired. Scanning electron microscope and optical microscope images of laser processed surfaces at different parameters are shown and compared.

Keywords: laser doping, selective emitter, silicon, solar cells

Procedia PDF Downloads 102
1009 Molecular Modeling of 17-Picolyl and 17-Picolinylidene Androstane Derivatives with Anticancer Activity

Authors: Sanja Podunavac-Kuzmanović, Strahinja Kovačević, Lidija Jevrić, Evgenija Djurendić, Jovana Ajduković

Abstract:

In the present study, the molecular modeling of a series of 24 17-picolyl and 17-picolinylidene androstane derivatives whit significant anticancer activity was carried out. Modelling of studied compounds was performed by CS ChemBioDraw Ultra v12.0 program for drawing 2D molecular structures and CS ChemBio3D Ultra v12.0 for 3D molecular modelling. The obtained 3D structures were subjected to energy minimization using molecular mechanics force field method (MM2). The cutoff for structure optimization was set at a gradient of 0.1 kcal/Åmol. Full geometry optimization was done by the Austin Model 1 (AM1) until the root mean square (RMS) gradient reached a value smaller than 0.0001 kcal/Åmol using Molecular Orbital Package (MOPAC) program. The obtained physicochemical, lipophilicity and topological descriptors were used for analysis of molecular similarities and dissimilarities applying suitable chemometric methods (principal component analysis and cluster analysis). These results are the part of the project No. 114-451-347/2015-02, financially supported by the Provincial Secretariat for Science and Technological Development of Vojvodina and CMST COST Action CM1306.

Keywords: androstane derivatives, anticancer activity, chemometrics, molecular descriptors

Procedia PDF Downloads 361
1008 A Compact Standing-Wave Thermoacoustic Refrigerator Driven by a Rotary Drive Mechanism

Authors: Kareem Abdelwahed, Ahmed Salama, Ahmed Rabie, Ahmed Hamdy, Waleed Abdelfattah, Ahmed Abd El-Rahman

Abstract:

Conventional vapor-compression refrigeration systems rely on typical refrigerants, such as CFC, HCFC and ammonia. Despite of their suitable thermodynamic properties and their stability in the atmosphere, their corresponding global warming potential and ozone depletion potential raise concerns about their usage. Thus, the need for new refrigeration systems, which are environment-friendly, inexpensive and simple in construction, has strongly motivated the development of thermoacoustic energy conversion systems. A thermoacoustic refrigerator (TAR) is a device that is mainly consisting of a resonator, a stack and two heat exchangers. Typically, the resonator is a long circular tube, made of copper or steel and filled with Helium as a the working gas, while the stack has short and relatively low thermal conductivity ceramic parallel plates aligned with the direction of the prevailing resonant wave. Typically, the resonator of a standing-wave refrigerator has one end closed and is bounded by the acoustic driver at the other end enabling the propagation of half-wavelength acoustic excitation. The hot and cold heat exchangers are made of copper to allow for efficient heat transfer between the working gas and the external heat source and sink respectively. TARs are interesting because they have no moving parts, unlike conventional refrigerators, and almost no environmental impact exists as they rely on the conversion of acoustic and heat energies. Their fabrication process is rather simpler and sizes span wide variety of length scales. The viscous and thermal interactions between the stack plates, heat exchangers' plates and the working gas significantly affect the flow field within the plates' channels, and the energy flux density at the plates' surfaces, respectively. Here, the design, the manufacture and the testing of a compact refrigeration system that is based on the thermoacoustic energy-conversion technology is reported. A 1-D linear acoustic model is carefully and specifically developed, which is followed by building the hardware and testing procedures. The system consists of two harmonically-oscillating pistons driven by a simple 1-HP rotary drive mechanism operating at a frequency of 42Hz -hereby, replacing typical expensive linear motors and loudspeakers-, and a thermoacoustic stack within which the energy conversion of sound into heat is taken place. Air at ambient conditions is used as the working gas while the amplitude of the driver's displacement reaches 19 mm. The 30-cm-long stack is a simple porous ceramic material having 100 square channels per square inch. During operation, both oscillating-gas pressure and solid-stack temperature are recorded for further analysis. Measurements show a maximum temperature difference of about 27 degrees between the stack hot and cold ends with a Carnot coefficient of performance of 11 and estimated cooling capacity of five Watts, when operating at ambient conditions. A dynamic pressure of 7-kPa-amplitude is recorded, yielding a drive ratio of 7% approximately, and found in a good agreement with theoretical prediction. The system behavior is clearly non-linear and significant non-linear loss mechanisms are evident. This work helps understanding the operation principles of thermoacoustic refrigerators and presents a keystone towards developing commercial thermoacoustic refrigerator units.

Keywords: refrigeration system, rotary drive mechanism, standing-wave, thermoacoustic refrigerator

Procedia PDF Downloads 368
1007 Treating Voxels as Words: Word-to-Vector Methods for fMRI Meta-Analyses

Authors: Matthew Baucum

Abstract:

With the increasing popularity of fMRI as an experimental method, psychology and neuroscience can greatly benefit from advanced techniques for summarizing and synthesizing large amounts of data from brain imaging studies. One promising avenue is automated meta-analyses, in which natural language processing methods are used to identify the brain regions consistently associated with certain semantic concepts (e.g. “social”, “reward’) across large corpora of studies. This study builds on this approach by demonstrating how, in fMRI meta-analyses, individual voxels can be treated as vectors in a semantic space and evaluated for their “proximity” to terms of interest. In this technique, a low-dimensional semantic space is built from brain imaging study texts, allowing words in each text to be represented as vectors (where words that frequently appear together are near each other in the semantic space). Consequently, each voxel in a brain mask can be represented as a normalized vector sum of all of the words in the studies that showed activation in that voxel. The entire brain mask can then be visualized in terms of each voxel’s proximity to a given term of interest (e.g., “vision”, “decision making”) or collection of terms (e.g., “theory of mind”, “social”, “agent”), as measured by the cosine similarity between the voxel’s vector and the term vector (or the average of multiple term vectors). Analysis can also proceed in the opposite direction, allowing word cloud visualizations of the nearest semantic neighbors for a given brain region. This approach allows for continuous, fine-grained metrics of voxel-term associations, and relies on state-of-the-art “open vocabulary” methods that go beyond mere word-counts. An analysis of over 11,000 neuroimaging studies from an existing meta-analytic fMRI database demonstrates that this technique can be used to recover known neural bases for multiple psychological functions, suggesting this method’s utility for efficient, high-level meta-analyses of localized brain function. While automated text analytic methods are no replacement for deliberate, manual meta-analyses, they seem to show promise for the efficient aggregation of large bodies of scientific knowledge, at least on a relatively general level.

Keywords: FMRI, machine learning, meta-analysis, text analysis

Procedia PDF Downloads 449
1006 Detection of Powdery Mildew Disease in Strawberry Using Image Texture and Supervised Classifiers

Authors: Sultan Mahmud, Qamar Zaman, Travis Esau, Young Chang

Abstract:

Strawberry powdery mildew (PM) is a serious disease that has a significant impact on strawberry production. Field scouting is still a major way to find PM disease, which is not only labor intensive but also almost impossible to monitor disease severity. To reduce the loss caused by PM disease and achieve faster automatic detection of the disease, this paper proposes an approach for detection of the disease, based on image texture and classified with support vector machines (SVMs) and k-nearest neighbors (kNNs). The methodology of the proposed study is based on image processing which is composed of five main steps including image acquisition, pre-processing, segmentation, features extraction and classification. Two strawberry fields were used in this study. Images of healthy leaves and leaves infected with PM (Sphaerotheca macularis) disease under artificial cloud lighting condition. Colour thresholding was utilized to segment all images before textural analysis. Colour co-occurrence matrix (CCM) was introduced for extraction of textural features. Forty textural features, related to a physiological parameter of leaves were extracted from CCM of National television system committee (NTSC) luminance, hue, saturation and intensity (HSI) images. The normalized feature data were utilized for training and validation, respectively, using developed classifiers. The classifiers have experimented with internal, external and cross-validations. The best classifier was selected based on their performance and accuracy. Experimental results suggested that SVMs classifier showed 98.33%, 85.33%, 87.33%, 93.33% and 95.0% of accuracy on internal, external-I, external-II, 4-fold cross and 5-fold cross-validation, respectively. Whereas, kNNs results represented 90.0%, 72.00%, 74.66%, 89.33% and 90.3% of classification accuracy, respectively. The outcome of this study demonstrated that SVMs classified PM disease with a highest overall accuracy of 91.86% and 1.1211 seconds of processing time. Therefore, overall results concluded that the proposed study can significantly support an accurate and automatic identification and recognition of strawberry PM disease with SVMs classifier.

Keywords: powdery mildew, image processing, textural analysis, color co-occurrence matrix, support vector machines, k-nearest neighbors

Procedia PDF Downloads 120
1005 Comparison of Applicability of Time Series Forecasting Models VAR, ARCH and ARMA in Management Science: Study Based on Empirical Analysis of Time Series Techniques

Authors: Muhammad Tariq, Hammad Tahir, Fawwad Mahmood Butt

Abstract:

Purpose: This study attempts to examine the best forecasting methodologies in the time series. The time series forecasting models such as VAR, ARCH and the ARMA are considered for the analysis. Methodology: The Bench Marks or the parameters such as Adjusted R square, F-stats, Durban Watson, and Direction of the roots have been critically and empirically analyzed. The empirical analysis consists of time series data of Consumer Price Index and Closing Stock Price. Findings: The results show that the VAR model performed better in comparison to other models. Both the reliability and significance of VAR model is highly appreciable. In contrary to it, the ARCH model showed very poor results for forecasting. However, the results of ARMA model appeared double standards i.e. the AR roots showed that model is stationary and that of MA roots showed that the model is invertible. Therefore, the forecasting would remain doubtful if it made on the bases of ARMA model. It has been concluded that VAR model provides best forecasting results. Practical Implications: This paper provides empirical evidences for the application of time series forecasting model. This paper therefore provides the base for the application of best time series forecasting model.

Keywords: forecasting, time series, auto regression, ARCH, ARMA

Procedia PDF Downloads 348
1004 Fe-BTC Based Electrochemical Sensor for Anti-Psychotic and Anti-Migraine Drugs: Aripiprazole and Rizatriptan

Authors: Sachin Saxena, Manju Srivastava

Abstract:

The present study describes a stable, highly sensitive and selective analytical sensor. Fe-BTC was synthesized at room temperature using the noble Iron-trimesate system. The high surface area of as synthesized Fe-BTC proved MOFs as ideal modifiers for glassy carbon electrode. The characterization techniques such as TGA, XRD, FT-IR, BET (BET surface area= 1125 m2/gm) analysis explained the electrocatalytic behaviour of Fe-BTC towards these two drugs. The material formed is cost effective and exhibit higher catalytic behaviour towards analyte systems. The synergism between synthesized Fe-BTC and electroanalytical techniques helped in developing a highly sensitive analytical method for studying the redox fate of ARP and RZ, respectively. Cyclic voltammetry of ferricyanide system proved Fe-BTC/GCE with an increase in 132% enhancement in peak current value as compared to that of GCE. The response characteristics of cyclic voltammetry (CV) and square wave voltammetry (SWV) revealed that the ARP and RZ could be effectively accumulated at Fe-BTC/GCE. On the basis of the electrochemical measurements, electrode dynamics parameters have been evaluated. Present study opens up new field of applications of MOFs modified GCE for drug sensing.

Keywords: MOFs, anti-psychotic, electrochemical sensor, anti-migraine drugs

Procedia PDF Downloads 166
1003 Regionalization of IDF Curves with L-Moments for Storm Events

Authors: Noratiqah Mohd Ariff, Abdul Aziz Jemain, Mohd Aftar Abu Bakar

Abstract:

The construction of Intensity-Duration-Frequency (IDF) curves is one of the most common and useful tools in order to design hydraulic structures and to provide a mathematical relationship between rainfall characteristics. IDF curves, especially those in Peninsular Malaysia, are often built using moving windows of rainfalls. However, these windows do not represent the actual rainfall events since the duration of rainfalls is usually prefixed. Hence, instead of using moving windows, this study aims to find regionalized distributions for IDF curves of extreme rainfalls based on storm events. Homogeneity test is performed on annual maximum of storm intensities to identify homogeneous regions of storms in Peninsular Malaysia. The L-moment method is then used to regionalized Generalized Extreme Value (GEV) distribution of these annual maximums and subsequently. IDF curves are constructed using the regional distributions. The differences between the IDF curves obtained and IDF curves found using at-site GEV distributions are observed through the computation of the coefficient of variation of root mean square error, mean percentage difference and the coefficient of determination. The small differences implied that the construction of IDF curves could be simplified by finding a general probability distribution of each region. This will also help in constructing IDF curves for sites with no rainfall station.

Keywords: IDF curves, L-moments, regionalization, storm events

Procedia PDF Downloads 528
1002 Assessment of Educational Service Quality at Master's Level in an Iranian University Using Based on HEdPERF Model

Authors: Faranak Omidian

Abstract:

The aim of this research was to examine the quality of education service at master's level in the Islamic Azad University of Dezful. In terms of objective, this is an applied research and in regard to methodology, it is a descriptive analytical research. The statistical population included all students of master's degree in the Islamic Azad University of Dezful. The sample size was determined using stratified random sampling method in different fields of study. The research questionnaire is the translated version of standardized Abdullah's HEdPERF 41-item scale which is based on a 5-point Likert scale. In order to determine the validity, the translated questionnaire was given to the professors of educational sciences. The correlation among all questions has been regarded at a value of 0.644. The results showed that the quality of educational service at master's level in this university, based on chi-square goodness of fit test, was equal to 73.36 and its degree of freedom was 2 at a significant level of 0.001, indicating the low desirability of the services. According to Friedman test, academic responsiveness has been reported to be in a higher status than other dimensions with an average rank of 3.94 while accessibility, with an average rank of 2.15, has been in the lowest status from master's students' viewpoint.

Keywords: educational service quality, master's level, Iranian university

Procedia PDF Downloads 280
1001 The Interactive Effects among Supervisor Support, Academic Emotion, and Positive Mental Health: An Evidence Based on Longitudinal Cross-Lagged Panel Data Analysis on Postgraduates in China

Authors: Jianzhou Ni, Hua Fan

Abstract:

It has been determined that supervisor support has a major influence on postgraduate students' academic emotions and is considered a method of successfully anticipating postgraduates' good psychological well-being levels. As a result, by assessing the mediating influence upon academic emotions for contemporary postgraduates in China, this study investigated the tight reciprocal relationship between psychological empowerment and positive mental well-being among postgraduates. To that end, a help enables a theoretical analysis of role clarity, academic emotion, and positive psychological health was developed, and its validity and reliability were demonstrated for the first time using the normalized postgrad relationship with supervisor scale, academic emotion scale, and positive mental scale, as well as questionnaire data from Chinese postgraduate students. This study used the cross-lagged (ARCL) panel model data to longitudinally measure 798 valid data from two survey questions polls taken in 2019 (T1) and 2021 (T2) to investigate the link between supervisor support and positive graduate student mental well-being in a bidirectional relationship of influence. The study discovered that mentor assistance could have a considerable beneficial impact on graduate students' academic emotions and, as a result, indirectly help learners attain positive mental health development. This verifies the theoretical premise that academic emotions partially mediate the effect of mentor support on positive mental health development and argues for the coexistence of the two. The outcomes of this study can help researchers gain a better knowledge of the dynamic interplay among three different research variables: supervisor support, academic emotions, and positive mental health, as well as fill gaps in previous research. In this regard, the study indicated that mentor assistance directly stimulates students' academic drive and assists graduate students in developing good academic emotions, which contributes to the development of positive mental health. However, given the restricted measurement time in this study's cross-lagged panel data and the potential effect of moderating effects other than academic mood on graduate students' good mental health, the results of this study need to be more fully understood and validated.

Keywords: supervisor support, academic emotions, positive mental health, interaction effects, longitudinal cross-lagged measurements

Procedia PDF Downloads 87
1000 Investigation of Thickness Dependent Optical Properties of Bi₂Sb(₃-ₓ):Te ₓ (where x = 0.1, 0.2, 0.3) Thin Films

Authors: Reena Panchal, Maunik Jani, S. M. Vyas, G. R. Pandya

Abstract:

Group V-VI compounds have a narrow bandgap, which makes them useful in many electronic devices. In bulk form, BiSbTe alloys are semi-metals or semi-conductors. They are used in thermoelectric and thermomagnetic devices, fabrication of ionizing, radiation detectors, LEDs, solid-state electrodes, photosensitive heterostructures, solar cells, ionic batteries, etc. Thin films of Bi₂Sb(₃-ₓ):Tex (where x = 0.1, 0.2, 0.3) of various thicknesses were grown by the thermal evaporation technique on a glass substrate at room temperature under a pressure of 10-₄ mbar for different time periods such as 10s, 15s, and 20s. The thickness of these thin films was also obtained by using the swaneopeol envelop method and compared those values with instrumental values. The optical absorption (%) data of thin films was measured in the wave number range of 650 cm-¹ to 4000 cm-¹. The band gap has been evaluated from these optical absorption data, and the results indicate that absorption occurred by a direct interband transition. It was discovered that when thickness decreased, the band gap increased; this dependency was inversely related to the square of thickness, which is explained by the quantum size effect. Using the values of bandgap, found the values of optical electronegativity (∆χ) and optical refractive index (η) using various relations.

Keywords: thin films, band gap, film thickness, optical study, size effect

Procedia PDF Downloads 18
999 Water Sources in 3 Local Municipalities of O. R. Tambo District Municipality, South Africa: A Comparative Study

Authors: Betek Cecilia Kunseh, Musampa Christopher

Abstract:

Despite significant investment and important progress, access to safe potable water continues to be one of the most pressing challenges for rural communities in O R Tambo District Municipality. This is coupled with the low income of most residents and government's policy which obliges municipalities to supply basic water usually set at 6 kilolitres per month to each household free of charge. During the research, data was collected from three local municipalities of O. R. Tambo, i.e. King Sabata Dalindyebo, Mhlontlo and Ingquza Hill local municipalities. According to the result, significant differences exist between the sources of water in the different local municipalities from which data was collected. The chi square was use to calculated the differences between the sources of water and the calculated critical value of the District Municipality was 18.77 which is more than the stipulated critical value of 3.84. More people in Mhlontlo Local Municipality got water from the taps while a greater percentage of households in King Sataba Dalindyebo and Ingquza hill local municipalities got their water from the natural sources. 77% of the sample population complained that there have been no improvements in water provision because they still get water from natural sources and even the remaining 33% that were getting water from the taps still have to depend on natural sources because the taps are most of the time broken and it takes a long time to fix them.

Keywords: availability, water, sources, supply

Procedia PDF Downloads 341
998 Optical Signal-To-Noise Ratio Monitoring Based on Delay Tap Sampling Using Artificial Neural Network

Authors: Feng Wang, Shencheng Ni, Shuying Han, Shanhong You

Abstract:

With the development of optical communication, optical performance monitoring (OPM) has received more and more attentions. Since optical signal-to-noise ratio (OSNR) is directly related to bit error rate (BER), it is one of the important parameters in optical networks. Recently, artificial neural network (ANN) has been greatly developed. ANN has strong learning and generalization ability. In this paper, a method of OSNR monitoring based on delay-tap sampling (DTS) and ANN has been proposed. DTS technique is used to extract the eigenvalues of the signal. Then, the eigenvalues are input into the ANN to realize the OSNR monitoring. The experiments of 10 Gb/s non-return-to-zero (NRZ) on–off keying (OOK), 20 Gb/s pulse amplitude modulation (PAM4) and 20 Gb/s return-to-zero (RZ) differential phase-shift keying (DPSK) systems are demonstrated for the OSNR monitoring based on the proposed method. The experimental results show that the range of OSNR monitoring is from 15 to 30 dB and the root-mean-square errors (RMSEs) for 10 Gb/s NRZ-OOK, 20 Gb/s PAM4 and 20 Gb/s RZ-DPSK systems are 0.36 dB, 0.45 dB and 0.48 dB respectively. The impact of chromatic dispersion (CD) on the accuracy of OSNR monitoring is also investigated in the three experimental systems mentioned above.

Keywords: artificial neural network (ANN), chromatic dispersion (CD), delay-tap sampling (DTS), optical signal-to-noise ratio (OSNR)

Procedia PDF Downloads 112
997 Impact of Short-Term Drought on Vegetation Health Condition in the Kingdom of Saudi Arabia Using Space Data

Authors: E. Ghoneim, C. Narron, I. Iqbal, I. Hassan, E. Hammam

Abstract:

The scarcity of water is becoming a more prominent threat, especially in areas that are already arid in nature. Although the Kingdom of Saudi Arabia (KSA) is an arid country, its southwestern region offers a high variety of botanical landscapes, many of which are wooded forests, while the eastern and northern regions offer large areas of groundwater irrigated farmlands. At present, some parts of KSA, including forests and farmlands, have witnessed protracted and severe drought due to change in rainfall pattern as a result of global climate change. Such prolonged drought that last for several consecutive years is expected to cause deterioration of forested and pastured lands as well as cause crop failure in the KSA (e.g., wheat yield). An analysis to determine vegetation drought vulnerability and severity during the growing season (September-April) over a fourteen year period (2000-2014) in KSA was conducted using MODIS Terra imagery. The Vegetation Condition Index (VCI), derived from the Normalized Difference Vegetation Index (NDVI), and the Temperature Condition Index (TCI), derived from the Land Surface Temperature (LST) data was extracted from MODIS Terra Images. The VCI and TCI were then combined to compute the Vegetation Health Index (VHI). The VHI revealed the overall vegetation health for the area under investigation. A preliminary outcome of the modeled VHI over KSA, using averaged monthly vegetation data over a 14-year period, revealed that the vegetation health condition is deteriorating over time in both naturally vegetated areas and irrigated farmlands. The derived drought map for KSA indicates that both extreme and severe drought occurrences have considerably increased over the same study period. Moreover, based on the cumulative average of drought frequency in each governorate of KSA it was determined that Makkah and Jizan governorates to the east and southwest, witness the most frequency of extreme drought, whereas Tabuk to the northwest, exhibits the less extreme drought frequency. Areas where drought is extreme or severe would most likely have negative influences on agriculture, ecosystems, tourism, and even human welfare. With the drought risk map the kingdom could make informed land management decisions including were to continue with agricultural endeavors and protect forested areas and even where to develop new settlements.

Keywords: drought, vegetation health condition, TCI, Saudi Arabia

Procedia PDF Downloads 386
996 Exploring Gaming-Learning Interaction in MMOG Using Data Mining Methods

Authors: Meng-Tzu Cheng, Louisa Rosenheck, Chen-Yen Lin, Eric Klopfer

Abstract:

The purpose of the research is to explore some of the ways in which gameplay data can be analyzed to yield results that feedback into the learning ecosystem. Back-end data for all users as they played an MMOG, The Radix Endeavor, was collected, and this study reports the analyses on a specific genetics quest by using the data mining techniques, including the decision tree method. In the study, different reasons for quest failure between participants who eventually succeeded and who never succeeded were revealed. Regarding the in-game tools use, trait examiner was a key tool in the quest completion process. Subsequently, the results of decision tree showed that a lack of trait examiner usage can be made up with additional Punnett square uses, displaying multiple pathways to success in this quest. The methods of analysis used in this study and the resulting usage patterns indicate some useful ways that gameplay data can provide insights in two main areas. The first is for game designers to know how players are interacting with and learning from their game. The second is for players themselves as well as their teachers to get information on how they are progressing through the game, and to provide help they may need based on strategies and misconceptions identified in the data.

Keywords: MMOG, decision tree, genetics, gaming-learning interaction

Procedia PDF Downloads 357
995 Experimental Study on Weak Cohesion Less Soil Using Granular Piles with Geogrid Reinforcement

Authors: Sateesh Kumar Pisini, Swetha Priya Pisini

Abstract:

Granular piles are becoming popular as a technique of deep ground improvement not only in soft cohesive soils but also in loose cohesionless deposits. The present experimental study has been carried out on granular piles in sand (loose sand and medium dense sand i.e. relative density at 15% and 30%) with geogrid reinforcement. In this experimental study, a group of five piles installed in sand (at different spacing i.e s = 2d, 3d and 4d) the length and diameter of the pile (L = 0.4 m and d= 50 mm) kept as same for all series of experiments. Geogrid reinforcement is provided on granular piles with a limited number of laboratory tests. It has been conducted in laboratory to study the behavior of a granular pile with reinforced geogrid layers supporting a square footing at different s/d ratios. The influence of geogrid layers providing on granular piles investigated through model tests. In this paper the experimental study carried out results in significant increase in load carrying capacity and decrease in settlement reduction of the weak cohesionless soil. Also, the behavior of load carrying capacity and settlement with changing the s/d ratio has been carried out through a parametric study.

Keywords: granular piles, cohesionless soil, geogrid reinforcement, load carrying capacity

Procedia PDF Downloads 261
994 Redefinition of Village Landscape with Ruins-Taking Cunwei Village in Nanping City, Fujian Province as Example

Authors: Siyu Bu, Jie Wang, Yajing Jiang

Abstract:

Nowadays, villages still occupying 94.7% of the national territorial area (almost nine million square kilometers) of China. Some of them are meeting urbanization and grow as satellite; however, others are witnessing more and more citizens swarming into with nostalgia, seek enjoyment from the beautiful green countryside. In villages, new types of house come and we see billions of old houses lay unused, or even be dying at every second, which cause a lot of 'bad palaces', decadent and dangerous. In this context, there are lots of tries for gearing villages in China. This article deconstructs the traditional village house to excavate its’ landscape potential for future. By research in CunWei Village, Nanping City, Fujian Province, China, a method of reconstruction of old houses comes out: the wreckage will be a strong landscape, showing the great beauty of nature. It will be a better use of the old material as well as the space pattern. It was supposed to gain a juxtaposition of traditional village life and modern social life by offering possibilities of multiple event, replacing the bad space to attractive one by strengthen the old structures without destroy traditional patterns. Furthermore , this method acts as an exploring for building redefinition of village landscape that fit Chinese villages, using local nature resource and traditional construction logic.

Keywords: juxtaposition, replace, village, ruins

Procedia PDF Downloads 251
993 Assessing the Impact of Electronic Payment Systems on the Service Delivery of Banks: Case of Nigeria

Authors: Idris lawal

Abstract:

The most recent development in the Nigerian payment system is the venture into “electronic payment system”. Electronic payment system is simply a payment or monetary transaction made over the internet or a network of computers. This study was carried out in order to assess how electronic payment system has impacted on banks service delivery, to examine the efficiency of electronic payment system in Nigeria and to determine the level of customer’s satisfaction as a direct result of the deployment of electronic payment systems. The study was conducted using structured questionnaire distributed to 50 bank officials and customers of Access Bank plc. Chi-square(x2) was adopted for the purpose of data analysis. The result of the study showed that the development of electronic payment system offer great benefit to bank customers including; improved services, reduced turn-around time, ease of banking transaction, significant cost saving etc. The study recommend that customer protection laws should be properly put in place to safeguard the interest of end users of e-payment instruments, the banking industry and government should show strong commitment and effort to educate the populace on the benefit of patronizing e-payment system to facilitate economic development.

Keywords: electronic payment system, service delivery, bank, Nigeria

Procedia PDF Downloads 281
992 Associated Factors to Depression of the Elderly in Ladboakao Sub-District, Banpong District, Ratchaburi Province, Thailand

Authors: Yadchol Tawetanawanich

Abstract:

Depression of elderly is a mental health problem that impacts tremendously on the elderly themselves, their family, and society. the purposes of this descriptive research were to examine prevalence rate of elderly depression and to study factors related to depression in elderly including 1) individual factors: sex, education, marital status, 2) economic factors: occupation, adequate income 3) health factors: chronic illnesses , disability, 4) social factors: family relationship, community relationship, 5) knowledge of depression, and 6) self-care behavior. The subject in this study included 273 elderly in Ladboakao sub-district, Banpong district, Ratchaburi province, Thailand. Data were collected through questionnaires and were analyzed using percentage, mean, standard deviation, chi-square, and one-way ANOVA. The results of the study revealed that: The prevalence rate of elderly depression were 21.61%, factors included economic factors, health factors, knowledge about depression, and self-care behavior were statistically significant positively related to depression of elderly (p<0.05), but individual factors and social factors were not significantly related to depression. It is also important for nurses to assess factors related to depression of the elderly in order to develop the model of care and use self-care strategies to contribute the positive outcomes.

Keywords: associated factors, depression, elderly, self-care

Procedia PDF Downloads 393
991 In-Flight Radiometric Performances Analysis of an Airborne Optical Payload

Authors: Caixia Gao, Chuanrong Li, Lingli Tang, Lingling Ma, Yaokai Liu, Xinhong Wang, Yongsheng Zhou

Abstract:

Performances analysis of remote sensing sensor is required to pursue a range of scientific research and application objectives. Laboratory analysis of any remote sensing instrument is essential, but not sufficient to establish a valid inflight one. In this study, with the aid of the in situ measurements and corresponding image of three-gray scale permanent artificial target, the in-flight radiometric performances analyses (in-flight radiometric calibration, dynamic range and response linearity, signal-noise-ratio (SNR), radiometric resolution) of self-developed short-wave infrared (SWIR) camera are performed. To acquire the inflight calibration coefficients of the SWIR camera, the at-sensor radiances (Li) for the artificial targets are firstly simulated with in situ measurements (atmosphere parameter and spectral reflectance of the target) and viewing geometries using MODTRAN model. With these radiances and the corresponding digital numbers (DN) in the image, a straight line with a formulation of L = G × DN + B is fitted by a minimization regression method, and the fitted coefficients, G and B, are inflight calibration coefficients. And then the high point (LH) and the low point (LL) of dynamic range can be described as LH= (G × DNH + B) and LL= B, respectively, where DNH is equal to 2n − 1 (n is the quantization number of the payload). Meanwhile, the sensor’s response linearity (δ) is described as the correlation coefficient of the regressed line. The results show that the calibration coefficients (G and B) are 0.0083 W·sr−1m−2µm−1 and −3.5 W·sr−1m−2µm−1; the low point of dynamic range is −3.5 W·sr−1m−2µm−1 and the high point is 30.5 W·sr−1m−2µm−1; the response linearity is approximately 99%. Furthermore, a SNR normalization method is used to assess the sensor’s SNR, and the normalized SNR is about 59.6 when the mean value of radiance is equal to 11.0 W·sr−1m−2µm−1; subsequently, the radiometric resolution is calculated about 0.1845 W•sr-1m-2μm-1. Moreover, in order to validate the result, a comparison of the measured radiance with a radiative-transfer-code-predicted over four portable artificial targets with reflectance of 20%, 30%, 40%, 50% respectively, is performed. It is noted that relative error for the calibration is within 6.6%.

Keywords: calibration and validation site, SWIR camera, in-flight radiometric calibration, dynamic range, response linearity

Procedia PDF Downloads 271
990 Electron Density Discrepancy Analysis of Energy Metabolism Coenzymes

Authors: Alan Luo, Hunter N. B. Moseley

Abstract:

Many macromolecular structure entries in the Protein Data Bank (PDB) have a range of regional (localized) quality issues, be it derived from x-ray crystallography, Nuclear Magnetic Resonance (NMR) spectroscopy, or other experimental approaches. However, most PDB entries are judged by global quality metrics like R-factor, R-free, and resolution for x-ray crystallography or backbone phi-psi distribution statistics and average restraint violations for NMR. Regional quality is often ignored when PDB entries are re-used for a variety of structurally based analyses. The binding of ligands, especially ligands involved in energy metabolism, is of particular interest in many structurally focused protein studies. Using a regional quality metric that provides chemically interpretable information from electron density maps, a significant number of outliers in regional structural quality was detected across x-ray crystallographic PDB entries for proteins bound to biochemically critical ligands. In this study, a series of analyses was performed to evaluate both specific and general potential factors that could promote these outliers. In particular, these potential factors were the minimum distance to a metal ion, the minimum distance to a crystal contact, and the isotropic atomic b-factor. To evaluate these potential factors, Fisher’s exact tests were performed, using regional quality criteria of outlier (top 1%, 2.5%, 5%, or 10%) versus non-outlier compared to a potential factor metric above versus below a certain outlier cutoff. The results revealed a consistent general effect from region-specific normalized b-factors but no specific effect from metal ion contact distances and only a very weak effect from crystal contact distance as compared to the b-factor results. These findings indicate that no single specific potential factor explains a majority of the outlier ligand-bound regions, implying that human error is likely as important as these other factors. Thus, all factors, including human error, should be considered when regions of low structural quality are detected. Also, the downstream re-use of protein structures for studying ligand-bound conformations should screen the regional quality of the binding sites. Doing so prevents misinterpretation due to the presence of structural uncertainty or flaws in regions of interest.

Keywords: biomacromolecular structure, coenzyme, electron density discrepancy analysis, x-ray crystallography

Procedia PDF Downloads 130
989 Optimal Design of Composite Cylindrical Shell Based on Nonlinear Finite Element Analysis

Authors: Haider M. Alsaeq

Abstract:

The present research is an attempt to figure out the best configuration of composite cylindrical shells of the sandwich type, i.e. the lightest design of such shells required to sustain a certain load over a certain area. The optimization is based on elastic-plastic geometrically nonlinear incremental-iterative finite element analysis. The nine-node degenerated curved shell element is used in which five degrees of freedom are specified at each nodal point, with a layered model. The formulation of the geometrical nonlinearity problem is carried out using the well-known total Lagrangian principle. For the structural optimization problem, which is dealt with as a constrained nonlinear optimization, the so-called Modified Hooke and Jeeves method is employed by considering the weight of the shell as the objective function with stress and geometrical constraints. It was concluded that the optimum design of composite sandwich cylindrical shell that have a rigid polyurethane foam core and steel facing occurs when the area covered by the shell becomes almost square with a ratio of core thickness to facing thickness lies between 45 and 49, while the optimum height to length ration varies from 0.03 to 0.08 depending on the aspect ratio of the shell and its boundary conditions.

Keywords: composite structure, cylindrical shell, optimization, non-linear analysis, finite element

Procedia PDF Downloads 391
988 Single Imputation for Audiograms

Authors: Sarah Beaver, Renee Bryce

Abstract:

Audiograms detect hearing impairment, but missing values pose problems. This work explores imputations in an attempt to improve accuracy. This work implements Linear Regression, Lasso, Linear Support Vector Regression, Bayesian Ridge, K Nearest Neighbors (KNN), and Random Forest machine learning techniques to impute audiogram frequencies ranging from 125Hz to 8000Hz. The data contains patients who had or were candidates for cochlear implants. Accuracy is compared across two different Nested Cross-Validation k values. Over 4000 audiograms were used from 800 unique patients. Additionally, training on data combines and compares left and right ear audiograms versus single ear side audiograms. The accuracy achieved using Root Mean Square Error (RMSE) values for the best models for Random Forest ranges from 4.74 to 6.37. The R\textsuperscript{2} values for the best models for Random Forest ranges from .91 to .96. The accuracy achieved using RMSE values for the best models for KNN ranges from 5.00 to 7.72. The R\textsuperscript{2} values for the best models for KNN ranges from .89 to .95. The best imputation models received R\textsuperscript{2} between .89 to .96 and RMSE values less than 8dB. We also show that the accuracy of classification predictive models performed better with our best imputation models versus constant imputations by a two percent increase.

Keywords: machine learning, audiograms, data imputations, single imputations

Procedia PDF Downloads 82
987 Beneficial Effects of Whey Protein Concentrate in Venous Thrombosis

Authors: Anna Tokajuk, Agnieszka Zakrzeska, Ewa Chabielska, Halina Car

Abstract:

Whey is a by-product generated mainly in the production of cheese and casein. Powder forms of whey are used widely in the food industry as well as a high-protein food for infants, for convalescents, by athletes and especially by bodybuilders to increase muscle mass during exercise. Whey protein concentrate-80 (WPC-80) is a source of bioactive peptides with beneficial effects on the cardiovascular system. It is known that whey proteins health beneficial properties include antidiabetic, blood pressure lowering, improving cardiovascular system function, antibacterial, antiviral and other effects. To study its influence on the development of thrombosis, venous thrombosis model was performed according to the protocol featured by Reyers with modification by Chabielska and Gromotowicz. Male Wistar-Crl: WI (Han) rats from researched groups were supplemented with two doses of WPC-80 (0.3 or 0.5 g/kg) for 7, 14 or 21 days and after these periods, one-hour venous thrombosis model was performed. Control group received 0.9 % NaCl solution and was sham operated. The statistical significance of results was computed by Mann – Whitney’s test. We observed that thrombus weight was decreased in animals obtaining WPC-8080 and that was statistically significant in 14 and 21-day supplemented groups. Blood count parameters did not differ significantly in rats with and without thrombosis induction whether they were fed with WPC-80 or not. Moreover, the number of platelets (PLT) was within the normal range in each group. The examined coagulation parameters in rats of the control groups were within normal limits. After WPC-80 supplementation there was the tendency to prolonged activated partial thromboplastin time (aPTT), but in comparison, the results did not turn out significant. In animals that received WPC-80 0.3 g·kg-1 for 21 days with and without induced thrombosis, prothrombin time (PT) and an international normalized ratio (INR) was somewhat decreased, remaining within the normal range, but the nature and significance of this observation are beyond the framework of the current study. Additionally, fibrinogen and thrombin time (TT) did not differ significantly between groups. Therefore the exact effect of WPC-80 on coagulation system is still elusive and requires further thorough research including mechanisms of action. Determining the potential clinical application of WPC-80 requires the selection of the optimal dose and duration of supplementation.

Keywords: antithrombotic, rats, venous thrombosis, WPC-80

Procedia PDF Downloads 118
986 Correlation Mapping for Measuring Platelet Adhesion

Authors: Eunseop Yeom

Abstract:

Platelets can be activated by the surrounding blood flows where a blood vessel is narrowed as a result of atherosclerosis. Numerous studies have been conducted to identify the relation between platelets activation and thrombus formation. To measure platelet adhesion, this study proposes an image analysis technique. Blood samples are delivered in the microfluidic channel, and then platelets are activated by a stenotic micro-channel with 90% severity. By applying proposed correlation mapping, which visualizes decorrelation of the streaming blood flow, the area of adhered platelets (APlatelet) was estimated without labeling platelets. In order to evaluate the performance of correlation mapping on the detection of platelet adhesion, the effect of tile size was investigated by calculating 2D correlation coefficients with binary images obtained by manual labeling and the correlation mapping method with different sizes of the square tile ranging from 3 to 50 pixels. The maximum 2D correlation coefficient is observed with the optimum tile size of 5×5 pixels. As the area of the platelet adhesion increases, the platelets plug the channel and there is only a small amount of blood flows. This image analysis could provide new insights for better understanding of the interactions between platelet aggregation and blood flows in various physiological conditions.

Keywords: platelet activation, correlation coefficient, image analysis, shear rate

Procedia PDF Downloads 335
985 The Mapping of Pastoral Area as a Basis of Ecological for Beef Cattle in Pinrang Regency, South Sulawesi, Indonesia

Authors: Jasmal A. Syamsu, Muhammad Yusuf, Hikmah M. Ali, Mawardi A. Asja, Zulkharnaim

Abstract:

This study was conducted and aimed in identifying and mapping the pasture as an ecological base of beef cattle. A survey was carried out during a period of April to June 2016, in Suppa, Mattirobulu, the district of Pinrang, South Sulawesi province. The mapping process of grazing area was conducted in several stages; inputting and tracking of data points into Google Earth Pro (version 7.1.4.1529), affirmation and confirmation of tracking line visualized by satellite with a variety of records at the point, a certain point and tracking input data into ArcMap Application (ArcGIS version 10.1), data processing DEM/SRTM (S04E119) with respect to the location of the grazing areas, creation of a contour map (a distance of 5 m) and mapping tilt (slope) of land and land cover map-making. Analysis of land cover, particularly the state of the vegetation was done through the identification procedure NDVI (Normalized Differences Vegetation Index). This procedure was performed by making use of the Landsat-8. The results showed that the topography of the grazing areas of hills and some sloping surfaces and flat with elevation vary from 74 to 145 above sea level (asl), while the requirements for growing superior grass and legume is an altitude of up to 143-159 asl. Slope varied between 0 - > 40% and was dominated by a slope of 0-15%, according to the slope/topography pasture maximum of 15%. The range of NDVI values for pasture image analysis results was between 0.1 and 0.27. Characteristics of vegetation cover of pasture land in the category of vegetation density were low, 70% of the land was the land for cattle grazing, while the remaining approximately 30% was a grove and forest included plant water where the place for shelter of the cattle during the heat and drinking water supply. There are seven types of graminae and 5 types of legume that was dominant in the region. Proportionally, graminae class dominated up 75.6% and legume crops up to 22.1% and the remaining 2.3% was another plant trees that grow in the region. The dominant weed species in the region were Cromolaenaodorata and Lantana camara, besides that there were 6 types of floor plant that did not include as forage fodder.

Keywords: pastoral, ecology, mapping, beef cattle

Procedia PDF Downloads 353
984 Mitigating the Cost of Empty Container Repositioning through the Virtual Container Yard: An Appraisal of Carriers’ Perceptions

Authors: L. Edirisinghe, Z. Jin, A. W. Wijeratne, R. Mudunkotuwa

Abstract:

Empty container repositioning is a fundamental problem faced by the shipping industry. The virtual container yard is a novel strategy underpinning the container interchange between carriers that could substantially reduce this ever-increasing shipping cost. This paper evaluates the shipping industry perception of the virtual container yard using chi-square tests. It examines if the carriers perceive that the selected independent variables, namely culture, organization, decision, marketing, attitudes, legal, independent, complexity, and stakeholders of carriers, impact the efficiency and benefits of the virtual container yard. There are two major findings of the research. Firstly, carriers view that complexity, attitudes, and stakeholders may impact the effectiveness of container interchange and may influence the perceived benefits of the virtual container yard. Secondly, the three factors of legal, organization, and decision influence only the perceived benefits of the virtual container yard. Accordingly, the implementation of the virtual container yard will be influenced by six key factors, namely complexity, attitudes, stakeholders, legal, organization and decision. Since the virtual container yard could reduce overall shipping costs, it is vital to examine the carriers’ perception of this concept.

Keywords: virtual container yard, imbalance, management, inventory

Procedia PDF Downloads 195