Search results for: croplands
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 13

Search results for: croplands

13 Agricultural Water Consumption Estimation in the Helmand Basin

Authors: Mahdi Akbari, Ali Torabi Haghighi

Abstract:

Hamun Lakes, located in the Helmand Basin, consisting of four water bodies, were the greatest (>8500 km2) freshwater bodies in Iran plateau but have almost entirely desiccated over the last 20 years. The desiccation of the lakes caused dust storm in the region which has huge economic and health consequences on the inhabitants. The flow of the Hirmand (or Helmand) River, the most important feeding river, has decreased from 4 to 1.9 km3 downstream due to anthropogenic activities. In this basin, water is mainly consumed for farming. Due to the lack of in-situ data in the basin, this research utilizes remote-sensing data to show how croplands and consequently consumed water in the agricultural sector have changed. Based on Landsat NDVI, we suggest using a threshold of around 0.35-0.4 to detect croplands in the basin. Croplands of this basin has doubled since 1990, especially in the downstream of the Kajaki Dam (the biggest dam of the basin). Using PML V2 Actual Evapotranspiration (AET) data and considering irrigation efficiency (≈0.3), we estimate that the consumed water (CW) for farming. We found that CW has increased from 2.5 to over 7.5 km3 from 2002 to 2017 in this basin. Also, the annual average Potential Evapotranspiration (PET) of the basin has had a negative trend in the recent years, although the AET over croplands has an increasing trend. In this research, using remote sensing data, we covered lack of data in the studied area and highlighted anthropogenic activities in the upstream which led to the lakes desiccation in the downstream.

Keywords: Afghanistan-Iran transboundary Basin, Iran-Afghanistan water treaty, water use, lake desiccation

Procedia PDF Downloads 93
12 Monitoring Urban Green Space Cover Change Using GIS and Remote Sensing in Two Rapidly Urbanizing Cities, Debre Berhan and Debre Markos, Ethiopia

Authors: Alemaw Kefale, Aramde Fetene, Hayal Desta

Abstract:

Monitoring the amount of green space in urban areas is important for ensuring sustainable development and proper management. The study analyzed changes in urban green space coverage over the past 20 years in two rapidly urbanizing cities in Ethiopia, Debre Berhan and Debre Markos, using GIS and remote sensing. The researchers used Landsat 5 and 8 data with a spatial resolution of 30 m to determine different land use and land cover classes, including urban green spaces, barren and croplands, built-up areas, and water bodies. The classification accuracy ranged between 90% and 91.4%, with a Kappa Statistic of 0.85 to 0.88. The results showed that both cities experienced significant decreases in vegetation cover in their urban cores between 2000 and 2020, with radical changes observed from green spaces and croplands to built-up areas. In Debre Berhan, barren and croplands decreased by 32.96%, while built-up and green spaces increased by 357.9% and 37.4%, respectively, in 2020. In Debre Markos, built-up areas increased by 224.2%, while green spaces and barren and croplands decreased by 41% and 5.71%, respectively. The spatial structure of cities and planning policies were noticed as the major factors for big green cover change. Thus it has an implication for other rapidly urbanized cities in Africa and Asia. Overall, rapid urbanization threatens green spaces and agricultural areas, highlighting the need for ecological-based spatial planning in rapidly urbanizing cities.

Keywords: green space coverage, GIS and remote sensing, Landsat, LULC, Ethiopia

Procedia PDF Downloads 24
11 Operation '1 Household Dry Toilet for Planting 20 Fruit Trees and/or Acacias on Cropland': Strategy for Promoting Adoption of Well-Managed Agroforestry Systems and Prevent Streaming and Soil Erosion

Authors: Stanis Koko Nyalongomo, Benjamin Mputela Bankanza, Moise Kisempa Mahungudi

Abstract:

Several areas in the Democratic Republic of Congo (DRC) experience serious problems of streaming and soil erosion. Erosion leads to degradation of soil health, and the three main causative factors of similar importance are deforestation, overgrazing, and land agricultural mismanagement. Degradation of soil health leads to a decrease in agricultural productivity and carbon dioxide (CO₂), and other greenhouse gas emissions. Agricultural productivity low, and sanitation-related diseases are a concern of a majority of DRC rural people -whose main livelihoods are conventional smallholder agriculture- due to degradation of agricultural soil health and prevalence of inappropriate sanitation in rural areas. Land management practices that increase soil carbon stocks on agricultural lands with practices including conservation agriculture and agroforestry do not only limit CO₂ emissions but also help prevent erosion while enhancing soil health and productivity. Promotion to adopt sustainable land management practices, especially conversion to well-managed agroforestry practices, is a necessity. This needs to be accompanied by incentives. Methods that incite smallholders to adopt practices that increase carbon stocks in agricultural lands and enhance soil health and productivity for social, economic, and environmental benefits, and give them the ability to get and use household dry toilets -included activities to inform and raise smallholder households awareness on the conversion of croplands to well-managed agroforestry systems through planting at least 20 fruit trees and/or acacias, soil carbon and practices that sequester it in soil and ecological sanitation; and offer smallholders technique and material supports and incentives under the form of dry toilets constructed for free for well-managed agroforestry implementation- were carried out to address problems of soil erosion as well as agricultural productivity and sanitation-related diseases. In 2018 and 2019, 19 of 23 targeted smallholder households expressed their satisfaction and converted their croplands to agroforestry through planting 374 trees, and each gotten 1 dry toilet constructed for free. Their neighbors expressed a willingness to participate in the project. Conversion to well-managed agroforestry practices offers many advantages to both farmers and the environment. The strategy of offering smallholders incentives for soil-friendly agricultural practices, especially well-managed agroforestry, is one of the solutions to prevent soil erosion. DRC rural people whose majority are smallholder households, need to be able to get and use dry toilets. So, dry toilets could be offered like incentives for well-managed agroforestry practices. Given the many advantages agroforestry and dry toilet can offer, recommendations are made for funding organizations to support such projects that promote the adoption of soil health practices.

Keywords: agroforestry, croplands, soil carbon, soil health

Procedia PDF Downloads 92
10 Estimating Affected Croplands and Potential Crop Yield Loss of an Individual Farmer Due to Floods

Authors: Shima Nabinejad, Holger Schüttrumpf

Abstract:

Farmers who are living in flood-prone areas such as coasts are exposed to storm surges increased due to climate change. Crop cultivation is the most important economic activity of farmers, and in the time of flooding, agricultural lands are subject to inundation. Additionally, overflow saline water causes more severe damage outcomes than riverine flooding. Agricultural crops are more vulnerable to salinity than other land uses for which the economic damages may continue for a number of years even after flooding and affect farmers’ decision-making for the following year. Therefore, it is essential to assess what extent the agricultural areas are flooded and how much the associated flood damage to each individual farmer is. To address these questions, we integrated farmers’ decision-making at farm-scale with flood risk management. The integrated model includes identification of hazard scenarios, failure analysis of structural measures, derivation of hydraulic parameters for the inundated areas and analysis of the economic damages experienced by each farmer. The present study has two aims; firstly, it attempts to investigate the flooded cropland and potential crop damages for the whole area. Secondly, it compares them among farmers’ field for three flood scenarios, which differ in breach locations of the flood protection structure. To achieve its goal, the spatial distribution of fields and cultivated crops of farmers were fed into the flood risk model, and a 100-year storm surge hydrograph was selected as the flood event. The study area was Pellworm Island that is located in the German Wadden Sea National Park and surrounded by North Sea. Due to high salt content in seawater of North Sea, crops cultivated in the agricultural areas of Pellworm Island are 100% destroyed by storm surges which were taken into account in developing of depth-damage curve for analysis of consequences. As a result, inundated croplands and economic damages to crops were estimated in the whole Island which was further compared for six selected farmers under three flood scenarios. The results demonstrate the significance and the flexibility of the proposed model in flood risk assessment of flood-prone areas by integrating flood risk management and decision-making.

Keywords: crop damages, flood risk analysis, individual farmer, inundated cropland, Pellworm Island, storm surges

Procedia PDF Downloads 232
9 Sustainable Resource Use as a Means of Preserving the Integrity of the Eco-System and Environment

Authors: N. Hedayat, E. Karamifar

Abstract:

Sustainable food and fiber production is emerging as an irresistible option in agrarian planning. Although one should not underestimate the successes of the Green Revolution in enhancing crop production, its adverse environmental and ecosystem consequences have also been remarkable. The aim of this paper is to identify ways of improving crop production to ensure agricultural sustainability and environmental integrity. Systematic observations are used for data collection on intensive farming, deforestation and the environmental implications of industrial pollutants on agricultural sustainability at national and international levels. These were achieved within a comparative analytical model of data interpretation. Results show that while multiple factors enhance yield, they have a simultaneous effect in undermining the ecosystem and environmental integrity. Results show that application of excessive agrichemical have been one of the major cause of polluting the surface and underground water bodies as well as soil layers in affected croplands. Results consider rapid deforestation in the tropical regions has been the underlying cause of impairing the integrity of biodiversity and oxygen-generation regime. These, coupled with production of greenhouse gasses, have contributed to global warming and hydrological irregularities. Continuous production of pollutants and effluents has affected marine and land biodiversity arising from acid rains generated by modern farming and deforestation. Continuous production of greenhouse gases has also been instrumental in affecting climatic behavior manifested in recurring draughts and contraction of lakes and ponds as well as emergence of potential flooding of waterways and floodplains in the future.

Keywords: agricultural sustainability, environmental integrity, pollution, eco-system

Procedia PDF Downloads 374
8 Evaluating Habitat Manipulation as a Strategy for Rodent Control in Agricultural Ecosystems of Pothwar Region, Pakistan

Authors: Nadeem Munawar, Tariq Mahmood

Abstract:

Habitat manipulation is an important technique that can be used for controlling rodent damage in agricultural ecosystems. It involves intentionally manipulation of vegetation cover in adjacent habitats around the active burrows of rodents to reduce shelter, food availability and to increase predation pressure. The current study was conducted in the Pothwar Plateau during the respective non-crop period of wheat-groundnut (post-harvested and un-ploughed/non-crop fallow lands) with the aim to assess the impact of the reduction in vegetation height of adjacent habitats (field borders) on rodent’s richness and abundance. The study area was divided into two sites viz. treated and non-treated. At the treated sites, habitat manipulation was carried out by removing crop cache, and non-crop vegetation’s over 10 cm in height to a distance of approximately 20 m from the fields. The trapping sessions carried out at both treated and non-treated sites adjacent to wheat-groundnut fields were significantly different (F 2, 6 = 13.2, P = 0.001) from each other, which revealed that a maximum number of rodents were captured from non-treated sites. There was a significant difference in the overall abundance of rodents (P < 0.05) between crop stages and between treatments in both crops. The manipulation effect was significantly observed on damage to crops, and yield production resulted in the reduction of damage within the associated croplands (P < 0.05). The outcomes of this study indicated a significant reduction of rodent population at treated sites due to changes in vegetation height and cover which affect important components, i.e., food, shelter, movements and increased risk sensitivity in their feeding behavior; therefore, they were unable to reach levels where they cause significant crop damage. This method is recommended for being a cost-effective and easy application.

Keywords: agricultural ecosystems, crop damage, habitat manipulation, rodents, trapping

Procedia PDF Downloads 128
7 Assessment of Agricultural Damage under Different Simulated Flood Conditions

Authors: M. N. Kadir, M. M. H. Oliver, T. Naher

Abstract:

The study assesses the areal extent of riverine flood in the flood-prone area of Faridpur District of Bangladesh using hydrological model and Geographic Information System (GIS). In the context of preparing the inundation map, flood frequency analysis was carried out to assess flooding for different flood magnitudes. Flood inundation maps were prepared based on DEM, and discharge at the river using Delft-3D model. LANDSAT satellite images have been used to develop a land cover map in the study area. The land cover map was used for mapping of cropland area. By incorporating the inundation maps on the land cover map, agricultural damage was assessed. Present monetary values of crop damage were collected through field survey from actual flood of the study area. Two different inundation maps were produced from the model for the year 2000 and 2016. In the year 2000, the floods began in the month of July, whereas in the case of the year 2016 is started in August. Under both cases, most of the areas were found to have been flooded in the month of September followed by flood recession. In order to prepare the land cover maps, four categories of LCs were considered viz., cropland, water body, trees, and rivers. Among the 755791 acres area of Faridpur District, the croplands were categorized to be 334,589 acres, followed by water bodies (279900 acres), trees (101930 acres) and rivers 39372 (acres). Damage assessment data revealed that 40% of the total cropland area had been affected by the flood in the year 2000, whereas only 19% area was affected by the 2016 flood. The study concluded that September is the critical month for cropland protection since the highest flood is expected at this time of the year in Faridpur. The northwestern and the southwestern part of the district was categorized as most vulnerable to flooding.

Keywords: agricultural damage, Delft-3d, flood management, land cover map

Procedia PDF Downloads 71
6 Monitoring Peri-Urban Growth and Land Use Dynamics with GIS and Remote Sensing Techniques: A Case Study of Burdwan City, India

Authors: Mohammad Arif, Soumen Chatterjee, Krishnendu Gupta

Abstract:

The peri-urban interface is an area of transition where the urban and rural areas meet and interact. So the peri-urban areas, which is characterized by strong urban influence, easy access to markets, services and other inputs, are ready supplies of labour but distant from the land paucity and pollution related to urban growth. Hence, the present study is primarily aimed at quantifying the spatio-temporal pattern of land use/land cover change during the last three decades (i.e., 1987 to 2016) in the peri-urban area of Burdwan city. In the recent past, the morphology of the study region has rapid change due to high growth of population and establishment of industries. The change has predominantly taken place along the State and National Highway 2 (NH-2) and around the Burdwan Municipality for meeting both residential and commercial purposes. To ascertain the degree of change in land use and land cover, over the specified time, satellite imageries and topographical sheets are employed. The data is processed through appropriate software packages to arrive at a deduction that most of the land use changes have occurred by obliterating agricultural land & water bodies and substituting them by built area and industrial spaces. Geospatial analysis of study area showed that this area has experienced a steep increase (30%) of built-up areas and excessive decrease (15%) in croplands between 1987 and 2016. Increase in built-up areas is attributed to the increase of out-migration during this period from the core city. This study also examined social, economic and institutional factors that lead to this rapid land use change in peri-urban areas of the Burdwan city by carrying out a field survey of 250 households in peri-urban areas. The research concludes with an urgency for regulating land subdivisions in peri-urban areas to prevent haphazard land use development. It is expected that the findings of the study would go a long way in facilitating better policy making.

Keywords: growth, land use land cover, morphology, peri-urban, policy making

Procedia PDF Downloads 146
5 Topographic Characteristics Derived from UAV Images to Detect Ephemeral Gully Channels

Authors: Recep Gundogan, Turgay Dindaroglu, Hikmet Gunal, Mustafa Ulukavak, Ron Bingner

Abstract:

A majority of total soil losses in agricultural areas could be attributed to ephemeral gullies caused by heavy rains in conventionally tilled fields; however, ephemeral gully erosion is often ignored in conventional soil erosion assessments. Ephemeral gullies are often easily filled from normal soil tillage operations, which makes capturing the existing ephemeral gullies in croplands difficult. This study was carried out to determine topographic features, including slope and aspect composite topographic index (CTI) and initiation points of gully channels, using images obtained from unmanned aerial vehicle (UAV) images. The study area was located in Topcu stream watershed in the eastern Mediterranean Region, where intense rainfall events occur over very short time periods. The slope varied between 0.7 and 99.5%, and the average slope was 24.7%. The UAV (multi-propeller hexacopter) was used as the carrier platform, and images were obtained with the RGB camera mounted on the UAV. The digital terrain models (DTM) of Topçu stream micro catchment produced using UAV images and manual field Global Positioning System (GPS) measurements were compared to assess the accuracy of UAV based measurements. Eighty-one gully channels were detected in the study area. The mean slope and CTI values in the micro-catchment obtained from DTMs generated using UAV images were 19.2% and 3.64, respectively, and both slope and CTI values were lower than those obtained using GPS measurements. The total length and volume of the gully channels were 868.2 m and 5.52 m³, respectively. Topographic characteristics and information on ephemeral gully channels (location of initial point, volume, and length) were estimated with high accuracy using the UAV images. The results reveal that UAV-based measuring techniques can be used in lieu of existing GPS and total station techniques by using images obtained with high-resolution UAVs.

Keywords: aspect, compound topographic index, digital terrain model, initial gully point, slope, unmanned aerial vehicle

Procedia PDF Downloads 80
4 Land Suitability Analysis Based on Ecosystems Service Approach for Wind Farm Location in South-Central Chile: Net Primary Production as Proxy

Authors: Yenisleidy Martínez-Martínez, Yannay Casas-Ledón, Jo Dewulf

Abstract:

Wind power constitutes a cleaner energy source with smaller unfavorable impacts on the environment than fossil fuels. Its development could be an alternative to fight climate change while meeting energy demands. However, wind energy development requires first determining the existing potential and areas with aptitude. Also, potential socio-economic and environmental impacts should be analyzed to prevent social rejection of this technology. In this context, this work performs a suitability assessment on a GIS environment to locate suitable areas for wind energy expansion in South-Central Chile. In addition, suitable areas were characterized in terms of potential goods and services to be produced as a proxy for analyzing potential impacts and trade-offs. First, layers of annual wind speed were generated as they represent the resource potential, and layer representing previously defined territorial constraints were created. Zones depicting territorial constraints were removed from resource measurement layers to identify suitable sites. Then, the appropriation of the primary production in suitable sites was determined to measure potential ecosystem services derived from human interventions in those areas. Results show that approximately 52% of the total surface of the study area has a good aptitude to install wind farms. In this area, provisioning services like food crops production, timber, and other forest resources like firewood play a key role in the regional economy and thus are the main cause of human interventions. This is reflected by human appropriation of the primary production values of 0.71 KgC/m².yr, 0.36 KgC/m².yr, and 0.14 KgC/m².yr, respectively. In this sense, wind energy development could be compatible with croplands, which is the predominant land use in suitable areas, and provide farmers with cheaper energy and extra income. Also, studies have reported changes in local temperature associated with wind turbines, which could be beneficial to crop growth. The results obtained in this study prove to be useful for identifying available areas for wind development, which could be very useful in decision-making processes related to energy planning.

Keywords: net primary productivity, provisioning services, suitability assessment, wind energy

Procedia PDF Downloads 128
3 MigrationR: An R Package for Analyzing Bird Migration Data Based on Satellite Tracking

Authors: Xinhai Li, Huidong Tian, Yumin Guo

Abstract:

Bird migration is fantastic natural phenomenon. In recent years, the use of GPS transmitters has generated a vast amount of data, and the Movebank platform has made these data publicly accessible. For researchers, what they need are data analysis tools. Although there are approximately 90 R packages dedicated to animal movement analysis, the capacity for comprehensive processing of bird migration data remains limited. Hence, we introduce a novel package called migrationR. This package enables the calculation of movement speed, direction, changes in direction, flight duration, daily and annual movement distances. Furthermore, it can pinpoint the starting and ending dates of migration, estimate nest site locations and stopovers, and visualize movement trajectories at various time scales. migrationR distinguishes individuals through NMDS (non-metric multidimensional scaling) coordinates based on movement variables such as speed, flight duration, path tortuosity, and migration timing. A distinctive aspect of the package is the development of a hetero-occurrences species distribution model that takes into account the daily rhythm of individual birds across different landcover types. Habitat use for foraging and roosting differs significantly for many waterbirds. For example, White-naped Cranes at Poyang Lake in China typically forage in croplands and roost in shallow water areas. Both of these occurrence types are of equal importance. Optimal habitats consist of a combination of crop lands and shallow waters, whereas suboptimal habitats lack both, which necessitates birds to fly extensively. With migrationR, we conduct species distribution modeling for foraging and roosting separately and utilize the moving distance between crop lands and shallow water areas as an index of overall habitat suitability. This approach offers a more nuanced understanding of the habitat requirements for migratory birds and enhances our ability to analyze and interpret their movement patterns effectively. The functions of migrationR are demonstrated using our own tracking data of 78 White-naped Crane individuals from 2014 to 2023, comprising over one million valid locations in total. migrationR can be installed from a GitHub repository by executing the following command: remotes::install_github("Xinhai-Li/migrationR").

Keywords: bird migration, hetero-occurrences species distribution model, migrationR, R package, satellite telemetry

Procedia PDF Downloads 29
2 Low-Cost, Portable Optical Sensor with Regression Algorithm Models for Accurate Monitoring of Nitrites in Environments

Authors: David X. Dong, Qingming Zhang, Meng Lu

Abstract:

Nitrites enter waterways as runoff from croplands and are discharged from many industrial sites. Excessive nitrite inputs to water bodies lead to eutrophication. On-site rapid detection of nitrite is of increasing interest for managing fertilizer application and monitoring water source quality. Existing methods for detecting nitrites use spectrophotometry, ion chromatography, electrochemical sensors, ion-selective electrodes, chemiluminescence, and colorimetric methods. However, these methods either suffer from high cost or provide low measurement accuracy due to their poor selectivity to nitrites. Therefore, it is desired to develop an accurate and economical method to monitor nitrites in environments. We report a low-cost optical sensor, in conjunction with a machine learning (ML) approach to enable high-accuracy detection of nitrites in water sources. The sensor works under the principle of measuring molecular absorptions of nitrites at three narrowband wavelengths (295 nm, 310 nm, and 357 nm) in the ultraviolet (UV) region. These wavelengths are chosen because they have relatively high sensitivity to nitrites; low-cost light-emitting devices (LEDs) and photodetectors are also available at these wavelengths. A regression model is built, trained, and utilized to minimize cross-sensitivities of these wavelengths to the same analyte, thus achieving precise and reliable measurements with various interference ions. The measured absorbance data is input to the trained model that can provide nitrite concentration prediction for the sample. The sensor is built with i) a miniature quartz cuvette as the test cell that contains a liquid sample under test, ii) three low-cost UV LEDs placed on one side of the cell as light sources, with each LED providing a narrowband light, and iii) a photodetector with a built-in amplifier and an analog-to-digital converter placed on the other side of the test cell to measure the power of transmitted light. This simple optical design allows measuring the absorbance data of the sample at the three wavelengths. To train the regression model, absorbances of nitrite ions and their combination with various interference ions are first obtained at the three UV wavelengths using a conventional spectrophotometer. Then, the spectrophotometric data are inputs to different regression algorithm models for training and evaluating high-accuracy nitrite concentration prediction. Our experimental results show that the proposed approach enables instantaneous nitrite detection within several seconds. The sensor hardware costs about one hundred dollars, which is much cheaper than a commercial spectrophotometer. The ML algorithm helps to reduce the average relative errors to below 3.5% over a concentration range from 0.1 ppm to 100 ppm of nitrites. The sensor has been validated to measure nitrites at three sites in Ames, Iowa, USA. This work demonstrates an economical and effective approach to the rapid, reagent-free determination of nitrites with high accuracy. The integration of the low-cost optical sensor and ML data processing can find a wide range of applications in environmental monitoring and management.

Keywords: optical sensor, regression model, nitrites, water quality

Procedia PDF Downloads 40
1 Understanding Responses of the Bee Community to an Urbanizing Landscape in Bengaluru, South India

Authors: Chethana V. Casiker, Jagadishakumara B., Sunil G. M., Chaithra K., M. Soubadra Devy

Abstract:

A majority of the world’s food crops depends on insects for pollination, among which bees are the most dominant taxon. Bees pollinate vegetables, fruits and oilseeds which are rich in essential micronutrients. Besides being a prerequisite for a nutritionally secure diet, agrarian economies such as India depend heavily on pollination for good yield and quality of the product. As cities all over the world expand rapidly, large tracts of green spaces are being built up. This, along with high usage of agricultural chemicals has reduced floral diversity and shrunk bee habitats. Indeed, pollinator decline is being reported from various parts of the world. Further, the FAO has reported a huge increase in the area of land under cultivation of pollinator-dependent crops. In the light of increasing demand for pollination and disappearing natural habitats, it is critical to understand whether and how urban spaces can support pollinators. To this end, this study investigates the influence of landscape and local habitat quality on bee community dynamics. To capture the dynamics of expanding cityscapes, the study employs a space for time substitution, wherein a transect along the gradient of urbanization substitutes a timeframe of increasing urbanization. This will help understand how pollinators would respond to changes induced by increasing intensity of urbanization in the future. Bengaluru, one of the fastest growing cities of Southern India, is an excellent site to study impacts associated with urbanization. With sites moving away from the Bengaluru’s centre and towards its peripheries, this study captures the changes in bee species diversity and richness along a gradient of urbanization. Bees were sampled under different land use types as well as in different types of vegetation, including plantations, croplands, fallow land, parks, lake embankments, and private gardens. The relationship between bee community metrics and key drivers such as a percentage of built-up area, land use practices, and floral resources was examined. Additionally, data collected using questionnaire interviews were used to understand people’s perceptions towards and level of dependence on pollinators. Our results showed that urban areas are capable of supporting bees. In fact, a greater diversity of bees was recorded in urban sites compared to adjoining rural areas. This suggests that bees are able to seek out patchy resources and survive in small fragments of habitat. Bee abundance and species richness correlated positively with floral abundance and richness, indicating the role of vegetation in providing forage and nesting sites which are crucial to their survival. Bee numbers were seen to decrease with increase in built-up area demonstrating that impervious surfaces could act as deterrents. Findings from this study challenge the popular notion of cities being biodiversity-bare spaces. There is indeed scope for conserving bees in urban landscapes, provided that there are city-scale planning and local initiative. Bee conservation can go hand in hand with efforts such as urban gardening and terrace farming that could help cities urbanize sustainably.

Keywords: bee, landscape ecology, urbanization, urban pollination

Procedia PDF Downloads 135