Search results for: bearing degradation data
26177 Operation '1 Household Dry Toilet for Planting 20 Fruit Trees and/or Acacias on Cropland': Strategy for Promoting Adoption of Well-Managed Agroforestry Systems and Prevent Streaming and Soil Erosion
Authors: Stanis Koko Nyalongomo, Benjamin Mputela Bankanza, Moise Kisempa Mahungudi
Abstract:
Several areas in the Democratic Republic of Congo (DRC) experience serious problems of streaming and soil erosion. Erosion leads to degradation of soil health, and the three main causative factors of similar importance are deforestation, overgrazing, and land agricultural mismanagement. Degradation of soil health leads to a decrease in agricultural productivity and carbon dioxide (CO₂), and other greenhouse gas emissions. Agricultural productivity low, and sanitation-related diseases are a concern of a majority of DRC rural people -whose main livelihoods are conventional smallholder agriculture- due to degradation of agricultural soil health and prevalence of inappropriate sanitation in rural areas. Land management practices that increase soil carbon stocks on agricultural lands with practices including conservation agriculture and agroforestry do not only limit CO₂ emissions but also help prevent erosion while enhancing soil health and productivity. Promotion to adopt sustainable land management practices, especially conversion to well-managed agroforestry practices, is a necessity. This needs to be accompanied by incentives. Methods that incite smallholders to adopt practices that increase carbon stocks in agricultural lands and enhance soil health and productivity for social, economic, and environmental benefits, and give them the ability to get and use household dry toilets -included activities to inform and raise smallholder households awareness on the conversion of croplands to well-managed agroforestry systems through planting at least 20 fruit trees and/or acacias, soil carbon and practices that sequester it in soil and ecological sanitation; and offer smallholders technique and material supports and incentives under the form of dry toilets constructed for free for well-managed agroforestry implementation- were carried out to address problems of soil erosion as well as agricultural productivity and sanitation-related diseases. In 2018 and 2019, 19 of 23 targeted smallholder households expressed their satisfaction and converted their croplands to agroforestry through planting 374 trees, and each gotten 1 dry toilet constructed for free. Their neighbors expressed a willingness to participate in the project. Conversion to well-managed agroforestry practices offers many advantages to both farmers and the environment. The strategy of offering smallholders incentives for soil-friendly agricultural practices, especially well-managed agroforestry, is one of the solutions to prevent soil erosion. DRC rural people whose majority are smallholder households, need to be able to get and use dry toilets. So, dry toilets could be offered like incentives for well-managed agroforestry practices. Given the many advantages agroforestry and dry toilet can offer, recommendations are made for funding organizations to support such projects that promote the adoption of soil health practices.Keywords: agroforestry, croplands, soil carbon, soil health
Procedia PDF Downloads 12226176 Variables, Annotation, and Metadata Schemas for Early Modern Greek
Authors: Eleni Karantzola, Athanasios Karasimos, Vasiliki Makri, Ioanna Skouvara
Abstract:
Historical linguistics unveils the historical depth of languages and traces variation and change by analyzing linguistic variables over time. This field of linguistics usually deals with a closed data set that can only be expanded by the (re)discovery of previously unknown manuscripts or editions. In some cases, it is possible to use (almost) the entire closed corpus of a language for research, as is the case with the Thesaurus Linguae Graecae digital library for Ancient Greek, which contains most of the extant ancient Greek literature. However, concerning ‘dynamic’ periods when the production and circulation of texts in printed as well as manuscript form have not been fully mapped, representative samples and corpora of texts are needed. Such material and tools are utterly lacking for Early Modern Greek (16th-18th c.). In this study, the principles of the creation of EMoGReC, a pilot representative corpus of Early Modern Greek (16th-18th c.) are presented. Its design follows the fundamental principles of historical corpora. The selection of texts aims to create a representative and balanced corpus that gives insight into diachronic, diatopic and diaphasic variation. The pilot sample includes data derived from fully machine-readable vernacular texts, which belong to 4-5 different textual genres and come from different geographical areas. We develop a hierarchical linguistic annotation scheme, further customized to fit the characteristics of our text corpus. Regarding variables and their variants, we use as a point of departure the bundle of twenty-four features (or categories of features) for prose demotic texts of the 16th c. Tags are introduced bearing the variants [+old/archaic] or [+novel/vernacular]. On the other hand, further phenomena that are underway (cf. The Cambridge Grammar of Medieval and Early Modern Greek) are selected for tagging. The annotated texts are enriched with metalinguistic and sociolinguistic metadata to provide a testbed for the development of the first comprehensive set of tools for the Greek language of that period. Based on a relational management system with interconnection of data, annotations, and their metadata, the EMoGReC database aspires to join a state-of-the-art technological ecosystem for the research of observed language variation and change using advanced computational approaches.Keywords: early modern Greek, variation and change, representative corpus, diachronic variables.
Procedia PDF Downloads 6526175 Opening up Government Datasets for Big Data Analysis to Support Policy Decisions
Authors: K. Hardy, A. Maurushat
Abstract:
Policy makers are increasingly looking to make evidence-based decisions. Evidence-based decisions have historically used rigorous methodologies of empirical studies by research institutes, as well as less reliable immediate survey/polls often with limited sample sizes. As we move into the era of Big Data analytics, policy makers are looking to different methodologies to deliver reliable empirics in real-time. The question is not why did these people do this for the last 10 years, but why are these people doing this now, and if the this is undesirable, and how can we have an impact to promote change immediately. Big data analytics rely heavily on government data that has been released in to the public domain. The open data movement promises greater productivity and more efficient delivery of services; however, Australian government agencies remain reluctant to release their data to the general public. This paper considers the barriers to releasing government data as open data, and how these barriers might be overcome.Keywords: big data, open data, productivity, data governance
Procedia PDF Downloads 37026174 Evaluating the Impact of Urbanization on Local Biodiversity and Ecosystem Functioning: A Case Study of Algiers, Algeria
Authors: Akram Sadouki
Abstract:
Urbanization is one of the most significant drivers of biodiversity loss and ecosystem degradation. This study aims to evaluate the impact of urban expansion on local biodiversity and ecosystem functioning in Algiers, Algeria. Using a combination of field surveys, remote sensing data, and GIS analysis, we quantified changes in land use and land cover over the past three decades. Our results indicate a substantial reduction in green spaces and natural habitats, leading to a decline in native species diversity and abundance. Furthermore, we observed alterations in ecosystem services, including reduced air and water quality, increased urban heat island effects, and diminished carbon sequestration capabilities. This paper highlights the urgent need for sustainable urban planning and conservation strategies to mitigate the adverse effects of urbanization on biodiversity. We propose several policy recommendations, such as the creation of urban green belts, restoration of degraded areas, and incorporation of biodiversity considerations into city planning processes. By adopting these measures, Algiers can enhance its resilience to environmental changes and ensure the well-being of its inhabitants.Keywords: biodiversity, ecosystem functioning, Algiers, urbanization
Procedia PDF Downloads 3526173 Implementing Bioremediation Technologies to Degrade Chemical Warfare Agents and Explosives from War Affected Regions in Sri Lanka
Authors: Elackiya Sithamparanathan
Abstract:
Chemical agents used during the Sri Lankan civil war continue to threaten human and environmental health as affected areas are re-settled. Bioremediation is a cost-effective and eco-friendly approach to degrading chemical agents, and has greater public acceptance than chemical degradation. Baseline data on contaminant distribution, environmental parameters, and indigenous microbes are required before bioremediation can commence. The culture and isolate of suitable microbes and enzymes should be followed by laboratory trials, before field application and long-term monitoring of contaminant concentration, soil parameters, microbial ecology, and public health to monitor environmental and public health. As local people are not aware of the persistence of warfare chemicals and do not understand the potential impacts on human health, community awareness programs are required. Active community participation, and collaboration with international and local agencies, would contribute to the success of bioremediation and the effective removal of chemical agents in war affected areas of Sri Lanka.Keywords: bioremediation, environmental protection, human health, war affected regions in Sri Lanka
Procedia PDF Downloads 38226172 Blind Watermarking Using Discrete Wavelet Transform Algorithm with Patchwork
Authors: Toni Maristela C. Estabillo, Michaela V. Matienzo, Mikaela L. Sabangan, Rosette M. Tienzo, Justine L. Bahinting
Abstract:
This study is about blind watermarking on images with different categories and properties using two algorithms namely, Discrete Wavelet Transform and Patchwork Algorithm. A program is created to perform watermark embedding, extraction and evaluation. The evaluation is based on three watermarking criteria namely: image quality degradation, perceptual transparency and security. Image quality is measured by comparing the original properties with the processed one. Perceptual transparency is measured by a visual inspection on a survey. Security is measured by implementing geometrical and non-geometrical attacks through a pass or fail testing. Values used to measure the following criteria are mostly based on Mean Squared Error (MSE) and Peak Signal to Noise Ratio (PSNR). The results are based on statistical methods used to interpret and collect data such as averaging, z Test and survey. The study concluded that the combined DWT and Patchwork algorithms were less efficient and less capable of watermarking than DWT algorithm only.Keywords: blind watermarking, discrete wavelet transform algorithm, patchwork algorithm, digital watermark
Procedia PDF Downloads 26726171 A Review on Existing Challenges of Data Mining and Future Research Perspectives
Authors: Hema Bhardwaj, D. Srinivasa Rao
Abstract:
Technology for analysing, processing, and extracting meaningful data from enormous and complicated datasets can be termed as "big data." The technique of big data mining and big data analysis is extremely helpful for business movements such as making decisions, building organisational plans, researching the market efficiently, improving sales, etc., because typical management tools cannot handle such complicated datasets. Special computational and statistical issues, such as measurement errors, noise accumulation, spurious correlation, and storage and scalability limitations, are brought on by big data. These unique problems call for new computational and statistical paradigms. This research paper offers an overview of the literature on big data mining, its process, along with problems and difficulties, with a focus on the unique characteristics of big data. Organizations have several difficulties when undertaking data mining, which has an impact on their decision-making. Every day, terabytes of data are produced, yet only around 1% of that data is really analyzed. The idea of the mining and analysis of data and knowledge discovery techniques that have recently been created with practical application systems is presented in this study. This article's conclusion also includes a list of issues and difficulties for further research in the area. The report discusses the management's main big data and data mining challenges.Keywords: big data, data mining, data analysis, knowledge discovery techniques, data mining challenges
Procedia PDF Downloads 10826170 Stability Study of Hydrogel Based on Sodium Alginate/Poly (Vinyl Alcohol) with Aloe Vera Extract for Wound Dressing Application
Authors: Klaudia Pluta, Katarzyna Bialik-Wąs, Dagmara Malina, Mateusz Barczewski
Abstract:
Hydrogel networks, due to their unique properties, are highly attractive materials for wound dressing. The three-dimensional structure of hydrogels provides tissues with optimal moisture, which supports the wound healing process. Moreover, a characteristic feature of hydrogels is their absorption properties which allow for the absorption of wound exudates. For the fabrication of biomedical hydrogels, a combination of natural polymers ensuring biocompatibility and synthetic ones that provide adequate mechanical strength are often used. Sodium alginate (SA) is one of the polymers widely used in wound dressing materials because it exhibits excellent biocompatibility and biodegradability. However, due to poor strength properties, often alginate-based hydrogel materials are enhanced by the addition of another polymer such as poly(vinyl alcohol) (PVA). This paper is concentrated on the preparation methods of sodium alginate/polyvinyl alcohol hydrogel system incorporating Aloe vera extract and glycerin for wound healing material with particular focus on the role of their composition on structure, thermal properties, and stability. Briefly, the hydrogel preparation is based on the chemical cross-linking method using poly(ethylene glycol) diacrylate (PEGDA, Mn = 700 g/mol) as a crosslinking agent and ammonium persulfate as an initiator. In vitro degradation tests of SA/PVA/AV hydrogels were carried out in Phosphate-Buffered Saline (pH – 7.4) as well as in distilled water. Hydrogel samples were firstly cut into half-gram pieces (in triplicate) and immersed in immersion fluid. Then, all specimens were incubated at 37°C and then the pH and conductivity values were measurements at time intervals. The post-incubation fluids were analyzed using SEC/GPC to check the content of oligomers. The separation was carried out at 35°C on a poly(hydroxy methacrylate) column (dimensions 300 x 8 mm). 0.1M NaCl solution, whose flow rate was 0.65 ml/min, was used as the mobile phase. Three injections with a volume of 50 µl were made for each sample. The thermogravimetric data of the prepared hydrogels were collected using a Netzsch TG 209 F1 Libra apparatus. The samples with masses of about 10 mg were weighed separately in Al2O3 crucibles and then were heated from 30°C to 900°C with a scanning rate of 10 °C∙min−1 under a nitrogen atmosphere. Based on the conducted research, a fast and simple method was developed to produce potential wound dressing material containing sodium alginate, poly(vinyl alcohol) and Aloe vera extract. As a result, transparent and flexible SA/PVA/AV hydrogels were obtained. The degradation experiments indicated that most of the samples immersed in PBS as well as in distilled water were not degraded throughout the whole incubation time.Keywords: hydrogels, wound dressings, sodium alginate, poly(vinyl alcohol)
Procedia PDF Downloads 16426169 A Systematic Review on Challenges in Big Data Environment
Authors: Rimmy Yadav, Anmol Preet Kaur
Abstract:
Big Data has demonstrated the vast potential in streamlining, deciding, spotting business drifts in different fields, for example, producing, fund, Information Technology. This paper gives a multi-disciplinary diagram of the research issues in enormous information and its procedures, instruments, and system identified with the privacy, data storage management, network and energy utilization, adaptation to non-critical failure and information representations. Other than this, result difficulties and openings accessible in this Big Data platform have made.Keywords: big data, privacy, data management, network and energy consumption
Procedia PDF Downloads 31126168 Primary School Teacher's Perception of the Efficacy of Mother Tongue-Based Multilingual Education (MTB-MLE) in Saint Louis University, Laboratory Elementary School
Authors: Villiam Ambong, Kevin Banawag, Wynne Shane Bugatan, Mark Alvin Jay Carpio, Hwan Hee Choi, Moises Kevin Chungalao
Abstract:
This survey research investigated the perception of primary school teachers on the efficacy of MTB-MLE in SLU-LES, Baguio City. SLU-LES has a total of 21 primary school teachers who served as respondents of this study in an attempt to answer the major questions regarding the efficacy of MTB-MLE among primary school teachers. A questionnaire was used in collecting the data which were analyzed using weighted mean and ANOVA. The questionnaire was validated by a statistician and it was administered to a school which does not differ from the intended respondents for further validation of the items. Findings revealed from the intended respondents that they perceive MTB-MLE as effective; however, they do not prefer the use of Mother Tongue as a medium of instruction. A research on the same topic was conducted in Ibadan, Nigeria by Dr. David O. Fakeye and although his respondents were students; the results came out that the respondents do perceive MTB-MLE to be efficacious. The results of this study also showed that years of teaching experience and the number of languages spoken by the teachers have no bearing on the preference of the respondents between MT medium and English medium gave that the respondents are in melting pot community. Comparative studies between rural and urban schools are encouraged. Future researchers should include questions that elicit reasons of the respondents on the efficacy of mother tongue as well as their preference between mother tongue medium and English.Keywords: mother tongue, primary teachers, perception, multilingual education
Procedia PDF Downloads 27426167 Primary School Teachers’ Perception on the Efficacy of Mother Tongue-Based Multilingual Education (MTB-MLE) in Saint Louis University, Laboratory Elementary School
Authors: Villiam C. Ambong, Kevin G. Banawag, Wynne Shane B. Bugatan, Mark Alvin Jay R. Carpio, Hwan Hee Choi, Moses Kevin L. Chungalao
Abstract:
This survey research investigated the perception of primary school teachers on the efficacy of MTB-MLE in SLU-LES, Baguio City. SLU-LES has a total of 21 primary school teachers who served as the respondents of this study in an attempt to answer three major questions regarding the efficacy of MTB-MLE among primary school teachers. A questionnaire was used in collecting the data which were analyzed using weighted mean and ANOVA. The questionnaire was validated by a statistician and it was administered to a school which does not differ from the intended respondents for further validation of the items. Findings revealed from the intended respondents that they perceive MTB-MLE as effective; however, they do not prefer the use of Mother Tongue as medium of instruction. A research of the same topic was conducted in Ibadan, Nigeria by Dr. David O. Fakeye and although his respondents were students; the results came out that the respondents do perceive MTB-MLE to be efficacious. The results of this study also showed that years of teaching experience and number of languages spoken by the teachers have no bearing on the preference of the respondents between MT medium and English medium given that the respondents are in a melting pot community. Comparative studies between rural schools and urban schools are encouraged. Future researches should include questions that elicit reasons of the respondents on the efficacy of mother tongue as well as their preference between mother tongue medium and English.Keywords: mother tongue, primary teachers, perception, multilingual education
Procedia PDF Downloads 45126166 Survey on Big Data Stream Classification by Decision Tree
Authors: Mansoureh Ghiasabadi Farahani, Samira Kalantary, Sara Taghi-Pour, Mahboubeh Shamsi
Abstract:
Nowadays, the development of computers technology and its recent applications provide access to new types of data, which have not been considered by the traditional data analysts. Two particularly interesting characteristics of such data sets include their huge size and streaming nature .Incremental learning techniques have been used extensively to address the data stream classification problem. This paper presents a concise survey on the obstacles and the requirements issues classifying data streams with using decision tree. The most important issue is to maintain a balance between accuracy and efficiency, the algorithm should provide good classification performance with a reasonable time response.Keywords: big data, data streams, classification, decision tree
Procedia PDF Downloads 52026165 Robust and Dedicated Hybrid Cloud Approach for Secure Authorized Deduplication
Authors: Aishwarya Shekhar, Himanshu Sharma
Abstract:
Data deduplication is one of important data compression techniques for eliminating duplicate copies of repeating data, and has been widely used in cloud storage to reduce the amount of storage space and save bandwidth. In this process, duplicate data is expunged, leaving only one copy means single instance of the data to be accumulated. Though, indexing of each and every data is still maintained. Data deduplication is an approach for minimizing the part of storage space an organization required to retain its data. In most of the company, the storage systems carry identical copies of numerous pieces of data. Deduplication terminates these additional copies by saving just one copy of the data and exchanging the other copies with pointers that assist back to the primary copy. To ignore this duplication of the data and to preserve the confidentiality in the cloud here we are applying the concept of hybrid nature of cloud. A hybrid cloud is a fusion of minimally one public and private cloud. As a proof of concept, we implement a java code which provides security as well as removes all types of duplicated data from the cloud.Keywords: confidentiality, deduplication, data compression, hybridity of cloud
Procedia PDF Downloads 38126164 Variations of Testing Concrete Mechanical Properties by European Standard and American Code
Authors: Ahmed M. Seyam, Rita Nemes, Salem Georges Nehme
Abstract:
Europe and the United States have a worldwide significance in the field of concrete control and construction; according to that, a lot of countries adopted their standards and regulations in the concrete field, as proof of the Europe and US strong standards and due to lack of own regulations. The main controlled property of concrete are the compressive strength, flexure tensile strength, and modulus of elasticity as it relates both to its bearing capacity and to the durability of the elements built with it, so in this paper, ASTM standard and EN standards method of testing those properties were put under the microscope to compare the variations between them.Keywords: concrete, ASTM, EU standards, compressive strength, flexural strength, modulus of elasticity
Procedia PDF Downloads 8926163 A Review of Machine Learning for Big Data
Authors: Devatha Kalyan Kumar, Aravindraj D., Sadathulla A.
Abstract:
Big data are now rapidly expanding in all engineering and science and many other domains. The potential of large or massive data is undoubtedly significant, make sense to require new ways of thinking and learning techniques to address the various big data challenges. Machine learning is continuously unleashing its power in a wide range of applications. In this paper, the latest advances and advancements in the researches on machine learning for big data processing. First, the machine learning techniques methods in recent studies, such as deep learning, representation learning, transfer learning, active learning and distributed and parallel learning. Then focus on the challenges and possible solutions of machine learning for big data.Keywords: active learning, big data, deep learning, machine learning
Procedia PDF Downloads 44326162 Strengthening Legal Protection of Personal Data through Technical Protection Regulation in Line with Human Rights
Authors: Tomy Prihananto, Damar Apri Sudarmadi
Abstract:
Indonesia recognizes the right to privacy as a human right. Indonesia provides legal protection against data management activities because the protection of personal data is a part of human rights. This paper aims to describe the arrangement of data management and data management in Indonesia. This paper is a descriptive research with qualitative approach and collecting data from literature study. Results of this paper are comprehensive arrangement of data that have been set up as a technical requirement of data protection by encryption methods. Arrangements on encryption and protection of personal data are mutually reinforcing arrangements in the protection of personal data. Indonesia has two important and immediately enacted laws that provide protection for the privacy of information that is part of human rights.Keywords: Indonesia, protection, personal data, privacy, human rights, encryption
Procedia PDF Downloads 18126161 Torsional Behavior of Reinforced Concrete (RC) Beams Strengthened by Fiber Reinforced Cementitious Materials– a Review
Authors: Sifatullah Bahij, Safiullah Omary, Francoise Feugeas, Amanullah Faqiri
Abstract:
Reinforced concrete (RC) is commonly used material in the construction sector, due to its low-cost and durability, and allowed the architectures and designers to construct structural members with different shapes and finishing. Usually, RC members are designed to sustain service loads efficiently without any destruction. However, because of the faults in the design phase, overloading, materials deficiencies, and environmental effects, most of the structural elements will require maintenance and repairing over their lifetime. Therefore, strengthening and repair of the deteriorated and/or existing RC structures are much important to extend their life cycle. Various techniques are existing to retrofit and strengthen RC structural elements such as steel plate bonding, external pre-stressing, section enlargement, fiber reinforced polymer (FRP) wrapping, etc. Although these configurations can successfully improve the load bearing capacity of the beams, they are still prone to corrosion damage which results in failure of the strengthened elements. Therefore, many researchers used fiber reinforced cementitious materials due to its low-cost, corrosion resistance, and result in improvement of the tensile and fatigue behaviors. Various types of cementitious materials have been used to strengthen or repair structural elements. This paper has summarized to accumulate data regarding on previously published research papers concerning the torsional behaviors of RC beams strengthened by various types of cementitious materials.Keywords: reinforced concrete beams, strengthening techniques, cementitious materials, torsional strength, twisting angle
Procedia PDF Downloads 11926160 Use of Low-Cost Hydrated Hydrogen Sulphate-Based Protic Ionic Liquids for Extraction of Cellulose-Rich Materials from Common Wheat (Triticum Aestivum) Straw
Authors: Chris Miskelly, Eoin Cunningham, Beatrice Smyth, John. D. Holbrey, Gosia Swadzba-Kwasny, Emily L. Byrne, Yoan Delavoux, Mantian Li.
Abstract:
Recently, the use of ionic liquids (ILs) for the preparation of lignocellulose derived cellulosic materials as alternatives to petrochemical feedstocks has been the focus of considerable research interest. While the technical viability of IL-based lignocellulose treatment methodologies has been well established, the high cost of reagents inhibits commercial feasibility. This work aimed to assess the technoeconomic viability of the preparation of cellulose rich materials (CRMs) using protic ionic liquids (PILs) synthesized from low cost alkylamines and sulphuric acid. For this purpose, the tertiary alkylamines, triethylamine, and dimethylbutylamine were selected. Bulk scale production cost of the synthesized PILs, triethylammonium hydrogen sulphate and dimetheylbutylammonium hydrogen sulphate, was reported as $0.78 kg-1 to $1.24 kg-1. CRMs were prepared through the treatment of common wheat (Triticum aestivum) straw with these PILs. By controlling treatment parameters, CRMs with a cellulose content of ≥ 80 wt% were prepared. This was achieved using a T. aestivum straw to PIL loading ratio of 1:15 w/w, a treatment duration of 180 minutes, and ethanol as a cellulose antisolvent. Infrared spectra data and decreased onset degradation temperature of CRMs (ΔTONSET ~ 70 °C) suggested the formation of cellulose sulphate esters during treatment. Chemical derivatisation can aid the dispersion of prepared CRMs in non-polar polymer/ composite matrices, but act as a barrier to thermal processing at temperatures above 150 °C. It was also shown that treatment increased the crystallinity of CRMs (ΔCrI ~ 40 %) without altering the native crystalline structure or crystallite size (~ 2.6 nm) of cellulose; peaks associated with the cellulose I crystalline planes (110), (200), and (004) were observed at Bragg angles 16.0 °, 22.5 ° and 35.0 ° respectively. This highlighted the inability of assessed PILs to dissolve crystalline cellulose and was attributed to the high acidity (pKa ~ - 1.92 to - 6.42) of sulphuric acid derived anions. Electron micrographs revealed that the stratified multilayer tissue structure of untreated T. aestivum straw was significantly modified during treatment. T. aestivum straw particles were disassembled during treatment, with prepared CRMs adopting a golden-brown film-like appearance. This work demonstrated the degradation of non-cellulosic fractions of lignocellulose without dissolution of cellulose. It is the first to report on the derivatisation of cellulose during treatment with protic hydrogen sulphate ionic liquids, and the potential implications of this with reference to biopolymer feedstock preparation.Keywords: cellulose, extraction, protic ionic liquids, esterification, thermal stability, waste valorisation, biopolymer feedstock
Procedia PDF Downloads 3526159 Monthly Labor Forces Surveys Portray Smooth Labor Markets and Bias Fixed Effects Estimation: Evidence from Israel’s Transition from Quarterly to Monthly Surveys
Authors: Haggay Etkes
Abstract:
This study provides evidence for the impact of monthly interviews conducted for the Israeli Labor Force Surveys (LFSs) on estimated flows between labor force (LF) statuses and on coefficients in fixed-effects estimations. The study uses the natural experiment of parallel interviews for the quarterly and the monthly LFSs in Israel in 2011 for demonstrating that the Labor Force Participation (LFP) rate of Jewish persons who participated in the monthly LFS increased between interviews, while in the quarterly LFS it decreased. Interestingly, the estimated impact on the LFP rate of self-reporting individuals is 2.6–3.5 percentage points while the impact on the LFP rate of individuals whose data was reported by another member of their household (a proxy), is lower and statistically insignificant. The relative increase of the LFP rate in the monthly survey is a result of a lower rate of exit from the LF and a somewhat higher rate of entry into the LF relative to these flows in the quarterly survey. These differing flows have a bearing on labor search models as the monthly survey portrays a labor market with less friction and a “steady state” LFP rate that is 5.9 percentage points higher than the quarterly survey. The study also demonstrates that monthly interviews affect a specific group (45–64 year-olds); thus the sign of coefficient of age as an explanatory variable in fixed-effects regressions on LFP is negative in the monthly survey and positive in the quarterly survey.Keywords: measurement error, surveys, search, LFSs
Procedia PDF Downloads 26926158 The Various Legal Dimensions of Genomic Data
Authors: Amy Gooden
Abstract:
When human genomic data is considered, this is often done through only one dimension of the law, or the interplay between the various dimensions is not considered, thus providing an incomplete picture of the legal framework. This research considers and analyzes the various dimensions in South African law applicable to genomic sequence data – including property rights, personality rights, and intellectual property rights. The effective use of personal genomic sequence data requires the acknowledgement and harmonization of the rights applicable to such data.Keywords: artificial intelligence, data, law, genomics, rights
Procedia PDF Downloads 13626157 Big Brain: A Single Database System for a Federated Data Warehouse Architecture
Authors: X. Gumara Rigol, I. Martínez de Apellaniz Anzuola, A. Garcia Serrano, A. Franzi Cros, O. Vidal Calbet, A. Al Maruf
Abstract:
Traditional federated architectures for data warehousing work well when corporations have existing regional data warehouses and there is a need to aggregate data at a global level. Schibsted Media Group has been maturing from a decentralised organisation into a more globalised one and needed to build both some of the regional data warehouses for some brands at the same time as the global one. In this paper, we present the architectural alternatives studied and why a custom federated approach was the notable recommendation to go further with the implementation. Although the data warehouses are logically federated, the implementation uses a single database system which presented many advantages like: cost reduction and improved data access to global users allowing consumers of the data to have a common data model for detailed analysis across different geographies and a flexible layer for local specific needs in the same place.Keywords: data integration, data warehousing, federated architecture, Online Analytical Processing (OLAP)
Procedia PDF Downloads 23526156 Influence of Bacterial Biofilm on the Corrosive Processes in Electronic Equipment
Authors: Iryna P. Dzieciuch, Michael D. Putman
Abstract:
Humidity is known to degrade Navy ship electronic equipment, especially in hot moist environments. If left untreated, it can cause significant and permanent damage. Even rigorous inspection and frequent clean-up would not prevent further equipment contamination and degradation because of the constant presence of favorable growth conditions for many microorganisms. Generally, relative humidity levels of less than 60% will inhibit corrosion in electronic equipment, but because NAVY electronics often operate in hot and humid environments, prevention via dehumidification is not always possible. Currently, there is no defined research that fully describes key mechanisms which cause electronics and its coating degradation. The corrosive action of most bacteria is mainly developed through (i) mycelium adherence to the metal plates, (ii) facilitation the formation of pitting areas, (iii) production of organic acids such as citric, iso-citric, cis-aconitic, alpha-ketoglutaric, which are corrosive to electronic equipment and its components. Our approach studies corrosive action in electronic equipment: circuit-board, wires and connections that are exposed in the humid environment that gets worse during condensation. In our new approach the technical task is built on work with the bacterial communities in public areas, bacterial genetics, bioinformatics, biostatistics and Scanning Electron Microscopy (SEM) of corroded circuit boards. Based on these methods, we collect and examine environmental samples from biofilms of the corroded and non-corroded sites, where bacterial contamination of electronic equipment, such as machine racks and shore boats, is an ongoing concern. Sample collection and sample analysis is focused on addressing the key questions identified above through the following tasks: laboratory sample processing and evaluation under scanning electron microscopy, initial sequencing and data evaluation; bioinformatics and data analysis. Preliminary results from scanning electron microscopy (SEM) have revealed that metal particulates and alloys in corroded samples consists mostly of Tin ( < 40%), Silicon ( < 4%), Sulfur ( < 1%), Aluminum ( < 2%), Magnesium ( < 2%), Copper ( < 1%), Bromine ( < 2%), Barium ( <1%) and Iron ( < 2%) elements. We have also performed X 12000 magnification of the same sites and that proved existence of undisrupted biofilm organelles and crystal structures. Non-corrosion sites have revealed high presence of copper ( < 47%); other metals remain at the comparable level as on the samples with corrosion. We have performed X 1000 magnification on the non-corroded at the sites and have documented formation of copper crystals. The next step of this study, is to perform metagenomics sequencing at all sites and to compare bacterial composition present in the environment. While copper is nontoxic to the living organisms, the process of bacterial adhesion creates acidic environment by releasing citric, iso-citric, cis-aconitic, alpha-ketoglutaric acidics, which in turn release copper ions Cu++, which that are highly toxic to the bacteria and higher order living organisms. This phenomenon, might explain natural “antibiotic” properties that are lacking in elements such as tin. To prove or deny this hypothesis we will use next - generation sequencing (NGS) methods to investigate types and growth cycles of bacteria that from bacterial biofilm the on corrosive and non-corrosive samples.Keywords: bacteria, biofilm, circuit board, copper, corrosion, electronic equipment, organic acids, tin
Procedia PDF Downloads 16026155 DISGAN: Efficient Generative Adversarial Network-Based Method for Cyber-Intrusion Detection
Authors: Hongyu Chen, Li Jiang
Abstract:
Ubiquitous anomalies endanger the security of our system con- stantly. They may bring irreversible damages to the system and cause leakage of privacy. Thus, it is of vital importance to promptly detect these anomalies. Traditional supervised methods such as Decision Trees and Support Vector Machine (SVM) are used to classify normality and abnormality. However, in some case, the abnormal status are largely rarer than normal status, which leads to decision bias of these methods. Generative adversarial network (GAN) has been proposed to handle the case. With its strong generative ability, it only needs to learn the distribution of normal status, and identify the abnormal status through the gap between it and the learned distribution. Nevertheless, existing GAN-based models are not suitable to process data with discrete values, leading to immense degradation of detection performance. To cope with the discrete features, in this paper, we propose an efficient GAN-based model with specifically-designed loss function. Experiment results show that our model outperforms state-of-the-art models on discrete dataset and remarkably reduce the overhead.Keywords: GAN, discrete feature, Wasserstein distance, multiple intermediate layers
Procedia PDF Downloads 12826154 A Review Paper on Data Mining and Genetic Algorithm
Authors: Sikander Singh Cheema, Jasmeen Kaur
Abstract:
In this paper, the concept of data mining is summarized and its one of the important process i.e KDD is summarized. The data mining based on Genetic Algorithm is researched in and ways to achieve the data mining Genetic Algorithm are surveyed. This paper also conducts a formal review on the area of data mining tasks and genetic algorithm in various fields.Keywords: data mining, KDD, genetic algorithm, descriptive mining, predictive mining
Procedia PDF Downloads 58926153 Data-Mining Approach to Analyzing Industrial Process Information for Real-Time Monitoring
Authors: Seung-Lock Seo
Abstract:
This work presents a data-mining empirical monitoring scheme for industrial processes with partially unbalanced data. Measurement data of good operations are relatively easy to gather, but in unusual special events or faults it is generally difficult to collect process information or almost impossible to analyze some noisy data of industrial processes. At this time some noise filtering techniques can be used to enhance process monitoring performance in a real-time basis. In addition, pre-processing of raw process data is helpful to eliminate unwanted variation of industrial process data. In this work, the performance of various monitoring schemes was tested and demonstrated for discrete batch process data. It showed that the monitoring performance was improved significantly in terms of monitoring success rate of given process faults.Keywords: data mining, process data, monitoring, safety, industrial processes
Procedia PDF Downloads 39526152 Role of Calcination Treatment on the Structural Properties and Photocatalytic Activity of Nanorice N-Doped TiO₂ Catalyst
Authors: Totsaporn Suwannaruang, Kitirote Wantala
Abstract:
The purposes of this research were to synthesize titanium dioxide photocatalyst doped with nitrogen (N-doped TiO₂) by hydrothermal method and to test the photocatalytic degradation of paraquat under UV and visible light illumination. The effect of calcination treatment temperature on their physical and chemical properties and photocatalytic efficiencies were also investigated. The characterizations of calcined N-doped TiO₂ photocatalysts such as specific surface area, textural properties, bandgap energy, surface morphology, crystallinity, phase structure, elements and state of charges were investigated by Brunauer, Emmett, Teller (BET) and Barrett, Joyner, Halenda (BJH) equations, UV-Visible diffuse reflectance spectroscopy (UV-Vis-DRS) by using the Kubelka-Munk theory, Wide-angle X-ray scattering (WAXS), Focussed ion beam scanning electron microscopy (FIB-SEM), X-ray photoelectron spectroscopy (XPS) and X-ray absorption spectroscopy (XAS), respectively. The results showed that the effect of calcination temperature was significant on surface morphology, crystallinity, specific surface area, pore size diameter, bandgap energy and nitrogen content level, but insignificant on phase structure and oxidation state of titanium (Ti) atom. The N-doped TiO₂ samples illustrated only anatase crystalline phase due to nitrogen dopant in TiO₂ restrained the phase transformation from anatase to rutile. The samples presented the nanorice-like morphology. The expansion on the particle was found at 650 and 700°C of calcination temperature, resulting in increased pore size diameter. The bandgap energy was determined by Kubelka-Munk theory to be in the range 3.07-3.18 eV, which appeared slightly lower than anatase standard (3.20 eV), resulting in the nitrogen dopant could modify the optical absorption edge of TiO₂ from UV to visible light region. The nitrogen content was observed at 100, 300 and 400°C only. Also, the nitrogen element disappeared at 500°C onwards. The nitrogen (N) atom can be incorporated in TiO₂ structure with the interstitial site. The uncalcined (100°C) sample displayed the highest percent paraquat degradation under UV and visible light irradiation due to this sample revealed both the highest specific surface area and nitrogen content level. Moreover, percent paraquat removal significantly decreased with increasing calcination treatment temperature. The nitrogen content level in TiO₂ accelerated the rate of reaction with combining the effect of the specific surface area that generated the electrons and holes during illuminated with light. Therefore, the specific surface area and nitrogen content level demonstrated the important roles in the photocatalytic activity of paraquat under UV and visible light illumination.Keywords: restraining phase transformation, interstitial site, chemical charge state, photocatalysis, paraquat degradation
Procedia PDF Downloads 15626151 Finite Element Analysis of Layered Composite Plate with Elastic Pin Under Uniaxial Load Using ANSYS
Authors: R. M. Shabbir Ahmed, Mohamed Haneef, A. R. Anwar Khan
Abstract:
Analysis of stresses plays important role in the optimization of structures. Prior stress estimation helps in better design of the products. Composites find wide usage in the industrial and home applications due to its strength to weight ratio. Especially in the air craft industry, the usage of composites is more due to its advantages over the conventional materials. Composites are mainly made of orthotropic materials having unequal strength in the different directions. Composite materials have the drawback of delamination and debonding due to the weaker bond materials compared to the parent materials. So proper analysis should be done to the composite joints before using it in the practical conditions. In the present work, a composite plate with elastic pin is considered for analysis using finite element software Ansys. Basically the geometry is built using Ansys software using top down approach with different Boolean operations. The modelled object is meshed with three dimensional layered element solid46 for composite plate and solid element (Solid45) for pin material. Various combinations are considered to find the strength of the composite joint under uniaxial loading conditions. Due to symmetry of the problem, only quarter geometry is built and results are presented for full model using Ansys expansion options. The results show effect of pin diameter on the joint strength. Here the deflection and load sharing of the pin are increasing and other parameters like overall stress, pin stress and contact pressure are reducing due to lesser load on the plate material. Further material effect shows, higher young modulus material has little deflection, but other parameters are increasing. Interference analysis shows increasing of overall stress, pin stress, contact stress along with pin bearing load. This increase should be understood properly for increasing the load carrying capacity of the joint. Generally every structure is preloaded to increase the compressive stress in the joint to increase the load carrying capacity. But the stress increase should be properly analysed for composite due to its delamination and debonding effects due to failure of the bond materials. When results for an isotropic combination is compared with composite joint, isotropic joint shows uniformity of the results with lesser values for all parameters. This is mainly due to applied layer angle combinations. All the results are represented with necessasary pictorial plots.Keywords: bearing force, frictional force, finite element analysis, ANSYS
Procedia PDF Downloads 33126150 A Survey of Semantic Integration Approaches in Bioinformatics
Authors: Chaimaa Messaoudi, Rachida Fissoune, Hassan Badir
Abstract:
Technological advances of computer science and data analysis are helping to provide continuously huge volumes of biological data, which are available on the web. Such advances involve and require powerful techniques for data integration to extract pertinent knowledge and information for a specific question. Biomedical exploration of these big data often requires the use of complex queries across multiple autonomous, heterogeneous and distributed data sources. Semantic integration is an active area of research in several disciplines, such as databases, information-integration, and ontology. We provide a survey of some approaches and techniques for integrating biological data, we focus on those developed in the ontology community.Keywords: biological ontology, linked data, semantic data integration, semantic web
Procedia PDF Downloads 44726149 Measurement of the Quadriceps Angle with Respect to Various Body Parameters in Arab Countries
Authors: Ramada R. Khasawneh, Mohammed Z. Allouh, Ejlal Abu-El Rub
Abstract:
The quadriceps angle (Q angle), formed between the quadriceps muscles and the patella tendon, is considered clinically as a very important parameter which displays the biomechanical effect of the quadriceps muscle on the knee, and it is also regarded as a crucial factor for the proper posture and movement of the knee patella. This study had been conducted to measure the normal Q angle values range in the Arab nationalities and determine the correlation between Q angle values and several body parameters, including gender, height, weight, dominant side, and the condylar distance of the femur. The study includes 500 healthy Arab students from Yarmouk University and Jordan University of Science and Technology. The Q angle of those volunteers was measured using a universal manual Goniometer with the subjects in the upright weight-bearing position. It was found that the Q angle was greater in women than in men. The analysis of the data revealed an insignificant increase in the dominant side of the Q angle. In addition, the Q was significantly higher in the taller people of both sexes. However, the Q angle did not present any considerable correlation with weight in the study population; conversely, it was observed that there was a link with the condylar distance of the femur in both sexes. It was also noticed that the Q angle increased remarkably when there was an increase in the condylar distance. Consequently, it turned out that the gender, height, and the condylar distance were momentous factors that had an impact on the Q angle in our study samples. However, weight and dominance factors did not show to have any influence on the values in our study.Keywords: Q angle, Jordanian, anatomy, condylar distance
Procedia PDF Downloads 14426148 Classification of Generative Adversarial Network Generated Multivariate Time Series Data Featuring Transformer-Based Deep Learning Architecture
Authors: Thrivikraman Aswathi, S. Advaith
Abstract:
As there can be cases where the use of real data is somehow limited, such as when it is hard to get access to a large volume of real data, we need to go for synthetic data generation. This produces high-quality synthetic data while maintaining the statistical properties of a specific dataset. In the present work, a generative adversarial network (GAN) is trained to produce multivariate time series (MTS) data since the MTS is now being gathered more often in various real-world systems. Furthermore, the GAN-generated MTS data is fed into a transformer-based deep learning architecture that carries out the data categorization into predefined classes. Further, the model is evaluated across various distinct domains by generating corresponding MTS data.Keywords: GAN, transformer, classification, multivariate time series
Procedia PDF Downloads 128