Search results for: conventional magnesia carbon refractories
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6384

Search results for: conventional magnesia carbon refractories

5394 Optimizing the Pair Carbon Xerogels-Electrolyte for High Performance Supercapacitors

Authors: Boriana Karamanova, Svetlana Veleva, Luybomir Soserov, Ana Arenillas, Francesco Lufrano, Antonia Stoyanova

Abstract:

Supercapacitors have received a lot of research attention and are promising energy storage devices due to their high power and long cycle life. In order to developed an advanced device with significant capacity for storing charge and cheap carbon materials, efforts must focus not only on improving synthesis by controlling the morphology and pore size but also on improving electrode-electrolyte compatibility of the resulting systems. The present study examines the relationship between the surface chemistry of two activated carbon xerogels, the electrolyte type, and the electrochemical properties of supercapacitors. Activated carbon xerogels were prepared by varying the initial pH of the resorcinol-formaldehyde aqueous solution. The materials produced are physicochemical characterized by DTA/TGA, porous characterization, and SEM analysis. The carbon xerogel based electrodes were prepared by spreading over glass plate a slurry containing the carbon gel, graphite, and poly vinylidene difluoride (PVDF) binder. The layer formed was dried consecutively at different temperatures and then detached by water. After, the layer was dried again to improve its mechanical stability. The developed electrode materials and the Aquivion® E87-05S membrane (Solvay Specialty Polymers), socked in Na2SO4 as a polymer electrolyte, were used to assembly the solid-state supercapacitor. Symmetric supercapacitor cells composed by same electrodes and 1 M KOH electrolytes are also assembled and tested for comparison. The supercapacitor performances are verified by different electrochemical methods - cyclic voltammetry, galvanostatic charge/discharge measurements, electrochemical impedance spectroscopy, and long-term durability tests in neutral and alkaline electrolytes. Specific capacitances, energy, and power density, energy efficiencies, and durability were compared into studied supercapacitors. Ex-situ physicochemical analyses on the synthesized materials have also been performed, which provide information about chemical and structural changes in the electrode morphology during charge / discharge durability tests. They are discussed on the basis of electrode-electrolyte interaction. The obtained correlations could be of significance in order to design sustainable solid-state supercapacitors with high power and energy density. Acknowledgement: This research is funded by the Ministry of Education and Science of Bulgaria under the National Program "European Scientific Networks" (Agreement D01-286 / 07.10.2020, D01-78/30.03.2021). Authors gratefully acknowledge.

Keywords: carbon xerogel, electrochemical tests, neutral and alkaline electrolytes, supercapacitors

Procedia PDF Downloads 134
5393 Identification of Rice Quality Using Gas Sensors and Neural Networks

Authors: Moh Hanif Mubarok, Muhammad Rivai

Abstract:

The public's response to quality rice is very high. So it is necessary to set minimum standards in checking the quality of rice. Most rice quality measurements still use manual methods, which are prone to errors due to limited human vision and the subjectivity of testers. So, a gas detection system can be a solution that has high effectiveness and subjectivity for solving current problems. The use of gas sensors in testing rice quality must pay attention to several parameters. The parameters measured in this research are the percentage of rice water content, gas concentration, output voltage, and measurement time. Therefore, this research was carried out to identify carbon dioxide (CO₂), nitrous oxide (N₂O) and methane (CH₄) gases in rice quality using a series of gas sensors using the Neural Network method.

Keywords: carbon dioxide, dinitrogen oxide, methane, semiconductor gas sensor, neural network

Procedia PDF Downloads 39
5392 Simultaneous Adsorption and Characterization of NOx and SOx Emissions from Power Generation Plant on Sliced Porous Activated Carbon Prepared by Physical Activation

Authors: Muhammad Shoaib, Hassan M. Al-Swaidan

Abstract:

Air pollution has been a major challenge for the scientists today, due to the release of toxic emissions from various industries like power plants, desalination plants, industrial processes and transportation vehicles. Harmful emissions into the air represent an environmental pressure that reflects negatively on human health and productivity, thus leading to a real loss in the national economy. Variety of air pollutants in the form of carbon oxides, hydrocarbons, nitrogen oxides, sulfur oxides, suspended particulate material etc. are present in air due to the combustion of different types of fuels like crude oil, diesel oil and natural gas. Among various pollutants, NOx and SOx emissions are considered as highly toxic due to its carcinogenicity and its relation with various health disorders. In Kingdom of Saudi Arabia electricity is generated by burning of crude, diesel or natural gas in the turbines of electricity stations. Out of these three, crude oil is used extensively for electricity generation. Due to the burning of the crude oil there are heavy contents of gaseous pollutants like sulfur dioxides (SOx) and nitrogen oxides (NOx), gases which are ultimately discharged in to the environment and is a serious environmental threat. The breakthrough point in case of lab studies using 1 gm of sliced activated carbon adsorbant comes after 20 and 30 minutes for NOx and SOx, respectively, whereas in case of PP8 plant breakthrough point comes in seconds. The saturation point in case of lab studies comes after 100 and 120 minutes and for actual PP8 plant it comes after 60 and 90 minutes for NOx and SOx adsorption, respectively. Surface characterization of NOx and SOx adsorption on SAC confirms the presence of peaks in the FT-IR spectrum. CHNS study verifies that the SAC is suitable for NOx and SOx along with some other C and H containing compounds coming out from stack emission stream from the turbines of a power plant.

Keywords: activated carbon, flue gases, NOx and SOx adsorption, physical activation, power plants

Procedia PDF Downloads 344
5391 Medium Design and Optimization for High Β-Galactosidase Producing Microbial Strains from Dairy Waste through Fermentation

Authors: Ashish Shukla, K. P. Mishra, Pushplata Tripathi

Abstract:

This paper investigates the production and optimization of β-galactosidase enzyme using synthetic medium by isolated wild strains (S1, S2) mutated strains (M1, M2) through SSF and SmF. Among the different cell disintegration methods used, the highest specific activity was obtained when the cells were permeabilized using isoamyl alcohol. Wet lab experiments were performed to investigate the effects of carbon and nitrogen substrates present in Vogel’s medium on β-galactosidase enzyme activity using S1, S2, and M1, M2 strains through SSF. SmF experiments were performed for effects of carbon and nitrogen sources in YLK2Mg medium on β-galactosidase enzyme activity using S1, S2 and M1, M2 strains. Effect of pH on β-galactosidase enzyme production was also done using S1, S2, and M1, M2 strains. Results were found to be very appreciable in all the cases.

Keywords: β-galactosidase, cell disintegration, permeabilized, SSF, SmF

Procedia PDF Downloads 268
5390 Selection of Soil Quality Indicators of Rice Cropping Systems Using Minimum Data Set Influenced by Imbalanced Fertilization

Authors: Theresa K., Shanmugasundaram R., Kennedy J. S.

Abstract:

Nutrient supplements are indispensable for raising crops and to reap determining productivity. The nutrient imbalance between replenishment and crop uptake is attempted through the input of inorganic fertilizers. Excessive dumping of inorganic nutrients in soil cause stagnant and decline in yield. Imbalanced N-P-K ratio in the soil exacerbates and agitates the soil ecosystems. The study evaluated the fertilization practices of conventional (CFs), organic and Integrated Nutrient Management system (INM) on soil quality using key indicators and soil quality indices. Twelve rice farming fields of which, ten fields were having conventional cultivation practices, one field each was organic farming based and INM based cultivated under monocropping sequence in the Thondamuthur block of Coimbatore district were fixed and properties viz., physical, chemical and biological were studied for four cropping seasons to determine soil quality index (SQI). SQI was computed for conventional, organic and INM fields. Comparing conventional farming (CF) with organic and INM, CF was recorded with a lower soil quality index. While in organic and INM fields, the higher SQI value of 0.99 and 0.88 respectively were registered. CF₄ received with a super-optimal dose of N (250%) showed a lesser SQI value (0.573) as well as the yield (3.20 t ha⁻¹) and the CF6 which received 125 % N recorded the highest SQI (0.715) and yield (6.20 t ha⁻¹). Likewise, most of the CFs received higher N beyond the level of 125 % except CF₃ and CF₉, which recorded lower yields. CFs which received super-optimal P in the order of CF₆&CF₇>CF₁&CF₁₀ recorded lesser yields except for CF₆. Super-optimal K application also recorded lesser yield in CF₄, CF₇ and CF₉.

Keywords: rice cropping system, soil quality indicators, imbalanced fertilization, yield

Procedia PDF Downloads 154
5389 Experimental Simulations of Aerosol Effect to Landfalling Tropical Cyclones over Philippine Coast: Virtual Seeding Using WRF Model

Authors: Bhenjamin Jordan L. Ona

Abstract:

Weather modification is an act of altering weather systems that catches interest on scientific studies. Cloud seeding is a common form of weather alteration. On the same principle, tropical cyclone mitigation experiment follows the methods of cloud seeding with intensity to account for. This study will present the effects of aerosol to tropical cyclone cloud microphysics and intensity. The framework of Weather Research and Forecasting (WRF) model incorporated with Thompson aerosol-aware scheme is the prime host to support the aerosol-cloud microphysics calculations of cloud condensation nuclei (CCN) ingested into the tropical cyclones before making landfall over the Philippine coast. The coupled microphysical and radiative effects of aerosols will be analyzed using numerical data conditions of Tropical Storm Ketsana (2009), Tropical Storm Washi (2011), and Typhoon Haiyan (2013) associated with varying CCN number concentrations per simulation per typhoon: clean maritime, polluted, and very polluted having 300 cm-3, 1000 cm-3, and 2000 cm-3 aerosol number initial concentrations, respectively. Aerosol species like sulphates, sea salts, black carbon, and organic carbon will be used as cloud nuclei and mineral dust as ice nuclei (IN). To make the study as realistic as possible, investigation during the biomass burning due to forest fire in Indonesia starting October 2015 as Typhoons Mujigae/Kabayan and Koppu/Lando had been seeded with aerosol emissions mainly comprises with black carbon and organic carbon, will be considered. Emission data that will be used is from NASA's Moderate Resolution Imaging Spectroradiometer (MODIS). The physical mechanism/s of intensification or deintensification of tropical cyclones will be determined after the seeding experiment analyses.

Keywords: aerosol, CCN, IN, tropical cylone

Procedia PDF Downloads 293
5388 Effect of Laser Ablation OTR Films and High Concentration Carbon Dioxide for Maintaining the Freshness of Strawberry ‘Maehyang’ for Export in Modified Atmosphere Condition

Authors: Hyuk Sung Yoon, In-Lee Choi, Min Jae Jeong, Jun Pill Baek, Ho-Min Kang

Abstract:

This study was conducted to improve storability by using suitable laser ablation oxygen transmission rate (OTR) films and effectiveness of high carbon dioxide at strawberry 'Maehyang' for export. Strawberries were grown by hydroponic system in Gyeongsangnam-do province. These strawberries were packed by different laser ablation OTR films (Daeryung Co., Ltd.) such as 1,300 cc, 20,000 cc, 40,000 cc, 80,000 cc, and 100,000 cc•m-2•day•atm. And CO2 injection (30%) treatment was used 20,000 cc•m-2•day•atm OTR film and perforated film was as a control. Temperature conditions were applied simulated shipping and distribution conditions from Korea to Singapore, there were stored at 3 ℃ (13 days), 10 ℃ (an hour), and 8 ℃ (7 days) for 20 days. Fresh weight loss rate was under 1% as maximum permissible weight loss in treated OTR films except perforated film as a control during storage. Carbon dioxide concentration within a package for the storage period showed a lower value than the maximum CO2 concentration tolerated range (15 %) in treated OTR films and even the concentration of high OTR film treatment; from 20,000cc to 100,000cc were less than 3%. 1,300 cc had a suitable carbon dioxide range as over 5 % under 15 % at 5 days after storage until finished experiments and CO2 injection treatment was quickly drop the 15 % at storage after 1 day, but it kept around 15 % during storage. Oxygen concentration was maintained between 10 to 15 % in 1,300 cc and CO2 injection treatments, but other treatments were kept in 19 to 21 %. Ethylene concentration was showed very higher concentration at the CO2 injection treatment than OTR treatments. In the OTR treatments, 1,300 cc showed the highest concentration in ethylene and 20,000 cc film had lowest. Firmness was maintained highest in 1,300cc, but there was not shown any significant differences among other OTR treatments. Visual quality had shown the best result in 20,000 cc that showed marketable quality until 20 days after storage. 20,000 cc and perforated film had better than other treatments in off-odor and the 1,300 cc and CO2 injection treatments have occurred strong off-odor even after 10 minutes. As a result of the difference between Hunter ‘L’ and ‘a’ values of chroma meter, the 1,300cc and CO2 injection treatments were delayed color developments and other treatments did not shown any significant differences. The results indicate that effectiveness for maintaining the freshness was best achieved at 20,000 cc•m-2•day•atm. Although 1,300 cc and CO2 injection treatments were in appropriate MA condition, it showed darkening of strawberry calyx and excessive reduction of coloring due to high carbon dioxide concentration during storage. While 1,300cc and CO2 injection treatments were considered as appropriate treatments for exports to Singapore, but the result was shown different. These results are based on cultivar characteristics of strawberry 'Maehyang'.

Keywords: carbon dioxide, firmness, shelf-life, visual quality

Procedia PDF Downloads 397
5387 Life Cycle Carbon Dioxide Emissions from the Construction Phase of Highway Sector in China

Authors: Yuanyuan Liu, Yuanqing Wang, Di Li

Abstract:

Carbon dioxide (CO2) emissions mitigation from road construction activities is one of the potential pathways to deal with climate change due to its higher use of materials, machinery energy consumption, and high quantity of vehicle and equipment fuels for transportation and on-site construction activities. Aiming to assess the environmental impact of the road infrastructure construction activities and to identify hotspots of emissions sources, this study developed a life-cycle CO2 emissions assessment framework covering three stages of material production, to-site and on-site transportation under the guidance of the principle of LCA ISO14040. Then streamlined inventory analysis on sub-processes of each stage was conducted based on the budget files from cases of highway projects in China. The calculation results were normalized into functional unit represented as ton per km per lane. Then a comparison between the amount of emissions from each stage, and sub-process was made to identify the major contributor in the whole highway lifecycle. In addition, the calculating results were used to be compared with results in other countries for understanding the level of CO2 emissions associated with Chinese road infrastructure in the world. The results showed that materials production stage produces the most of the CO2 emissions (for more than 80%), and the production of cement and steel accounts for large quantities of carbon emissions. Life cycle CO2 emissions of fuel and electric energy associated with to-site and on-site transportation vehicle and equipment are a minor component of total life cycle CO2 emissions from highway project construction activities. Bridges and tunnels are dominant large carbon contributor compared to the road segments. The life cycle CO2 emissions of road segment in highway project in China are slightly higher than the estimation results of highways in European countries and USA, about 1500 ton per km per lane. In particularly, the life cycle CO2 emissions of road pavement in majority cities all over the world are about 500 ton per km per lane. However, there is obvious difference between the cities when the estimation on life cycle CO2 emissions of highway projects included bridge and tunnel. The findings of the study could offer decision makers a more comprehensive reference to understand the contribution of road infrastructure to climate change, especially understand the contribution from road infrastructure construction activities in China. In addition, the identified hotspots of emissions sources provide the insights of how to reduce road carbon emissions for development of sustainable transportation.

Keywords: carbon dioxide emissions, construction activities, highway, life cycle assessment

Procedia PDF Downloads 264
5386 Exergy Analysis of a Vapor Absorption Refrigeration System Using Carbon Dioxide as Refrigerant

Authors: Samsher Gautam, Apoorva Roy, Bhuvan Aggarwal

Abstract:

Vapor absorption refrigeration systems can replace vapor compression systems in many applications as they can operate on a low-grade heat source and are environment-friendly. Widely used refrigerants such as CFCs and HFCs cause significant global warming. Natural refrigerants can be an alternative to them, among which carbon dioxide is promising for use in automotive air conditioning systems. Its inherent safety, ability to withstand high pressure and high heat transfer coefficient coupled with easy availability make it a likely choice for refrigerant. Various properties of the ionic liquid [bmim][PF₆], such as non-toxicity, stability over a wide temperature range and ability to dissolve gases like carbon dioxide, make it a suitable absorbent for a vapor absorption refrigeration system. In this paper, an absorption chiller consisting of a generator, condenser, evaporator and absorber was studied at an operating temperature of 70⁰C. A thermodynamic model was set up using the Peng-Robinson equations of state to predict the behavior of the refrigerant and absorbent pair at different points in the system. A MATLAB code was used to obtain the values of enthalpy and entropy at selected points in the system. The exergy destruction in each component and exergetic coefficient of performance (ECOP) of the system were calculated by performing an exergy analysis based on the second law of thermodynamics. Graphs were plotted between varying operating conditions and the ECOP obtained in each case. The effect of every component on the ECOP was examined. The exergetic coefficient of performance was found to be lesser than the coefficient of performance based on the first law of thermodynamics.

Keywords: [bmim][PF₆] as absorbent, carbon dioxide as refrigerant, exergy analysis, Peng-Robinson equations of state, vapor absorption refrigeration

Procedia PDF Downloads 284
5385 Cost Comparison between R.C.C. Structures and Composite Columns Structures

Authors: Assad Rashid, Umair Ahmed, Zafar Baig

Abstract:

A new trend in construction is widely influenced by the use of Steel-Concrete Composite Columns. The rapid growth in Steel-Concrete Composite construction has widely decreased the conventional R.C.C structures. Steel Concrete composite construction has obtained extensive receiving around the globe. It is considering the fact that R.C.C structures construction is most suitable and economical for low-rise construction, so it is used in farming systems in most of the buildings. However, increased dead load, span restriction, less stiffness and risky formwork make R.C.C construction uneconomical and not suitable when it comes to intermediate to high-rise buildings. A Base + Ground +11 storey commercial building was designed on ETABS 2017 and made a comparison between conventional R.C.C and encased composite column structure. After performing Equivalent Static non-linear analysis, it has been found that construction cost is 13.01% more than R.C.C structure but encased composite column building has 7.7% more floor area. This study will help in understanding the behavior of conventional R.C.C structure and Encased Composite column structure.

Keywords: composite columns structure, equivalent static non-linear analysis, comparison between R.C.C and encased composite column structures, cost-effective structure

Procedia PDF Downloads 194
5384 Methodology for the Analysis of Energy Efficiency in Pneumatics Systems

Authors: Mario Lupaca, Karol Munoz, Victor De Negri

Abstract:

The present article presents a methodology for the improvement of the energy efficiency in pneumatic systems through the restoring of air. In this way, three techniques of expansion of a cylinder are identified: Expansion using the air of the compressor (conventional), restoring the air (efficient), and combining the air of the compressor and the restored air (hybrid). The methodology starts with the development of the GRAFCET of the system so that it can be decided whether to expand the cylinder in a conventional, efficient, or hybrid way. The methodology can be applied to any case. Finally, graphs of comparison between the three methods of expansion with certain cylinder strokes and workloads are presented, to facilitate the subsequent selection of one system or another.

Keywords: energetic, efficiency, GRAFCET, methodology, pneumatic

Procedia PDF Downloads 307
5383 Produce High-Quality Activated Carbon with a Large Surface Area from Date Seeds Biomass for Water Treatment

Authors: Rashad Al-Gaashani, Viktor Kochkodan, Jenny Lawler

Abstract:

Physico-chemical activation method wasused to produce high-quality activated carbon (AC) with a large surface area of about 2000 m2/g from low-cost and abundant biomasswastes in Qatar, namely date seeds. X-Ray diffraction (XRD), scanning electron spectroscopy (SEM), energy dispersive X-Ray spectroscopy (EDS), and Brunauer-Emmett-Teller (BET) surface area analysis were used to evaluate the AC samples. AC produced from date seeds have a wide range of the pores available, including micro- andnano-pores. This type of AC with a well-developed pore structure may be very attractive for different applications, including air and water purification from micro and nano pollutants. Heavy metalsiron (III) and copper (II) ions were removed from wastewater using the AC producedusinga batch adsorption technique. The AC produced from date seeds biomass wastes show high removal of heavy metals such as iron (III) ions (100%) and copper (II) ions (97.25%). The highest removal of copper (II) ions (100%) with AC produced from date seeds was found at pH 8, whereas the lowest removal (22.63%) occurred at pH 2. The effect of adsorption time, adsorbent dose, pH on the removal of heavy metalswere studied.

Keywords: activated carbon, date seeds, biomass, heavy metals removal, water treatment

Procedia PDF Downloads 97
5382 Fabrication of High Energy Hybrid Capacitors from Biomass Waste-Derived Activated Carbon

Authors: Makhan Maharjan, Mani Ulaganathan, Vanchiappan Aravindan, Srinivasan Madhavi, Jing-Yuan Wang, Tuti Mariana Lim

Abstract:

There is great interest to exploit sustainable, low-cost, renewable resources as carbon precursors for energy storage applications. Research on development of energy storage devices has been growing rapidly due to mismatch in power supply and demand from renewable energy sources This paper reported the synthesis of porous activated carbon from biomass waste and evaluated its performance in supercapicators. In this work, we employed orange peel (waste material) as the starting material and synthesized activated carbon by pyrolysis of KOH impregnated orange peel char at 800 °C in argon atmosphere. The resultant orange peel-derived activated carbon (OP-AC) exhibited a high BET surface area of 1,901 m2 g-1, which is the highest surface area so far reported for the orange peel. The pore size distribution (PSD) curve exhibits the pores centered at 11.26 Å pore width, suggesting dominant microporosity. The OP-AC was studied as positive electrode in combination with different negative electrode materials, such as pre-lithiated graphite (LiC6) and Li4Ti5O12 for making different hybrid capacitors. The lithium ion capacitor (LIC) fabricated using OP-AC with pre-lithiated graphite delivered a high energy density of ~106 Wh kg–1. The energy density for OP-AC||Li4Ti5O12 capacitor was ~35 Wh kg–1. For comparison purpose, configuration of OP-AC||OP-AC capacitors were studied in both aqueous (1M H2SO4) and organic (1M LiPF6 in EC-DMC) electrolytes, which delivered the energy density of 6.6 Wh kg-1 and 16.3 Wh kg-1, respectively. The cycling retentions obtained at current density of 1 A g–1 were ~85.8, ~87.0 ~82.2 and ~58.8% after 2500 cycles for OP-AC||OP-AC (aqueous), OP-AC||OP-AC (organic), OP-AC||Li4Ti5O12 and OP-AC||LiC6 configurations, respectively. In addition, characterization studies were performed by elemental and proximate composition, thermogravimetry, field emission-scanning electron microscopy, Raman spectra, X-ray diffraction (XRD) pattern, Fourier transform-infrared, X-ray photoelectron spectroscopy (XPS) and N2 sorption isotherms. The morphological features from FE-SEM exhibited well-developed porous structures. Two typical broad peaks observed in the XRD framework of the synthesized carbon implies amorphous graphitic structure. The ratio of 0.86 for ID/IG in Raman spectra infers high degree of graphitization in the sample. The band spectra of C 1s in XPS display the well resolved peaks related to carbon atoms in various chemical environments; for instances, the characteristics binding energies appeared at ~283.83, ~284.83, ~286.13, ~288.56, and ~290.70 eV which correspond to sp2 -graphitic C, sp3 -graphitic C, C-O, C=O and π-π*, respectively. Characterization studies revealed the synthesized carbon to be promising electrode material towards the application for energy storage devices. The findings opened up the possibility of developing high energy LICs from abundant, low-cost, renewable biomass waste.

Keywords: lithium-ion capacitors, orange peel, pre-lithiated graphite, supercapacitors

Procedia PDF Downloads 240
5381 Magnetic Field Induced Mechanical Behavior of Fluid Filled Carbon Nanotube Foam

Authors: Siva Kumar Reddy, Anwesha Mukherjee, Abha Misra

Abstract:

Excellent energy absorption capability in carbon nanotubes (CNT) is shown in their bulk structure that behaves like super compressible foam. Furthermore, a tunable mechanical behavior of CNT foam is achieved using several methods like changing the concentration of precursors, polymer impregnation, non covalent functionalization of CNT microstructure etc. Influence of magnetic field on compressive behavior of magnetic CNT demonstrated an enhanced peak stress and energy absorption capability, which does not require any surface and structural modification of the foam. This presentation discusses the mechanical behavior of micro porous CNT foam that is impregnated in magnetic field responsive fluid. Magnetic particles are dispersed in a nonmagnetic fluid so that alignment of both particles and CNT could play a crucial role in controlling the stiffness of the overall structure. It is revealed that the compressive behavior of CNT foam critically depends on the fluid viscosity as well as magnetic field intensity. Both peak Stress and energy absorption in CNT foam followed a power law behavior with the increase in the magnetic field intensity. However, in the absence of magnetic field, both peak stress and energy absorption capability of CNT foam presented a linear dependence on the fluid viscosity. Hence, this work demonstrates the role magnetic filed in controlling the mechanical behavior of the foams prepared at nanoscale.

Keywords: carbon nanotubes, magnetic field, energy absorption capability and viscosity

Procedia PDF Downloads 299
5380 Impact of Civil Engineering and Economic Growth in the Sustainability of the Environment: Case of Albania

Authors: Rigers Dodaj

Abstract:

Nowadays, the environment is a critical goal for civil engineers, human activity, construction projects, economic growth, and whole national development. Regarding the development of Albania's economy, people's living standards are increasing, and the requirements for the living environment are also increasing. Under these circumstances, environmental protection and sustainability this is the critical issue. The rising industrialization, urbanization, and energy demand affect the environment by emission of carbon dioxide gas (CO2), a significant parameter known to impact air pollution directly. Consequently, many governments and international organizations conducted policies and regulations to address environmental degradation in the pursuit of economic development, for instance in Albania, the CO2 emission calculated in metric tons per capita has increased by 23% in the last 20 years. This paper analyzes the importance of civil engineering and economic growth in the sustainability of the environment focusing on CO2 emission. The analyzed data are time series 2001 - 2020 (with annual frequency), based on official publications of the World Bank. The statistical approach with vector error correction model and time series forecasting model are used to perform the parameter’s estimations and long-run equilibrium. The research in this paper adds a new perspective to the evaluation of a sustainable environment in the context of carbon emission reduction. Also, it provides reference and technical support for the government toward green and sustainable environmental policies. In the context of low-carbon development, effectively improving carbon emission efficiency is an inevitable requirement for achieving sustainable economic and environmental protection. Also, the study reveals that civil engineering development projects impact greatly the environment in the long run, especially in areas of flooding, noise pollution, water pollution, erosion, ecological disorder, natural hazards, etc. The potential for reducing industrial carbon emissions in recent years indicates that reduction is becoming more difficult, it needs another economic growth policy and more civil engineering development, by improving the level of industrialization and promoting technological innovation in industrial low-carbonization.

Keywords: CO₂ emission, civil engineering, economic growth, environmental sustainability

Procedia PDF Downloads 78
5379 Seismic Performance of Various Grades of Steel Columns Through Finite Element Analysis

Authors: Asal Pournaghshband, Roham Maher

Abstract:

This study presents a numerical analysis of the cyclic behavior of H-shaped steel columns, focusing on different steel grades, including austenitic, ferritic, duplex stainless steel, and carbon steel. Finite Element (FE) models were developed and validated against experimental data, demonstrating a predictive accuracy of up to 6.5%. The study examined key parameters such as energy dissipation, and failure modes. Results indicate that duplex stainless steel offers the highest strength, with superior energy dissipation but a tendency for brittle failure at maximum strains of 0.149. Austenitic stainless steel demonstrated balanced performance with excellent ductility and energy dissipation, showing a maximum strain of 0.122, making it highly suitable for seismic applications. Ferritic stainless steel, while stronger than carbon steel, exhibited reduced ductility and energy absorption. Carbon steel displayed the lowest performance in terms of energy dissipation and ductility, with significant strain concentrations leading to earlier failure. These findings provide critical insights into optimizing material selection for earthquake-resistant structures, balancing strength, ductility, and energy dissipation under seismic conditions.

Keywords: Energy dissipation, finite element analysis, H-shaped columns, seismic performance, stainless steel grades

Procedia PDF Downloads 17
5378 Towards the Production of Least Contaminant Grade Biosolids and Biochar via Mild Acid Pre-treatment

Authors: Ibrahim Hakeem

Abstract:

Biosolids are stabilised sewage sludge produced from wastewater treatment processes. Biosolids contain valuable plant nutrient which facilitates their beneficial reuse in agricultural land. However, the increasing levels of legacy and emerging contaminants such as heavy metals (HMs), PFAS, microplastics, pharmaceuticals, microbial pathogens etc., are restraining the direct land application of biosolids. Pyrolysis of biosolids can effectively degrade microbial and organic contaminants; however, HMs remain a persistent problem with biosolids and their pyrolysis-derived biochar. In this work, we demonstrated the integrated processing of biosolids involving the acid pre-treatment for HMs removal and selective reduction of ash-forming elements followed by the bench-scale pyrolysis of the treated biosolids to produce quality biochar and bio-oil enriched with valuable platform chemicals. The pre-treatment of biosolids using 3% v/v H₂SO₄ at room conditions for 30 min reduced the ash content from 30 wt% in raw biosolids to 15 wt% in the treated sample while removing about 80% of limiting HMs without degrading the organic matter. The preservation of nutrients and reduction of HMs concentration and mobility via the developed hydrometallurgical process improved the grade of the treated biosolids for beneficial land reuse. The co-removal of ash-forming elements from biosolids positively enhanced the fluidised bed pyrolysis of the acid-treated biosolids at 700 ℃. Organic matter devolatilisation was improved by 40%, and the produced biochar had higher surface area (107 m²/g), heating value (15 MJ/kg), fixed carbon (35 wt%), organic carbon retention (66% dry-ash free) compared to the raw biosolids biochar with surface area (56 m²/g), heating value (9 MJ/kg), fixed carbon (20 wt%) and organic carbon retention (50%). Pre-treatment also improved microporous structure development of the biochar and substantially decreased the HMs concentration and bioavailability by at least 50% relative to the raw biosolids biochar. The integrated process is a viable approach to enhancing value recovery from biosolids.

Keywords: biosolids, pyrolysis, biochar, heavy metals

Procedia PDF Downloads 74
5377 Compromising of Vacuum Sewerage System in Developing Regions and the Impact on Environmet

Authors: Abdelsalam Elawwad, Mostafa Ragab, Hisham Abdel-Halim

Abstract:

Leakage in sewerage system can cause groundwater and soil contamination in urban areas, especially in area with a high groundwater table. This is a serious problem in small villages in developing countries that rely on ground water as a source for irrigation and drinking purposes. In the developed countries, the recent trend in areas with low population densities is vacuum sewerage system, which is environmentally safer than conventional gravity system, protecting public health, preventing exfiltration to the ground water, very easily applied in a relatively short time and can cope with a faster expansion of the urbanized areas. The aim of this work is to assess the feasibility of using vacuum sewerage in developing country, such as Egypt. Knowledge of local conditions can determine the most suitable sewer system for a specific region. Technical, environmental and financial comparisons between conventional sewerage system and vacuum sewerage system were held using statistical analysis. Different conditions, such as population densities, geometry of area, and ground water depths were evaluated. Sample comprising of 30 Egyptian villages was selected, where a complete design for conventional sewerage system and vacuum sewerage system was done. Based on this study, it is recommended from the environmental point of view to construct the vacuum sewerage system in such villages with low population densities; however, it is not economic for all cases. From financial point of view, vacuum sewerage system was a good competitor to conventional systems in flat areas and areas with high groundwater table. The local market supplying of the construction equipment especially collection chambers will greatly affect the investment cost. Capacity building and social mobilization will also play a great role in sustainability of this system. At the end, it is noteworthy that environmental sustainability and public health are more important than the financial aspects.

Keywords: ground water, conventional system, vacuum system, statistics, cost, density, terrain

Procedia PDF Downloads 273
5376 Microstructure and Mechanical Properties of Nb: Si: (a-C) Thin Films Prepared Using Balanced Magnetron Sputtering System

Authors: Sara Khamseh, Elahe Sharifi

Abstract:

321 alloy steel is austenitic stainless steel with high oxidation resistance and is commonly used to fabricate heat exchangers and steam generators. However, the low hardness and weak tribological performance can cause dangerous failures during industrial operations. The well-designed protective coatings on 321 alloy steel surfaces with high hardness and good tribological performance can guarantee their safe applications. The surface protection of metal substrates using protective coatings showed high efficiency in prevailing these problems. Carbon-based multicomponent coatings, such as metal-added amorphous carbon coatings, are crucially necessary because of their remarkable mechanical and tribological performances. In the current study, (Nb: Si: a-C) multicomponent coatings (a-C: amorphous carbon) were coated on 321 alloys using a balanced magnetron (BM) sputtering system at room temperature. The effects of the Si/Nb ratio on microstructure, mechanical and tribological characteristics of (Nb: Si: a-C) composite coatings were investigated. The XRD and Raman analysis results showed that the coatings formed a composite structure of cubic diamond (C-D), NbC, and graphite-like carbon (GLC). The NbC phase's abundance decreased when the C-D phase's affluence increased with an increasing Si/Nb ratio. The coatings' indentation hardness and plasticity index (H³/E² ratio) increased with an increasing Si/Nb ratio. The better mechanical properties of the coatings with higher Si content can be attributed to the higher cubic diamond (C-D) content. The cubic diamond (C-D) is a challenging phase and can positively affect the mechanical performance of the coatings. It is well documented that in hard protective coatings, Si encourages amorphization. In addition, THE studies showed that Nb and Mo can act as a catalyst for nucleation and growth of hard cubic (C-D) and hexagonal (H-D) diamond phases in a-C coatings. In the current study, it seems that fully arranged nanocomposite coatings contain hard C-D and NbC phases that embedded in the amorphous carbon (GLC) phase is formed. This unique structure decreased grain boundary density and defects and resulted in high hardness and H³/E² ratio. Moreover, the COF and wear rate of the coatings decreased with increasing Si/Nb ratio. This can be attributed to the good mechanical properties of the coatings and the formation of graphite-like carbon (GLC) structure with lamellae arrangement in the coatings. The complex and self-lubricant coatings are successfully formed on the surface of 321 alloys. The results of the present study clarified that Si addition to (Nb: a-C) coatings improve the mechanical and tribological performance of the coatings on 321 alloy.

Keywords: COF, mechanical properties, microstructure, (Nb: Si: a-C) coatings, Wear rate

Procedia PDF Downloads 84
5375 Utilization of Activated Carbon for the Extraction and Separation of Methylene Blue in the Presence of Acid Yellow 61 Using an Inclusion Polymer Membrane

Authors: Saâd Oukkass, Abderrahim Bouftou, Rachid Ouchn, L. Lebrun, Miloudi Hlaibi

Abstract:

We invariably exist in a world steeped in colors, whether in our clothing, food, cosmetics, or even medications. However, most of the dyes we use pose significant problems, being both harmful to the environment and resistant to degradation. Among these dyes, methylene blue and acid yellow 61 stand out, commonly used to dye various materials such as cotton, wood, and silk. Fortunately, various methods have been developed to treat and remove these polluting dyes, among which membrane processes play a prominent role. These methods are praised for their low energy consumption, ease of operation, and their ability to achieve effective separation of components. Adsorption on activated carbon is also a widely employed technique, complementing the basic processes. It proves particularly effective in capturing and removing organic compounds from water due to its substantial specific surface area while retaining its properties unchanged. In the context of our study, we examined two crucial aspects. Firstly, we explored the possibility of selectively extracting methylene blue from a mixture containing another dye, acid yellow 61, using a polymer inclusion membrane (PIM) made of PVA. After characterizing the morphology and porosity of the membrane, we applied kinetic and thermodynamic models to determine the values of permeability (P), initial flux (J0), association constant (Kass), and apparent diffusion coefficient (D*). Subsequently, we measured activation parameters (activation energy (Ea), enthalpy (ΔH#ass), entropy (ΔS#)). Finally, we studied the effect of activated carbon on the processes carried out through the membrane, demonstrating a clear improvement. These results make the membrane developed in this study a potentially pivotal player in the field of membrane separation.

Keywords: dyes, methylene blue, membrane, activated carbon

Procedia PDF Downloads 73
5374 Investigation of the Mechanical Performance of Carbon Nanomembranes for Water Separation Technologies

Authors: Marinos Dimitropoulos, George Trakakis, Nikolaus Meyerbröker, Raphael Dalpke, Polina Angelova, Albert Schnieders, Christos Pavlou, Christos Kostaras, Costas Galiotis, Konstantinos Dassios

Abstract:

Intended for purifying water, water separation technologies are widely employed in a variety of contemporary household and industrial applications. Ultrathin Carbon Nanomembranes (CNMs) offer a highly selective, fast-flow, energy-efficient water separation technology intended for demanding water treatment applications as a technological replacement for biological filtration membranes. The membranes are two-dimensional (2D) materials with sub-nm functional pores and a thickness of roughly 1 nm; they may be generated in large quantities on porous supporting substrates and have customizable properties. The purpose of this work was to investigate and analyze the mechanical characteristics of CNMs and their substrates in order to ensure the structural stability of the membrane during operation. Contrary to macro-materials, it is difficult to measure the mechanical properties of membranes that are only a few nanometers thick. The membranes were supported on atomically flat substrates as well as suspended over patterned substrates, and their inherent mechanical properties were tested with atomic force microscopy. Quantitative experiments under nanomechanical loading, nanoindentation, and nano fatigue demonstrated the membranes' potential for usage in water separation applications.

Keywords: carbon nanomembranes, mechanical properties, AFM

Procedia PDF Downloads 82
5373 Characterization of Single-Walled Carbon Nano Tubes Forest Decorated with Chromium

Authors: Ana Paula Mousinho, Ronaldo D. Mansano, Nelson Ordonez

Abstract:

Carbon nanotubes are one of the main elements in nanotechnologies; their applications are in microelectronics, nano-electronics devices (photonics, spintronic), chemical sensors, structural material and currently in clean energy devices (supercapacitors and fuel cells). The use of magnetic particle decorated carbon nanotubes increases the applications in magnetic devices, magnetic memory, and magnetic oriented drug delivery. In this work, single-walled carbon nanotubes (CNTs) forest decorated with chromium were deposited at room temperature by high-density plasma chemical vapor deposition (HDPCVD) system. The CNTs forest was obtained using pure methane plasmas and chromium, as precursor material (seed) and for decorating the CNTs. Magnetron sputtering deposited the chromium on silicon wafers before the CNTs' growth. Scanning electron microscopy, atomic force microscopy, micro-Raman spectroscopy, and X-ray diffraction characterized the single-walled CNTs forest decorated with chromium. In general, the CNTs' spectra show a unique emission band, but due to the presence of the chromium, the spectra obtained in this work showed many bands that are related to the CNTs with different diameters. The CNTs obtained by the HDPCVD system are highly aligned and showed metallic features, and they can be used as photonic material, due to the unique structural and electrical properties. The results of this work proved the possibility of obtaining the controlled deposition of aligned single-walled CNTs forest films decorated with chromium by high-density plasma chemical vapor deposition system.

Keywords: CNTs forest, high density plasma deposition, high-aligned CNTs, nanomaterials

Procedia PDF Downloads 114
5372 Advantages of Electrifying Offshore Compression System

Authors: Siva Sankara Arudra, Kamaruzaman Baharuddin, Ir. Ahmed Fadzil Mustafa Kamal, Ir. Abdul Latif Mohamed

Abstract:

The advancement of electrical and electronics technologies has rewarded the oil and gas industry with great opportunities to embed more environmentally solutions into design. Most offshore oil and gas producers have their engineering and production asset goals to promote greater use of environmentally friendly compression system technologies to eliminate hazardous emissions from conventional gas compressor drivers. Therefore, this paper comprehensively elaborates the parametric study conducted in integrating the latest electrical and electronics drives technology into the existing compression system. This study was conducted in aspects of layout, reliability & availability, maintainability, emission, and cost. An existing offshore facility that utilized gas turbines as the driver for gas compression was set as Conventional Case for this study. The Electrification Case will utilize electric motor drives as the driver for the compression system. Findings from this study indicate more advantages in driver electrification compared to conventional compression systems. The findings of this paper can be set as a benchmark for future offshore driver selection for gas compression systems of similar operating parameters and power range.

Keywords: turbomachinery, electrification, emission, compression system

Procedia PDF Downloads 144
5371 Empirical Research on Rate of Return, Interest Rate and Mudarabah Deposit

Authors: Inten Meutia, Emylia Yuniarti

Abstract:

The objective of this study is to analyze the effects of interest rate, the rate of return of Islamic banks on the amount of mudarabah deposits in Islamic banks. In analyzing the effect of rate of return in the Islamic banks and interest rate risk in the conventional banks, the 1-month Islamic deposit rate of return and 1 month fixed deposit interest rate of a total Islamic deposit are considered. Using data covering the period from January 2010 to Sepember 2013, the study applies the regression analysis to analyze the effect between variable and independence t-test to analyze the mean difference between rate of return and rate of interest. Regression analysis shows that rate of return have significantly negative influence on mudarabah deposits, while interest rate have negative influence but not significant. The result of independent t test shows that the interest rate is not different from the rate of return in Islamic Bank. It supports the hyphotesis that rate of return in Islamic banking mimic rate of interest in conventional bank. The results of the study have important implications on the risk management practices of the Islamic banks in Indonesia.

Keywords: conventional bank, interest rate, Islamic bank, rate of return

Procedia PDF Downloads 508
5370 A Simulation Study of Direct Injection Compressed Natural Gas Spark Ignition Engine Performance Utilizing Turbulent Jet Ignition with Controlled Air Charge

Authors: Siyamak Ziyaei, Siti Khalijah Mazlan, Petros Lappas

Abstract:

Compressed Natural Gas (CNG) mainly consists of Methane CH₄ and has a low carbon to hydrogen ratio relative to other hydrocarbons. As a result, it has the potential to reduce CO₂ emissions by more than 20% relative to conventional fuels like diesel or gasoline Although Natural Gas (NG) has environmental advantages compared to other hydrocarbon fuels whether they are gaseous or liquid, its main component, CH₄, burns at a slower rate than conventional fuels A higher pressure and a leaner cylinder environment will overemphasize slow burn characteristic of CH₄. Lean combustion and high compression ratios are well-known methods for increasing the efficiency of internal combustion engines. In order to achieve successful CNG lean combustion in Spark Ignition (SI) engines, a strong ignition system is essential to avoid engine misfires, especially in ultra-lean conditions. Turbulent Jet Ignition (TJI) is an ignition system that employs a pre-combustion chamber to ignite the lean fuel mixture in the main combustion chamber using a fraction of the total fuel per cycle. TJI enables ultra-lean combustion by providing distributed ignition sites through orifices. The fast burn rate provided by TJI enables the ordinary SI engine to be comparable to other combustion systems such as Homogeneous Charge Compression Ignition (HCCI) or Controlled Auto-Ignition (CAI) in terms of thermal efficiency, through the increased levels of dilution without the need of sophisticated control systems. Due to the physical geometry of TJIs, which contain small orifices that connect the prechamber to the main chamber, scavenging is one of the main factors that reduce TJI performance. Specifically, providing the right mixture of fuel and air has been identified as a key challenge. The reason for this is the insufficient amount of air that is pushed into the pre-chamber during each compression stroke. There is also the problem that combustion residual gases such as CO₂, CO and NOx from the previous combustion cycle dilute the pre- chamber fuel-air mixture preventing rapid combustion in the pre-chamber. An air-controlled active TJI is presented in this paper in order to address these issues. By applying air to the pre-chamber at a sufficient pressure, residual gases are exhausted, and the air-fuel ratio is controlled within the pre-chamber, thereby improving the quality of combustion. This paper investigates the 3D-simulated combustion characteristics of a Direct Injected (DI-CNG) fuelled SI en- gine with a pre-chamber equipped with an air channel by using AVL FIRE software. Experiments and simulations were performed at the Worldwide Mapping Point (WWMP) at 1500 Revolutions Per Minute (RPM), 3.3 bar Indicated Mean Effective Pressure (IMEP), using only conventional spark plugs as the baseline. After validating simulation data, baseline engine conditions were set for all simulation scenarios at λ=1. Following that, the pre-chambers with and without an auxiliary fuel supply were simulated. In the simulated (DI-CNG) SI engine, active TJI was observed to perform better than passive TJI and spark plug. In conclusion, the active pre-chamber with an air channel demon-strated an improved thermal efficiency (ηth) over other counterparts and conventional spark ignition systems.

Keywords: turbulent jet ignition, active air control turbulent jet ignition, pre-chamber ignition system, active and passive pre-chamber, thermal efficiency, methane combustion, internal combustion engine combustion emissions

Procedia PDF Downloads 83
5369 Reasons of Change in Security Prices and Price Volatility: An Analysis of the European Carbon Futures Market

Authors: Boulis M. Ibrahim, Iordanis A. Kalaitzoglou

Abstract:

A micro structural pricing model is proposed in which price components account for learning by incorporating changing expectations of the trading intensity and the risk level of incoming trades. An analysis of European carbon futures transactions finds expected trading intensity to increase the information component and decrease the liquidity component of price changes, but at different rates. Among the results, the expected persistence in trading intensity explains the majority of the auto correlations in the level and the conditional volatility of price changes, helps predict hourly patterns in the bid–ask spread and differentiates between the impact of buy versus sell and continuing versus reversing trades.

Keywords: CO2 emission allowances, market microstructure, duration, price discovery

Procedia PDF Downloads 405
5368 Mitigating Food Insecurity and Malnutrition by Promoting Carbon Farming via a Solar-Powered Enzymatic Composting Bioreactor with Arduino-Based Sensors

Authors: Molin A., De Ramos J. M., Cadion L. G., Pico R. L.

Abstract:

Malnutrition and food insecurity represent significant global challenges affecting millions of individuals, particularly in low-income and developing regions. The researchers created a solar-powered enzymatic composting bioreactor with an Arduino-based monitoring system for pH, humidity, and temperature. It manages mixed municipal solid wastes incorporating industrial enzymes and whey additives for accelerated composting and minimized carbon footprint. Within 15 days, the bioreactor yielded 54.54% compost compared to 44.85% from traditional methods, increasing yield by nearly 10%. Tests showed that the bioreactor compost had 4.84% NPK, passing metal analysis standards, while the traditional pit compost had 3.86% NPK; both are suitable for agriculture. Statistical analyses, including ANOVA and Tukey's HSD test, revealed significant differences in agricultural yield across different compost types based on leaf length, width, and number of leaves. The study compared the effects of different composts on Brassica rapa subsp. Chinesis (Petchay) and Brassica juncea (Mustasa) plant growth. For Pechay, significant effects of compost type on plant leaf length (F(5,84) = 62.33, η² = 0.79) and leaf width (F(5,84) = 12.35, η² = 0.42) were found. For Mustasa, significant effects of compost type on leaf length (F(4,70) = 20.61, η² = 0.54), leaf width (F(4,70) = 19.24, η² = 0.52), and number of leaves (F(4,70) = 13.17, η² = 0.43) were observed. This study explores the effectiveness of the enzymatic composting bioreactor and its viability in promoting carbon farming as a solution to food insecurity and malnutrition.

Keywords: malnutrition, food insecurity, enzymatic composting bioreactor, arduino-based monitoring system, enzymes, carbon farming, whey additive, NPK level

Procedia PDF Downloads 52
5367 An Approach to Integrated Water Resources Management, a Plan for Action to Climate Change in India

Authors: H. K. Ramaraju

Abstract:

World is in deep trouble and deeper denial. Worse, the denial is now entirely on the side of action. It is well accepted that climate change is a reality. Scientists say we need to cap temperature increases at 2°C to avoid catastrophe, which means capping emissions at 450 ppm .We know global average temperatures have already increased by 0.8°C and there is enough green house gas in the atmosphere to lead to another 0.8°C increase. There is still a window of opportunity, a tiny one, to tackle the crisis. But where is the action? In the 1990’s, when the world did even not understand, let alone accept, the crises, it was more willing to move to tackle climate change. Today we are in reverse in gear. The rich world has realized it is easy to talk big, but tough to take steps to actually reduce emissions. The agreement was that these countries would reduce so that the developing World could increase. Instead, between 1990 and 2006, their carbon dioxide emissions increased by a whopping 14.5 percent, even green countries of Europe are unable to match words with action. Stop deforestation and take a 20 percent advantage in our carbon balance sheet, with out doing anything at home called REDD (reducing emissions from deforestation and forest degradation) and push for carbon capture and storage (CCS) technologies. There are warning signs elsewhere and they need to be read correctly and acted up on , if not the cases like flood –act of nature or manmade disaster. The full length paper orient in proper understanding of the issues and identifying the most appropriate course of action.

Keywords: catastrophe, deforestation, emissions, waste water

Procedia PDF Downloads 285
5366 A Comparative Analysis of Conventional and Organic Dairy Supply Chain: Assessing Transport Costs and External Effects in Southern Sweden

Authors: Vivianne Aggestam

Abstract:

Purpose: Organic dairy products have steadily increased with consumer popularity in recent years in Sweden, permitting more transport activities. The main aim of this study was to compare the transport costs and the environmental emissions made by the organic and conventional dairy production in Sweden. The objective was to evaluate differences and environmental impacts of transport between the two different production systems, allowing a more transparent understanding of the real impact of transport within the supply chain. Methods: A partial attributional Life Cycle Assessment has been conducted based on a comprehensive survey of Swedish farmers, dairies and consumers regarding their transport needs and costs. Interviews addressed the farmers and dairies. Consumers were targeted through an online survey. Results: Higher transport inputs from conventional dairy transportation are mainly via feed and soil management on farm level. The regional organic milk brand illustrate less initial transport burdens on farm level, however, after leaving the farm, it had equal or higher transportation requirements. This was mainly due to the location of the dairy farm and shorter product expiry dates, which requires more frequent retail deliveries. Organic consumers tend to use public transport more than private vehicles. Consumers using private vehicles for shopping trips primarily bought conventional products for which price was the main deciding factor. Conclusions: Organic dairy products that emphasise its regional attributes do not ensure less transportation and may therefore not be a more “climate smart” option for the consumer. This suggests that the idea of localism needs to be analysed from a more systemic perspective. Fuel and regional feed efficiency can be further implemented, mainly via fuel type and the types of vehicles used for transport.

Keywords: supply chains, distribution, transportation, organic food productions, conventional food production, agricultural fossil fuel use

Procedia PDF Downloads 453
5365 Biogas Enhancement Using Iron Oxide Nanoparticles and Multi-Wall Carbon Nanotubes

Authors: John Justo Ambuchi, Zhaohan Zhang, Yujie Feng

Abstract:

Quick development and usage of nanotechnology have resulted to massive use of various nanoparticles, such as iron oxide nanoparticles (IONPs) and multi-wall carbon nanotubes (MWCNTs). Thus, this study investigated the role of IONPs and MWCNTs in enhancing bioenergy recovery. Results show that IONPs at a concentration of 750 mg/L and MWCNTs at a concentration of 1500 mg/L induced faster substrate utilization and biogas production rates than the control. IONPs exhibited higher carbon oxygen demand (COD) removal efficiency than MWCNTs while on the contrary, MWCNT performance on biogas generation was remarkable than IONPs. Furthermore, scanning electron microscopy (SEM) investigation revealed extracellular polymeric substances (EPS) excretion from AGS had an interaction with nanoparticles. This interaction created a protective barrier to microbial consortia hence reducing their cytotoxicity. Microbial community analyses revealed genus predominance of bacteria of Anaerolineaceae and Longilinea. Their role in biodegradation of the substrate could have highly been boosted by nanoparticles. The archaea predominance of the genus level of Methanosaeta and Methanobacterium enhanced methanation process. The presence of bacteria of genus Geobacter was also reported. Their presence might have significantly contributed to direct interspecies electron transfer in the system. Exposure of AGS to nanoparticles promoted direct interspecies electron transfer among the anaerobic fermenting bacteria and their counterpart methanogens during the anaerobic digestion process. This results provide useful insightful information in understanding the response of microorganisms to IONPs and MWCNTs in the complex natural environment.

Keywords: anaerobic granular sludge, extracellular polymeric substances, iron oxide nanoparticles, multi-wall carbon nanotubes

Procedia PDF Downloads 292