Search results for: energy levels
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 15123

Search results for: energy levels

14133 Sliding Mode Control of Variable Speed Wind Energy Conversion Systems

Authors: Zine Souhila Rached, Mazari Benyounes Bouzid, Mohamed Amine, Allaoui Tayeb

Abstract:

Wind energy has many advantages, it does not pollute and it is an inexhaustible source. However, its high cost is a major constraint, especially on the less windy sites. The purpose of wind energy systems is to maximize energy efficiency, and extract maximum power from the wind speed. In other words, having a power coefficient is maximum and therefore the maximum power point tracking. In this case, the MPPT control becomes important.To realize this control, strategy conventional proportional and integral (PI) controller is usually used. However, this strategy cannot achieve better performance. This paper proposes a robust control of a turbine which optimizes its production, that is improve the quality and energy efficiency, namely, a strategy of sliding mode control. The proposed sliding mode control strategy presents attractive features such as robustness to parametric uncertainties of the turbine; the proposed sliding mode control approach has been simulated on three-blade wind turbine. The simulation result under Matlab\Simulink has validated the performance of the proposed MPPT strategy.

Keywords: wind turbine, maximum power point tracking, sliding mode, energy conversion systems

Procedia PDF Downloads 609
14132 The Effect of Restaurant Residuals on Performance of Japanese Quail

Authors: A. A. Saki, Y. Karimi, H. J. Najafabadi, P. Zamani, Z. Mostafaie

Abstract:

The restaurant residuals reasons such as competition between human and animal consumption of cereals, increasing environmental pollution and the high cost of production of livestock products is important. Therefore, in this restaurant residuals have a high nutritional value (protein and high energy) that it is possible can replace some of the poultry diets are especially Japanese quail. Today, the challenges of processing and consumption of these lesions occurring in modern industry would be confronting. Increasing costs, pressures, and problems associated with waste excretion, the need for re-evaluation and utilization of waste to livestock and poultry feed fortifies. This study aimed to investigate the effects of different levels of restaurant residuals on performance of 300 layer Japanese quails. This experiment included 5 treatments, 4 replicates, and 15 quails in each from 10 to 18 weeks age in a completely randomized design (CRD). The treatments consist of basal diet including corn and soybean meal (without residual restaurants), and treatments 2, 3, 4 and 5, includes a basal diet containing 5, 10, 15 and 20% of restaurant residuals, respectively. There were no significant effect of restaurant residuals levels on body weight (BW), feed conversion ratio (FCR), percentage of egg production (EP), egg mass (EM) between treatments (P > 0/05). However, feed intake (FI) of 5% restaurant residual was significantly higher than 20% treatment (P < 0/05). Egg weight (EW) was also higher by receiving 20% restaurant residuals compared with 10% in this respect (P < 0/05). Yolk weight (YW) of treatments containing 10 and 20% of the residual restaurant were significantly higher than control (P < 0/05). Eggs white weight (EWW) of 20 and 5% restaurants residual treatments were significantly increased compared by 10% (P < 0/05). Furthermore, EW, egg weight to shell surface area and egg surface area in 20% treatment were significantly higher than control and 10% treatment (P < 0/05). The overall results of this study have shown that restaurant residuals for laying quail diets in levels of 10 and 15 percent could be replaced with a part of the quail ration without any adverse effect.

Keywords: by-product, laying quail, performance, restaurant residuals

Procedia PDF Downloads 163
14131 Review of Strategies for Hybrid Energy Storage Management System in Electric Vehicle Application

Authors: Kayode A. Olaniyi, Adeola A. Ogunleye, Tola M. Osifeko

Abstract:

Electric Vehicles (EV) appear to be gaining increasing patronage as a feasible alternative to Internal Combustion Engine Vehicles (ICEVs) for having low emission and high operation efficiency. The EV energy storage systems are required to handle high energy and power density capacity constrained by limited space, operating temperature, weight and cost. The choice of strategies for energy storage evaluation, monitoring and control remains a challenging task. This paper presents review of various energy storage technologies and recent researches in battery evaluation techniques used in EV applications. It also underscores strategies for the hybrid energy storage management and control schemes for the improvement of EV stability and reliability. The study reveals that despite the advances recorded in battery technologies there is still no cell which possess both the optimum power and energy densities among other requirements, for EV application. However combination of two or more energy storages as hybrid and allowing the advantageous attributes from each device to be utilized is a promising solution. The review also reveals that State-of-Charge (SoC) is the most crucial method for battery estimation. The conventional method of SoC measurement is however questioned in the literature and adaptive algorithms that include all model of disturbances are being proposed. The review further suggests that heuristic-based approach is commonly adopted in the development of strategies for hybrid energy storage system management. The alternative approach which is optimization-based is found to be more accurate but is memory and computational intensive and as such not recommended in most real-time applications.

Keywords: battery state estimation, hybrid electric vehicle, hybrid energy storage, state of charge, state of health

Procedia PDF Downloads 239
14130 Critical Review of Clean Energy Mix as Means of Boosting Power Generation in Nigeria

Authors: B. Adebayo, A. A. Adebayo

Abstract:

Adequate power generation and supply are enormous challenges confronting Nigeria state today. This is a powerful mechanism that drives industrial development and socio-economy of any nation. The present level of power generation and supply have become national embarrassment to both government and the citizens of Nigeria, where over 60% of the population have no access to electricity. This paper is set to review the abundant clean energy alternative sources available in abundance that are capable of boosting power generation. The clean energy sources waiting to be exploited include: nuclear, solar and wind energy. The environmental benefits of these sources of power generation are identified. Nuclear energy is a powerful clean energy source. However, Africa accounted for 20% of known recoverable reserve and uranium produces heat of 500,000 MJ/kg. Moreover, Nigeria receives average daily solar radiation of over 5.249 kWh/m2/day. Researchers have shown that wind speed and power flux densities varied from 1.5 – 4.1 m/s and 5.7 – 22.5 W/m2 respectively. It is a fact that the cost of doing business in Nigeria is very high, leading to winding up of the multi-national companies and then led to increase unemployment level. More importantly, readily available vast quantity of energy will reduce cost of running industries. Hence, more industries will come on board, goods, services, and more job creation will be achieved. This clean source of power generation is devoid of production of green house gases, elimination of environmental pollution, and reduced waste disposal. Then Nigerians will live in harmony with the environment.

Keywords: power, generation, energy, mix, clean, industrial

Procedia PDF Downloads 307
14129 Characterization Transesterification Activity on Thermostable Lipase (LK1) From Local Isolate

Authors: Luxy Grebers Swend Sinaga, Akhmaloka

Abstract:

The global energy crisis, triggered by declining fossil The global energy crisis, triggered by declining fossil fuel reserves and exacerbated by population growth and increasing energy demand, was driven the development of renewable energy sources. One of the green energy alternatives being developed is biodiesel. Transesterification is at the core of biodiesel production, where fatty acids in oil are converted into methyl esters with the aid of a catalyst. Lipases exhibit high activity and stability during catalysis, especially under harsh conditions. Lipase (Lk1) isolated from organic waste compost at the Bandung Institute of Technology, Bandung, West Java, shows promising potential in this field. The thermostable lipase was purified using Ni-NTA affinity chromatography, followed by SDS-PAGE analysis for purity confirmation. Characterizing the transesterification activity of Lk1 is essential for assessing its effectiveness in converting oil into biodiesel, including methyl esters. The results of this study showed that Lk1 exhibited the highest activity on a methyl palmitate substrate, with an optimum temperature of 60°C, very stable activity in the non-polar solvent n-hexane, and was able to maintain its optimum activity for up to 1 hour. These characters make Lk1 highly suitable for biodiesel production, as it meets the main criteria for the transesterification process in producing renewable energy.

Keywords: biodiesel, lipase Lk1, transesterification, renewable energy, thermostability

Procedia PDF Downloads 23
14128 Enlightening Malaysia's Energy Policies and Strategies for Modernization and Sustainable Development

Authors: Hussain Ali Bekhet, Nor Salwati Othman

Abstract:

Malaysia has achieved remarkable economic growth since 1957, moving toward modernization from a predominantly agriculture base to manufacturing and—now—modern services. The development policies (i.e., New Economic Policy [1970–1990], the National Development Policy [1990–2000], and Vision 2020) have been recognized as the most important drivers of this transformation. The transformation of the economic structure has moved along with rapid gross domestic product (GDP) growth, urbanization growth, and greater demand for energy from mainly fossil fuel resources, which in turn, increase CO2 emissions. Malaysia faced a great challenge to bring down the CO2 emissions without compromising economic development. Solid policies and a strategy to reduce dependencies on fossil fuel resources and reduce CO2 emissions are needed in order to achieve sustainable development. This study provides an overview of the Malaysian economic, energy, and environmental situation, and explores the existing policies and strategies related to energy and the environment. The significance is to grasp a clear picture on what types of policies and strategies Malaysia has in hand. In the future, this examination should be extended by drawing a comparison with other developed countries and highlighting several options for sustainable development.

Keywords: energy policies, energy efficiency, renewable energy, green building, Malaysia, sustainable development

Procedia PDF Downloads 246
14127 Sustainable Interiors: An Inquiry into Design Approach to Imbibe Energy Efficiency and Well-Being in Corporate Offices

Authors: Lipi Agarwal, Siddhant Patni

Abstract:

The corporate organizations are seeking for the spaces that are energy efficient and maximize occupant health and productivity. Thus, designing workplaces that effectively steward resources and supports the health, the well-being of its occupants has become a dire need of the hour. The purpose of this paper is to understand the design approach for creating sustainable interiors in corporate offices. The objective is to identify the factors that aid energy efficient design and elevates the well-being in building and communities. The paper will employ qualitative methodology and undertake case study approach to comprehend the role of Leadership in Energy and Environmental Design (LEED) and WELL (a global rating system for health and wellness) in providing sustainable interiors. The findings help the design fraternity in designing a workspace that optimizes the use of resources and advances the human health inside the built environment. The paper suggests the framework that leads to interior environment which is sustainable in nature.

Keywords: corporate interiors, energy efficiency, LEED, sustainability, WELL, well-being

Procedia PDF Downloads 126
14126 The Effect of Inhalation of Ylang-ylang Aroma on the Levels of Anxiety of Parents with Hospitalized Toddlers Diagnosed with Pneumonia

Authors: Crisostomo Hart A., Cruz Anna Cecilia R., Cruz Bianca Isabelle A., Cruz John Edward Ligzurc M., Cruz Mikaela Denise P.

Abstract:

Aim/purpose: The researchers aimed to determine the effect of Ylang-ylang aroma in decreasing the anxiety levels of parents with hospitalized toddlers diagnosed with pneumonia. Method: Quantitative Quasi-experimental one-group pre-test post-test design was utilized in the study. The study includes a pretest, an intervention, and a posttest on the same experimental group. Participants are parents aged 20 – 35 years old with a hospitalized toddler who is diagnosed with pneumonia. Anxiety levels were measured before the intervention using the State Trait Anxiety Inventory by Spielberger. Those who scored 41-120 proceeded to receive the intervention. The intervention was a 3-day course of aromatherapy where the participants inhaled the Ylang-ylang flower at a distance of 10 – 15 cm away from the face for 10 minutes. The post-test using the same instrument measured the levels of anxiety after the 3-day aromatherapy. Paired T-test of SPSS 21.0 was used to analyze the pre-test and post-test scores. Results: Study yielded a p value of 0.047 which shows significant difference between the levels of anxiety before and after the intervention. Conclusions: Based on the data analysis, the researchers concluded that inhalation of Ylang-ylang aroma is effective in reducing the anxiety level of the parents of hospitalized toddlers diagnosed with Pneumonia.

Keywords: Ylang-ylang, Pneumonia, Toddlers, Aromatherapy

Procedia PDF Downloads 411
14125 Single Pass Design of Genetic Circuits Using Absolute Binding Free Energy Measurements and Dimensionless Analysis

Authors: Iman Farasat, Howard M. Salis

Abstract:

Engineered genetic circuits reprogram cellular behavior to act as living computers with applications in detecting cancer, creating self-controlling artificial tissues, and dynamically regulating metabolic pathways. Phenemenological models are often used to simulate and design genetic circuit behavior towards a desired behavior. While such models assume that each circuit component’s function is modular and independent, even small changes in a circuit (e.g. a new promoter, a change in transcription factor expression level, or even a new media) can have significant effects on the circuit’s function. Here, we use statistical thermodynamics to account for the several factors that control transcriptional regulation in bacteria, and experimentally demonstrate the model’s accuracy across 825 measurements in several genetic contexts and hosts. We then employ our first principles model to design, experimentally construct, and characterize a family of signal amplifying genetic circuits (genetic OpAmps) that expand the dynamic range of cell sensors. To develop these models, we needed a new approach to measuring the in vivo binding free energies of transcription factors (TFs), a key ingredient of statistical thermodynamic models of gene regulation. We developed a new high-throughput assay to measure RNA polymerase and TF binding free energies, requiring the construction and characterization of only a few constructs and data analysis (Figure 1A). We experimentally verified the assay on 6 TetR-homolog repressors and a CRISPR/dCas9 guide RNA. We found that our binding free energy measurements quantitatively explains why changing TF expression levels alters circuit function. Altogether, by combining these measurements with our biophysical model of translation (the RBS Calculator) as well as other measurements (Figure 1B), our model can account for changes in TF binding sites, TF expression levels, circuit copy number, host genome size, and host growth rate (Figure 1C). Model predictions correctly accounted for how these 8 factors control a promoter’s transcription rate (Figure 1D). Using the model, we developed a design framework for engineering multi-promoter genetic circuits that greatly reduces the number of degrees of freedom (8 factors per promoter) to a single dimensionless unit. We propose the Ptashne (Pt) number to encapsulate the 8 co-dependent factors that control transcriptional regulation into a single number. Therefore, a single number controls a promoter’s output rather than these 8 co-dependent factors, and designing a genetic circuit with N promoters requires specification of only N Pt numbers. We demonstrate how to design genetic circuits in Pt number space by constructing and characterizing 15 2-repressor OpAmp circuits that act as signal amplifiers when within an optimal Pt region. We experimentally show that OpAmp circuits using different TFs and TF expression levels will only amplify the dynamic range of input signals when their corresponding Pt numbers are within the optimal region. Thus, the use of the Pt number greatly simplifies the genetic circuit design, particularly important as circuits employ more TFs to perform increasingly complex functions.

Keywords: transcription factor, synthetic biology, genetic circuit, biophysical model, binding energy measurement

Procedia PDF Downloads 472
14124 Quantifying the Impact of Climate Change on Agritourism: The Transformative Role of Solar Energy in Enhancing Growth and Resilience in Eritrea

Authors: Beyene Daniel, Herbert Ntuli

Abstract:

Agritourism in Eritrea is increasingly threatened by climate change, manifesting through rising temperatures, shifting rainfall patterns, and resource scarcity. This study employs quantitative methods to assess the economic and environmental impacts of climate change on agritourism, utilizing metrics such as annual income fluctuations, changes in visitor numbers, and energy consumption patterns. The methodology relies on secondary data sourced from the World Bank, government reports, and academic publications to analyze the economic viability of integrating solar energy into agritourism operations. Key variables include the Benefits from Renewable Energy (BRE), encompassing cost savings from reduced energy expenses and the monetized value of avoided greenhouse gas emissions. Using a net present value (NPV) framework, the research compares the impact of solar energy against traditional fossil fuel sources by evaluating the Value of Reduced Greenhouse Gas Emissions (CO2) and the Value of Health-Related Costs (VHRC) due to air pollution. The preliminary findings of this research are of utmost importance. They indicate that the adoption of solar energy can enhance energy independence by up to 40%, reduce operational costs by 25%, and stabilize agritourism activities in climate-sensitive regions. This research aims to provide actionable insights for policymakers and stakeholders, supporting the sustainable development of agritourism in Eritrea and contributing to broader climate adaptation strategies. By employing a comprehensive cost-benefit analysis, the study highlights the economic advantages and environmental benefits of transitioning to renewable energy in the face of climate change.

Keywords: climate change, renewable energy, resilience, cost-benefit analysis

Procedia PDF Downloads 12
14123 Analysis of Vibration and Shock Levels during Transport and Handling of Bananas within the Post-Harvest Supply Chain in Australia

Authors: Indika Fernando, Jiangang Fei, Roger Stanley, Hossein Enshaei

Abstract:

Delicate produce such as fresh fruits are increasingly susceptible to physiological damage during the essential post-harvest operations such as transport and handling. Vibration and shock during the distribution are identified factors for produce damage within post-harvest supply chains. Mechanical damages caused during transit may significantly diminish the quality of fresh produce which may also result in a substantial wastage. Bananas are one of the staple fruit crops and the most sold supermarket produce in Australia. It is also the largest horticultural industry in the state of Queensland where 95% of the total production of bananas are cultivated. This results in significantly lengthy interstate supply chains where fruits are exposed to prolonged vibration and shocks. This paper is focused on determining the shock and vibration levels experienced by packaged bananas during transit from the farm gate to the retail market. Tri-axis acceleration data were captured by custom made accelerometer based data loggers which were set to a predetermined sampling rate of 400 Hz. The devices recorded data continuously for 96 Hours in the interstate journey of nearly 3000 Km from the growing fields in far north Queensland to the central distribution centre in Melbourne in Victoria. After the bananas were ripened at the ripening facility in Melbourne, the data loggers were used to capture the transport and handling conditions from the central distribution centre to three retail outlets within the outskirts of Melbourne. The quality of bananas were assessed before and after transport at each location along the supply chain. Time series vibration and shock data were used to determine the frequency and the severity of the transient shocks experienced by the packages. Frequency spectrogram was generated to determine the dominant frequencies within each segment of the post-harvest supply chain. Root Mean Square (RMS) acceleration levels were calculated to characterise the vibration intensity during transport. Data were further analysed by Fast Fourier Transform (FFT) and the Power Spectral Density (PSD) profiles were generated to determine the critical frequency ranges. It revealed the frequency range in which the escalated energy levels were transferred to the packages. It was found that the vertical vibration was the highest and the acceleration levels mostly oscillated between ± 1g during transport. Several shock responses were recorded exceeding this range which were mostly attributed to package handling. These detrimental high impact shocks may eventually lead to mechanical damages in bananas such as impact bruising, compression bruising and neck injuries which affect their freshness and visual quality. It was revealed that the frequency range between 0-5 Hz and 15-20 Hz exert an escalated level of vibration energy to the packaged bananas which may result in abrasion damages such as scuffing, fruit rub and blackened rub. Further research is indicated specially in the identified critical frequency ranges to minimise exposure of fruits to the harmful effects of vibration. Improving the handling conditions and also further study on package failure mechanisms when exposed to transient shock excitation will be crucial to improve the visual quality of bananas within the post-harvest supply chain in Australia.

Keywords: bananas, handling, post-harvest, supply chain, shocks, transport, vibration

Procedia PDF Downloads 190
14122 Reliable and Energy-Aware Data Forwarding under Sink-Hole Attack in Wireless Sensor Networks

Authors: Ebrahim Alrashed

Abstract:

Wireless sensor networks are vulnerable to attacks from adversaries attempting to disrupt their operations. Sink-hole attacks are a type of attack where an adversary node drops data forwarded through it and hence affecting the reliability and accuracy of the network. Since sensor nodes have limited battery power, it is essential that any solution to the sinkhole attack problem be very energy-aware. In this paper, we present a reliable and energy efficient scheme to forward data from source nodes to the base station while under sink-hole attack. The scheme also detects sink-hole attack nodes and avoid paths that includes them.

Keywords: energy-aware routing, reliability, sink-hole attack, WSN

Procedia PDF Downloads 395
14121 Optimal Type and Installation Time of Wind Farm in a Power System, Considering Service Providers

Authors: M. H. Abedi, A. Jalilvand

Abstract:

The economic development benefits of wind energy may be the most tangible basis for the local and state officials’ interests. In addition to the direct salaries associated with building and operating wind projects, the wind energy industry provides indirect jobs and benefits. The optimal planning of a wind farm is one most important topic in renewable energy technology. Many methods have been implemented to optimize the cost and output benefit of wind farms, but the contribution of this paper is mentioning different types of service providers and also time of installation of wind turbines during planning horizon years. Genetic algorithm (GA) is used to optimize the problem. It is observed that an appropriate layout of wind farm can cause to minimize the different types of cost.

Keywords: renewable energy, wind farm, optimization, planning

Procedia PDF Downloads 522
14120 Development of a Decision-Making Method by Using Machine Learning Algorithms in the Early Stage of School Building Design

Authors: Rajaian Hoonejani Mohammad, Eshraghi Pegah, Zomorodian Zahra Sadat, Tahsildoost Mohammad

Abstract:

Over the past decade, energy consumption in educational buildings has steadily increased. The purpose of this research is to provide a method to quickly predict the energy consumption of buildings using separate evaluation of zones and decomposing the building to eliminate the complexity of geometry at the early design stage. To produce this framework, machine learning algorithms such as Support vector regression (SVR) and Artificial neural network (ANN) are used to predict energy consumption and thermal comfort metrics in a school as a case. The database consists of more than 55000 samples in three climates of Iran. Cross-validation evaluation and unseen data have been used for validation. In a specific label, cooling energy, it can be said the accuracy of prediction is at least 84% and 89% in SVR and ANN, respectively. The results show that the SVR performed much better than the ANN.

Keywords: early stage of design, energy, thermal comfort, validation, machine learning

Procedia PDF Downloads 71
14119 Use of GIS and Remote Sensing for Calculating the Installable Photovoltaic and Thermal Power on All the Roofs of the City of Aix-en-Provence, France

Authors: Sofiane Bourchak, Sébastien Bridier

Abstract:

The objective of this study is to show how to calculate and map solar energy’s quantity (instantaneous and accumulated global solar radiation during the year) available on roofs in the city Aix-en-Provence which has a population of 140,000 inhabitants. The result is a geographic information system (GIS) layer, which represents hourly and monthly the production of solar energy on roofs throughout the year. Solar energy professionals can use it to optimize implementations and to size energy production systems. The results are presented as a set of maps, tables and histograms in order to determine the most effective costs in Aix-en-Provence in terms of photovoltaic power (electricity) and thermal power (hot water).

Keywords: geographic information system, photovoltaic, thermal, solar potential, solar radiation

Procedia PDF Downloads 434
14118 Modeling Approach for Evaluating Infiltration Rate of a Large-Scale Housing Stock

Authors: Azzam Alosaimi

Abstract:

Different countries attempt to reduce energy demands and Greenhouse Gas (GHG) emissions to mitigate global warming potential. They set different building codes to regulate excessive building’s energy losses. Energy losses occur due to pressure difference between the indoor and outdoor environments, and thus, heat transfers from one region to another. One major sources of energy loss is known as building airtightness. Building airtightness is the fundamental feature of the building envelope that directly impacts infiltration. Most of international building codes require minimum performance for new construction to ensure acceptable airtightness. The execution of airtightness required standards has become more challenging in recent years due to a lack of expertise and equipment, making it costly and time-consuming. Hence, researchers have developed predictive models to predict buildings infiltration rates to meet building codes and to reduce energy and cost. This research applies a theoretical modeling approach using Matlab software to predict mean infiltration rate distributions and total heat loss of Saudi Arabia’s housing stock.

Keywords: infiltration rate, energy demands, heating loss, cooling loss, carbon emissions

Procedia PDF Downloads 162
14117 The Relationships between Carbon Dioxide (CO2) Emissions, Energy Consumption and GDP per capita for Oman: Time Series Analysis, 1980–2010

Authors: Jinhoa Lee

Abstract:

The relationships between environmental quality, energy use and economic output have created growing attention over the past decades among researchers and policy makers. Focusing on the empirical aspects of the role of CO2 emissions and energy use in affecting the economic output, this paper is an effort to fulfil the gap in a comprehensive case study at a country level using modern econometric techniques. To achieve the goal, this country-specific study examines the short-run and long-run relationships among energy consumption, carbon dioxide (CO2) emissions and gross domestic product (GDP) for Oman using time series analysis from the year 1980-2010. To investigate the relationships between the variables, this paper employs the Augmented Dickey Fuller (ADF) test for stationary, Johansen maximum likelihood method for co-integration and a Vector Error Correction Model (VECM) for both short- and long-run causality among the research variables for the sample. All the variables in this study show very strong significant effects on GDP in the country for the long term. The long-run equilibrium in the VECM suggests positive long-run causalities from CO2 emissions to GDP. Conversely, negative impacts of energy consumption on GDP are found to be significant in Oman during the period. In the short run, there exist negative unidirectional causalities among GDP, CO2 emissions and energy consumption running from GDP to CO2 emissions and from energy consumption to CO2 emissions. Overall, the results support arguments that there are relationships among environmental quality, energy use and economic output in Oman over of period 1980-2010.

Keywords: CO2 emissions, energy consumption, GDP, Oman, time series analysis

Procedia PDF Downloads 460
14116 Correlation between Body Mass Index and Blood Sugar/Serum Lipid Levels in Fourth-Grade Boys in Japan

Authors: Kotomi Yamashita, Hiromi Kawasaki, Satoko Yamasaki, Susumu Fukita, Risako Sakai

Abstract:

Lifestyle-related diseases develop from the long-term accumulation of health consequences from a poor lifestyle. Thus, schoolchildren, who have not accumulated long-term lifestyle habits, are believed to be at a lower risk for lifestyle-related diseases. However, schoolchildren rarely receive blood tests unless they are under treatment for a serious disease; without such data on their blood, the impacts of their young lifestyle could not be known. Blood data from physical measurements can help in the implementation of more effective health education. Therefore, we examined the correlation between body mass index (BMI) and blood sugar/serum lipid (BS/SL) levels. From 2014 to 2016, we measured the blood data of fourth-grade students living in a city in Japan. The present study reported on the results of 281 fourth-grade boys only (80.3% of total). We analyzed their BS/SL levels by comparing the blood data against the criteria of the National Center for Child Health and Development in Japan. Next, we examined the correlation between BMI and BS/SL levels. IBM SPSS Statistics for Windows, Version 25 was used for analysis. A total of 69 boys (24.6%) were within the normal range for BMI (18.5–24), whereas 193 (71.5%) and 8 boys (2.8%) had lower and higher BMI, respectively. Regarding BS levels, 280 boys were within the normal range (70–90 mg/dl); 1 boy reported a higher value. All the boys were within the normal range for glycated Hemoglobin (HbA1c) (4.6–6.2%). Regarding SL levels, 271 boys were within the normal range (125–230 mg/dl) for total cholesterol (TC), whereas 5 boys (1.8%) had lower and 5 boys (1.8%) had higher levels. A total of 243 boys (92.7%) were within the normal range (36-138mg/dL) for triglycerides (TG), whereas 19 boys (7.3%) had lower and 19 boys (7.3%) had higher levels. Regarding high-density lipoprotein cholesterol (HDL-C), 276 boys (98.2%) were within the normal range (40-mg/dl), whereas 5 boys (1.8%) reported lower values. All but one boy (280, 99.6%) were within the normal range (-170 mg/dl) for low-density lipoprotein cholesterol (LDL-C); the exception (0.4%) had a higher level. BMI and BS didn’t show a correlation. BMI and HbA1c were moderately positively correlated (r = 0.139, p=0.019). We also observed moderate positive correlations between BMI and TG (r = 0.328, p < 0.01), TC (r=0.239, p< 0.01), LDL-C (r = 0.324, p < 0.01), respectively. BMI and HDL-C were low correlated (r = -0.185, p = 0.002). Most of the boys were within the normal range for BS/SL levels. However, some boys exceeded the normal TG range. Fourth graders with a high TG may develop a lifestyle-related disease in the future. Given its relation to TG, food habits should be improved in this group. Our findings suggested a positive correlation between BMI and BS/SL levels. Fourth-grade schoolboys with a high BMI may be at high risk for developing lifestyle-related diseases. Lifestyle improvement may be recommended to lower the BS/SL levels in this group.

Keywords: blood sugar level, lifestyle-related diseases, school students, serum lipid level

Procedia PDF Downloads 137
14115 Rejection Sensitivity and Romantic Relationships: A Systematic Review and Meta-Analysis

Authors: Mandira Mishra, Mark Allen

Abstract:

This meta-analysis explored whether rejection sensitivity relates to facets of romantic relationships. A comprehensive literature search identified 60 studies (147 effect sizes; 16,955 participants) that met inclusion criteria. Data were analysed using inverse-variance weighted random effects meta-analysis. Mean effect sizes from 21 meta-analyses provided evidence that more rejection sensitive individuals report lower levels of relationship satisfaction and relationship closeness, lower levels of perceived partner satisfaction, a greater likelihood of intimate partner violence (perpetration and victimization), higher levels of relationship concerns and relationship conflict, and higher levels of jealousy and self-silencing behaviours. There was also some evidence that rejection sensitive individuals are more likely to engage in risky sexual behaviour and are more prone to sexual compulsivity. There was no evidence of publication bias and various levels of heterogeneity in computed averages. Random effects meta-regression identified participant age and sex as important moderators of pooled mean effects. These findings provide a foundation for the theoretical development of rejection sensitivity in romantic relationships and should be of interest to relationship and marriage counsellors and other relationship professionals.

Keywords: intimate partner violence, relationship satisfaction, commitment, sexual orientation, risky sexual behaviour

Procedia PDF Downloads 79
14114 An Energy Efficient Clustering Approach for Underwater ‎Wireless Sensor Networks

Authors: Mohammad Reza Taherkhani‎

Abstract:

Wireless sensor networks that are used to monitor a special environment, are formed from a large number of sensor nodes. The role of these sensors is to sense special parameters from ambient and to make a connection. In these networks, the most important challenge is the management of energy usage. Clustering is one of the methods that are broadly used to face this challenge. In this paper, a distributed clustering protocol based on learning automata is proposed for underwater wireless sensor networks. The proposed algorithm that is called LA-Clustering forms clusters in the same energy level, based on the energy level of nodes and the connection radius regardless of size and the structure of sensor network. The proposed approach is simulated and is compared with some other protocols with considering some metrics such as network lifetime, number of alive nodes, and number of transmitted data. The simulation results demonstrate the efficiency of the proposed approach.

Keywords: underwater sensor networks, clustering, learning automata, energy consumption

Procedia PDF Downloads 361
14113 Energy Absorption Characteristic of a Coupler Rubber Buffer Used in Rail Vehicles

Authors: Zhixiang Li, Shuguang Yao, Wen Ma

Abstract:

Coupler rubber buffer has been widely applied on the high-speed trains and the main function of the rubber buffer is dissipating the impact energy between vehicles. The rubber buffer consists of two groups of rubbers, which are both pre-compressed and then installed into the frame body. This paper focuses on the energy absorption characteristics of the rubber buffers particularly. Firstly, the quasi-static compression tests were carried out for 1 and 3 pairs of rubber sheets and some energy absorption responses relationship, i.e. Eabn = n×Eab1, Edissn = n×Ediss1, and Ean = Ea1, were obtained. Next, a series of quasi-static tests were performed for 1 pair of rubber sheet to investigate the energy absorption performance with different compression ratio of the rubber buffers. Then the impact tests with five impact velocities were conducted and the coupler knuckle was destroyed when the impact velocity was 10.807 km/h. The impact tests results showed that with the increase of impact velocity, the Eab, Ediss and Ea of rear buffer increased a lot, but the three responses of front buffer had not much increase. Finally, the results of impact tests and quasi-static tests were contrastively analysed and the results showed that with the increase of the stroke, the values of Eab, Ediss, and Ea were all increase. However, the increasing rates of impact tests were all larger than that of quasi-static tests. The maximum value of Ea was 68.76% in impact tests, it was a relatively high value for vehicle coupler buffer. The energy capacity of the rear buffer was determined for dynamic loading, it was 22.98 kJ.

Keywords: rubber buffer, coupler, energy absorption, impact tests

Procedia PDF Downloads 192
14112 Negotiation of Meaning among Iranian EFL Learners and the Relationship between the Proficiency Levels and the Transfer of Knowledge

Authors: Z. Komeili, Sh. Abadikhah, H. Talebi

Abstract:

Interaction and negotiation of meaning in the foreign language (FL) contexts are crucial to L2 development. Although research studies on children in EFL contexts have increased in recent years, the study of Iranian children negotiating meaning during their communicative task performance still needs further study. The purpose of this study was to investigate young EFL learners' interaction and negotiation of meaning (NoM) during task completion and examine the difference in meaning negotiation between the different proficiency levels and the association between the learners’ proficiency levels and their transfer of knowledge. The participants were twenty-eight young Iranian EFL learners forming 14 proficiency-matched dyads and were assigned into two different groups according to their proficiency levels. The dyads were asked to complete the collaborative task; their interaction was transcribed and analyzed in terms of their NoM. To test the transfer of knowledge to the subsequent performance, tailor-made tests were designed based on the NoM of each individual dyad. The results indicated a significant positive relationship between the learners’ level of proficiency and their transfer of knowledge to the subsequent performance. Our findings suggest that the elementary group had engaged in more negotiation of meaning compared to the intermediate group, and the higher the proficiency level, the better they performed in the post-test and benefited from the NoM. The study has some implications for researchers, teachers, and young learners.

Keywords: collaborative tasks, negotiation of meaning, proficiency levels, sociocultural theory, tailor-made test

Procedia PDF Downloads 214
14111 Lessons of Passive Environmental Design in the Sarabhai and Shodan Houses by Le Corbusier

Authors: Juan Sebastián Rivera Soriano, Rosa Urbano Gutiérrez

Abstract:

The Shodan House and the Sarabhai House (Ahmedabad, India, 1954 and 1955, respectively) are considered some of the most important works of Le Corbusier produced in the last stage of his career. There are some academic publications that study the compositional and formal aspects of their architectural design, but there is no in-depth investigation into how the climatic conditions of this region were a determining factor in the design decisions implemented in these projects. This paper argues that Le Corbusier developed a specific architectural design strategy for these buildings based on scientific research on climate in the Indian context. This new language was informed by a pioneering study and interpretation of climatic data as a design methodology that would even involve the development of new design tools. This study investigated whether their use of climatic data meets values and levels of accuracy obtained with contemporary instruments and tools, such as Energy Plus weather data files and Climate Consultant. It also intended to find out if Le Corbusier's office’s intentions and decisions were indeed appropriate and efficient for those climate conditions by assessing these projects using BIM models and energy performance simulations from Design Builder. Accurate models were built using original historical data through archival research. The outcome is to provide a new understanding of the environment of these houses through the combination of modern building science and architectural history. The results confirm that in these houses, it was achieved a model of low energy consumption. This paper contributes new evidence not only on exemplary modern architecture concerned with environmental performance but also on how it developed progressive thinking in this direction.

Keywords: bioclimatic architecture, Le Corbusier, Shodan, Sarabhai Houses

Procedia PDF Downloads 63
14110 Effect of Steam Explosion of Crop Residues on Chemical Compositions and Efficient Energy Values

Authors: Xin Wu, Yongfeng Zhao, Qingxiang Meng

Abstract:

In China, quite low proportion of crop residues were used as feedstuff because of its poor palatability and low digestibility. Steam explosion is a physical and chemical feed processing technology which has great potential to improve sapidity and digestibility of crop residues. To investigate the effect of the steam explosion on chemical compositions and efficient energy values, crop residues (rice straw, wheat straw and maize stover) were processed by steam explosion (steam temperature 120-230°C, steam pressure 2-26kg/cm², 40min). Steam-exploded crop residues were regarded as treatment groups and untreated ones as control groups, nutritive compositions were analyzed and effective energy values were calculated by prediction model in INRA (1988, 2010) for both groups. Results indicated that the interaction between treatment and variety has a significant effect on chemical compositions of crop residues. Steam explosion treatment of crop residues decreased neutral detergent fiber (NDF) significantly (P < 0.01), and compared with untreated material, NDF content of rice straw, wheat straw, and maize stover lowered 21.46%, 32.11%, 28.34% respectively. Acid detergent lignin (ADL) of crop residues increased significantly after the steam explosion (P < 0.05). The content of crude protein (CP), ether extract (EE) and Ash increased significantly after steam explosion (P < 0.05). Moreover, predicted effective energy values of each steam-exploded residue were higher than that of untreated ones. The digestible energy (DE), metabolizable energy (ME), net energy for maintenance (NEm) and net energy for gain (NEg)of steam-exploded rice straw were 3.06, 2.48, 1.48and 0.29 MJ/kg respectively and increased 46.21%, 46.25%, 49.56% and 110.92% compared with untreated ones(P < 0.05). Correspondingly, the energy values of steam-exploded wheat straw were 2.18, 1.76, 1.03 and 0.15 MJ/kg, which were 261.78%, 261.29%, 274.59% and 1014.69% greater than that of wheat straw (P < 0.05). The above predicted energy values of steam exploded maize stover were 5.28, 4.30, 2.67 and 0.82 MJ/kg and raised 109.58%, 107.71%, 122.57% and 332.64% compared with the raw material(P < 0.05). In conclusion, steam explosion treatment could significantly decrease NDF content, increase ADL, CP, EE, Ash content and effective energy values of crop residues. The effect of steam explosion was much more obvious for wheat straw than the other two kinds of residues under the same condition.

Keywords: chemical compositions, crop residues, efficient energy values, steam explosion

Procedia PDF Downloads 247
14109 Energy Self-Sufficiency Through Smart Micro-Grids and Decentralised Sector-Coupling

Authors: C. Trapp, A. Vijay, M. Khorasani

Abstract:

Decentralised micro-grids with sector coupling can combat the spatial and temporal intermittence of renewable energy by combining power, transportation and infrastructure sectors. Intelligent energy conversion concepts such as electrolysers, hydrogen engines and fuel cells combined with energy storage using intelligent batteries and hydrogen storage form the back-bone of such a system. This paper describes a micro-grid based on Photo-Voltaic cells, battery storage, innovative modular and scalable Anion Exchange Membrane (AEM) electrolyzer with an efficiency of up to 73%, high-pressure hydrogen storage as well as cutting-edge combustion-engine based Combined Heat and Power (CHP) plant with more than 85% efficiency at the university campus to address the challenges of decarbonization whilst eliminating the necessity for expensive high-voltage infrastructure.

Keywords: sector coupling, micro-grids, energy self-sufficiency, decarbonization, AEM electrolysis, hydrogen CHP

Procedia PDF Downloads 182
14108 Effects of the Supplementation of Potassium Humate at Different Levels to the Dairy Cows' Concentrated Mix during Dry Period on Early Lactation Yield Parameters and Dam/Calf Immunity

Authors: Cangir Uyarlar, E. Eren Gultepe, I. Sadi Cetingul, Ismail Bayram

Abstract:

This study was conducted to investigate the effect of humic acid (Potassium Humate) at different levels on rations on the effects of both maternal and offspring health, metabolic parameters and immunity levels in transition dairy cows. For this purpose, 50 Holstein dairy cows divided 5 trial groups. Experimental groups were designed as follows: A) Control (0% Humas); B) 0.5 Humas (0,5% in concentrated diet); C) 1 Humas (1% in concentrated diet), D) 1,5 Humas (1,5% in concentrated diet), E) 2 Humas (2% in concentrated diet), respectively. The study lasted from the first day of the dry period to postpartum 30th day. Diets were prepared as isocaloric and isonitrogenic. In the experiment, the day on which the animals gave birth was accepted as ‘0 (zero)’ and blood was taken from tail vein (v. coccygea) at -60, -53, -46, -39, -32, -25, -18, -11, -4, 0, ; Colostrum samples were taken on days 0, 1 and 2; Blood samples were taken on days 0, 1, 2, 15 and 30 from the juguler vein (v. jugularis) of the new born calves. Total blood leukocyte, Lymphocyte, Monocyte, granulocytes, Hemoglobin, Hematocrit, MCV, MCH, MWC, RDW, PLT, MPV, PDW, PCT, NEFA, BHBA, Glucose, Total Cholesterol , Triglyceride, LDL, HDL, VLDL, ALT, AST, ALP, GGT and Total IgG levels and colostrum IgG levels were determined in this experiment. The results suggest that although the supplementation of humic acid at 2% level adversely affected to production parameters, the addition of humic acid (potassium humate) to the concentrate mix during the dry period (particularly 0.5 and 1% levels) may provide an increasing on mother and the offspring immunity, some improving on serum metabolism parameters and enhancing the milk production.

Keywords: humic acid, dairy cow, calf, immunity

Procedia PDF Downloads 206
14107 Integration of Hydropower and Solar Photovoltaic Generation into Distribution System: Case of South Sudan

Authors: Ater Amogpai

Abstract:

Hydropower and solar photovoltaic (PV) generation are crucial in sustainability and transitioning from fossil fuel to clean energy. Integrating renewable energy sources such as hydropower and solar photovoltaic (PV) into the distributed networks contributes to achieving energy balance, pollution mitigation, and cost reduction. Frequent power outages and a lack of load reliability characterize the current South Sudan electricity distribution system. The country’s electricity demand is 300MW; however, the installed capacity is around 212.4M. Insufficient funds to build new electricity facilities and expand generation are the reasons for the gap in installed capacity. The South Sudan Ministry of Energy and Dams gave a contract to an Egyptian Elsewedy Electric Company that completed the construction of a solar PV plant in 2023. The plant has a 35 MWh battery storage and 20 MW solar PV system capacity. The construction of Juba Solar PV Park started in 2022 to increase the current installed capacity in Juba City to 53 MW. The plant will begin serving 59000 residents in Juba and save 10,886.2t of carbon dioxide (CO2) annually.

Keywords: renewable energy, hydropower, solar energy, photovoltaic, South Sudan

Procedia PDF Downloads 137
14106 Quantifying Uncertainties in an Archetype-Based Building Stock Energy Model by Use of Individual Building Models

Authors: Morten Brøgger, Kim Wittchen

Abstract:

Focus on reducing energy consumption in existing buildings at large scale, e.g. in cities or countries, has been increasing in recent years. In order to reduce energy consumption in existing buildings, political incentive schemes are put in place and large scale investments are made by utility companies. Prioritising these investments requires a comprehensive overview of the energy consumption in the existing building stock, as well as potential energy-savings. However, a building stock comprises thousands of buildings with different characteristics making it difficult to model energy consumption accurately. Moreover, the complexity of the building stock makes it difficult to convey model results to policymakers and other stakeholders. In order to manage the complexity of the building stock, building archetypes are often employed in building stock energy models (BSEMs). Building archetypes are formed by segmenting the building stock according to specific characteristics. Segmenting the building stock according to building type and building age is common, among other things because this information is often easily available. This segmentation makes it easy to convey results to non-experts. However, using a single archetypical building to represent all buildings in a segment of the building stock is associated with loss of detail. Thermal characteristics are aggregated while other characteristics, which could affect the energy efficiency of a building, are disregarded. Thus, using a simplified representation of the building stock could come at the expense of the accuracy of the model. The present study evaluates the accuracy of a conventional archetype-based BSEM that segments the building stock according to building type- and age. The accuracy is evaluated in terms of the archetypes’ ability to accurately emulate the average energy demands of the corresponding buildings they were meant to represent. This is done for the buildings’ energy demands as a whole as well as for relevant sub-demands. Both are evaluated in relation to the type- and the age of the building. This should provide researchers, who use archetypes in BSEMs, with an indication of the expected accuracy of the conventional archetype model, as well as the accuracy lost in specific parts of the calculation, due to use of the archetype method.

Keywords: building stock energy modelling, energy-savings, archetype

Procedia PDF Downloads 153
14105 Renovate to nZEB of an Existing Building in the Mediterranean Area: Analysis of the Use of Renewable Energy Sources for the HVAC System

Authors: M. Baratieri, M. Beccali, S. Corradino, B. Di Pietra, C. La Grassa, F. Monteleone, G. Morosinotto, G. Puglisi

Abstract:

The energy renovation of existing buildings represents an important opportunity to increase the decarbonization and the sustainability of urban environments. In this context, the work carried out has the objective of demonstrating the technical and economic feasibility of an energy renovate of a public building destined for offices located on the island of Lampedusa in the Mediterranean Sea. By applying the Italian transpositions of European Directives 2010/31/EU and 2009/28/EC, the building has been renovated from the current energy requirements of 111.7 kWh/m² to 16.4 kWh/m². The result achieved classifies the building as nZEB (nearly Zero Energy Building) according to the Italian national definition. The analysis was carried out using in parallel a quasi-stationary software, normally used in the professional field, and a dynamic simulation model often used in the academic world. The proposed interventions cover the components of the building’s envelope, the heating-cooling system and the supply of energy from renewable sources. In these latter points, the analysis has focused more on assessing two aspects that affect the supply of renewable energy. The first concerns the use of advanced logic control systems for air conditioning units in order to increase photovoltaic self-consumption. With these adjustments, a considerable increase in photovoltaic self-consumption and a decrease in the electricity exported to the Island's electricity grid have been obtained. The second point concerned the evaluation of the building's energy classification considering the real efficiency of the heating-cooling plant. Normally the energy plants have lower operational efficiency than the designed one due to multiple reasons; the decrease in the energy classification of the building for this factor has been quantified. This study represents an important example for the evaluation of the best interventions for the energy renovation of buildings in the Mediterranean Climate and a good description of the correct methodology to evaluate the resulting improvements.

Keywords: heat pumps, HVAC systems, nZEB renovation, renewable energy sources

Procedia PDF Downloads 451
14104 The Potential of Renewable Energy in Tunisia and Its Impact on Economic Growth

Authors: Assaad Ghazouani

Abstract:

Tunisia is ranked among the countries with low energy diversification, but this configuration makes the country too dependent on fossil fuel exporting countries and therefore extremely sensitive to any oil crises, many measures to diversify electricity production must be taken in making use of other forms of renewable and nuclear energy. One of the solutions required to escape this dependence is the liberalization of the electricity industry which can lead to an improvement of supply, energy diversification, and reducing some of the negative effects of the trade balance. This paper examines the issue of renewable electricity and economic growth in Tunisia consumption. The main objective is to study and analyze the causal link between renewable energy consumption and economic growth in Tunisia over the period 1980-2010. To examine the relationship in the short and in the long terms, we used a multidimensional approach to cointegration based on recent advances in time series econometrics (test Zivot - Andrews, Test of Cointegration Johannsen, Granger causality test, error correction model (ECM)).

Keywords: renewable electricity, economic growth, VECM, cointegration, Tunisia

Procedia PDF Downloads 541