Search results for: dynamic stray current
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 12171

Search results for: dynamic stray current

2031 First Rank Symptoms in Mania: An Indistinct Diagnostic Strand

Authors: Afshan Channa, Sameeha Aleem, Harim Mohsin

Abstract:

First rank symptoms (FRS) are considered to be pathognomic for Schizophrenia. However, FRS is not a distinctive feature of Schizophrenia. It has also been noticed in affective disorder, albeit not inclusive in diagnostic criteria. The presence of FRS in Mania leads to misdiagnosis of psychotic illness, further complicating the management and delay of appropriate treatment. FRS in Mania is associated with poor clinical and functional outcome. Its existence in the first episode of bipolar disorder may be a predictor of poor short-term outcome and decompensating course of illness. FRS in Mania is studied in west. However, the cultural divergence and detriments make it pertinent to study the frequency of FRS in affective disorder independently in Pakistan. Objective: The frequency of first rank symptoms in manic patients, who were under treatment at psychiatric services of tertiary care hospital. Method: The cross sectional study was done at psychiatric services of Aga Khan University Hospital, Karachi, Pakistan. One hundred and twenty manic patients were recruited from November 2014 to May 2015. The patients who were unable to comprehend Urdu or had comorbid psychiatric or organic disorder were excluded. FRS was assessed by administration of validated Urdu version of Present State Examination (PSE) tool. Result: The mean age of the patients was 37.62 + 12.51. The mean number of previous manic episode was 2.17 + 2.23. 11.2% males and 30.6% females had FRS. This association of first rank symptoms with gender in patients of mania was found to be significant with a p-value of 0.008. All-inclusive, 19.2% exhibited FRS in their course of illness. 43.5% had thought broadcasting, made feeling, impulses, action and somatic passivity. 39.1% had thought insertion, 30.4% had auditory perceptual distortion, and 17.4% had thought withdrawal. However, none displayed delusional perception. Conclusion: The study confirms the presence of FRS in mania in both male and female, irrespective of the duration of current manic illness or previous number of manic episodes. A substantial difference was established between both the genders. Being married had no protective effect on the presence of FRS.

Keywords: first rank symptoms, Mania, psychosis, present state examination

Procedia PDF Downloads 357
2030 District 10 in Tehran: Urban Transformation and the Survey Evidence of Loss in Place Attachment in High Rises

Authors: Roya Morad, W. Eirik Heintz

Abstract:

The identity of a neighborhood is inevitably shaped by the architecture and the people of that place. Conventionally the streets within each neighborhood served as a semi-public-private extension of the private living spaces. The street as a design element formed a hybrid condition that was neither totally public nor private, and it encouraged social interactions. Thus through creating a sense of community, one of the most basic human needs of belonging was achieved. Similar to major global cities, Tehran has undergone serious urbanization. Developing into a capital city of high rises has resulted in an increase in urban density. Although allocating more residential units in each neighborhood was a critical response to the population boom and the limited land area of the city, it also created a crisis in terms of social communication and place attachment. District 10 in Tehran is a neighborhood that has undergone the most urban transformation among the other 22 districts in the capital and currently has the highest population density. This paper will explore how the active streets in district 10 have changed into their current condition of high rises with a lack of meaningful social interactions amongst its inhabitants. A residential building can be thought of as a large group of people. One would think that as the number of people increases, the opportunities for social communications would increase as well. However, according to the survey, there is an indirect relationship between the two. As the number of people of a residential building increases, the quality of each acquaintance reduces, and the depth of relationships between people tends to decrease. This comes from the anonymity of being part of a crowd and the lack of social spaces characterized by most high-rise apartment buildings. Without a sense of community, the attachment to a neighborhood is decreased. This paper further explores how the neighborhood participates to fulfill ones need for social interaction and focuses on the qualitative aspects of alternative spaces that can redevelop the sense of place attachment within the community.

Keywords: high density, place attachment, social communication, street life, urban transformation

Procedia PDF Downloads 109
2029 Micro-Droplet Formation in a Microchannel under the Effect of an Electric Field: Experiment

Authors: Sercan Altundemir, Pinar Eribol, A. Kerem Uguz

Abstract:

Microfluidics systems allow many-large scale laboratory applications to be miniaturized on a single device in order to reduce cost and advance fluid control. Moreover, such systems enable to generate and control droplets which have a significant role on improved analysis for many chemical and biological applications. For example, they can be employed as the model for cells in microfluidic systems. In this work, the interfacial instability of two immiscible Newtonian liquids flowing in a microchannel is investigated. When two immiscible liquids are in laminar regime, a flat interface is formed between them. If a direct current electric field is applied, the interface may deform, i.e. may become unstable and it may be ruptured and form micro-droplets. First, the effect of thickness ratio, total flow rate, viscosity ratio of the silicone oil and ethylene glycol liquid couple on the critical voltage at which the interface starts to destabilize is investigated. Then the droplet sizes are measured under the effect of these parameters at various voltages. Moreover, the effect of total flow rate on the time elapsed for the interface to be ruptured to form droplets by hitting the wall of the channel is analyzed. It is observed that an increase in the viscosity or the thickness ratio of the silicone oil to the ethylene glycol has a stabilizing effect, i.e. a higher voltage is needed while the total flow rate has no effect on it. However, it is observed that an increase in the total flow rate results in shortening of the elapsed time for the interface to hit the wall. Moreover, the droplet size decreases down to 0.1 μL with an increase in the applied voltage, the viscosity ratio or the total flow rate or a decrease in the thickness ratio. In addition to these observations, two empirical models for determining the critical electric number, i.e., the dimensionless voltage and the droplet size and another model which is a combination of both models, for determining the droplet size at the critical voltage are established.

Keywords: droplet formation, electrohydrodynamics, microfluidics, two-phase flow

Procedia PDF Downloads 165
2028 Optimizing the Insertion of Renewables in the Colombian Power Sector

Authors: Felipe Henao, Yeny Rodriguez, Juan P. Viteri, Isaac Dyner

Abstract:

Colombia is rich in natural resources and greatly focuses on the exploitation of water for hydroelectricity purposes. Alternative cleaner energy sources, such as solar and wind power, have been largely neglected despite: a) its abundance, b) the complementarities between hydro, solar and wind power, and c) the cost competitiveness of renewable technologies. The current limited mix of energy sources creates considerable weaknesses for the system, particularly when facing extreme dry weather conditions, such as El Niño event. In the past, El Niño have exposed the truly consequences of a system heavily dependent on hydropower, i.e. loss of power supply, high energy production costs, and loss of overall competitiveness for the country. Nonetheless, it is expected that the participation of hydroelectricity will increase in the near future. In this context, this paper proposes a stochastic lineal programming model to optimize the insertion of renewable energy systems (RES) into the Colombian electricity sector. The model considers cost-based generation competition between traditional energy technologies and alternative RES. This work evaluates the financial, environmental, and technical implications of different combinations of technologies. Various scenarios regarding the future evolution of costs of the technologies are considered to conduct sensitivity analysis of the solutions – to assess the extent of the participation of the RES in the Colombian power sector. Optimization results indicate that, even in the worst case scenario, where costs remain constant, the Colombian power sector should diversify its portfolio of technologies and invest strongly in solar and wind power technologies. The diversification through RES will contribute to make the system less vulnerable to extreme weather conditions, reduce the overall system costs, cut CO2 emissions, and decrease the chances of having national blackout events in the future. In contrast, the business as usual scenario indicates that the system will turn more costly and less reliable.

Keywords: energy policy and planning, stochastic programming, sustainable development, water management

Procedia PDF Downloads 269
2027 Hygrothermal Interactions and Energy Consumption in Cold Climate Hospitals: Integrating Numerical Analysis and Case Studies to Investigate and Analyze the Impact of Air Leakage and Vapor Retarding

Authors: Amir E. Amirzadeh, Richard K. Strand

Abstract:

Moisture-induced problems are a significant concern for building owners, architects, construction managers, and building engineers, as they can have substantial impacts on building enclosures' durability and performance. Computational analyses, such as hygrothermal and thermal analysis, can provide valuable information and demonstrate the expected relative performance of building enclosure systems but are not grounded in absolute certainty. This paper evaluates the hygrothermal performance of common enclosure systems in hospitals in cold climates. The study aims to investigate the impact of exterior wall systems on hospitals, focusing on factors such as durability, construction deficiencies, and energy performance. The study primarily examines the impact of air leakage and vapor retarding layers relative to energy consumption. While these factors have been studied in residential and commercial buildings, there is a lack of information on their impact on hospitals in a holistic context. The study integrates various research studies and professional experience in hospital building design to achieve its objective. The methodology involves surveying and observing exterior wall assemblies, reviewing common exterior wall assemblies and details used in hospital construction, performing simulations and numerical analyses of various variables, validating the model and mechanism using available data from industry and academia, visualizing the outcomes of the analysis, and developing a mechanism to demonstrate the relative performance of exterior wall systems for hospitals under specific conditions. The data sources include case studies from real-world projects and peer-reviewed articles, industry standards, and practices. This research intends to integrate and analyze the in-situ and as-designed performance and durability of building enclosure assemblies with numerical analysis. The study's primary objective is to provide a clear and precise roadmap to better visualize and comprehend the correlation between the durability and performance of common exterior wall systems used in the construction of hospitals and the energy consumption of these buildings under certain static and dynamic conditions. As the construction of new hospitals and renovation of existing ones have grown over the last few years, it is crucial to understand the effect of poor detailing or construction deficiencies on building enclosure systems' performance and durability in healthcare buildings. This study aims to assist stakeholders involved in hospital design, construction, and maintenance in selecting durable and high-performing wall systems. It highlights the importance of early design evaluation, regular quality control during the construction of hospitals, and understanding the potential impacts of improper and inconsistent maintenance and operation practices on occupants, owner, building enclosure systems, and Heating, Ventilation, and Air Conditioning (HVAC) systems, even if they are designed to meet the project requirements.

Keywords: hygrothermal analysis, building enclosure, hospitals, energy efficiency, optimization and visualization, uncertainty and decision making

Procedia PDF Downloads 52
2026 Exploring the Prebiotic Potential of Glucosamine

Authors: Shilpi Malik, Ramneek Kaur, Archita Gupta, Deepshikha Yadav, Ashwani Mathur, Manisha Singh

Abstract:

Glucosamine (GS) is the most abundant naturally occurring amino monosaccharide and is normally produced in human body via cellular glucose metabolism. It is regarded as the building block of cartilage matrix and is also an essential component of cartilage matrix repair mechanism. Besides that, it can also be explored for its prebiotic potential as many bacterial species are known to utilize the amino sugar by acquiring them to form peptidoglycans and lipopolysaccharides in the bacterial cell wall. Glucosamine can therefore be considered for its fermentation by bacterial species present in the gut. Current study is focused on exploring the potential of glucosamine as prebiotic. The studies were done to optimize considerable concentration of GS to reach GI tract and being fermented by the complex gut microbiota and food grade GS was added to various Simulated Fluids of Gastro-Intestinal Tract (GIT) such as Simulated Saliva, Gastric Fluid (Fast and Fed State), Colonic fluid, etc. to detect its degradation. Since it was showing increase in microbial growth (CFU) with time, GS was Further, encapsulated to increase its residential time in the gut, which exhibited improved resistance to the simulated Gut conditions. Moreover, prepared microspehres were optimized and characterized for their encapsulation efficiency and toxicity. To further substantiate the prebiotic activity of Glucosamine, studies were also performed to determine the effect of Glucosamine on the known probiotic bacterial species, i.e. Lactobacillus delbrueckii (MTCC 911) and Bifidobacteriumbifidum (MTCC 5398). Culture conditions for glucosamine will be added in MRS media in anaerobic tube at 0.20%, 0.40%, 0.60%, 0.80%, and 1.0%, respectively. MRS media without GS was included in this experiment as the control. All samples were autoclaved at 118° C for 15 min. Active culture was added at 5% (v/v) to each anaerobic tube after cooling to room temperature and incubated at 37° C then determined biomass and pH and viable count at incubation 18h. The experiment was completed in triplicate and the results were presented as Mean ± SE (Standard error).The experimental results are conclusive and suggest Glucosamine to hold prebiotic properties.

Keywords: gastro intestinal tract, microspheres, peptidoglycans, simulated fluid

Procedia PDF Downloads 314
2025 Enhancing the Flotation of Fine and Ultrafine Pyrite Particles Using Electrolytically Generated Bubbles

Authors: Bogale Tadesse, Krutik Parikh, Ndagha Mkandawire, Boris Albijanic, Nimal Subasinghe

Abstract:

It is well established that the floatability and selectivity of mineral particles are highly dependent on the particle size. Generally, a particle size of 10 micron is considered as the critical size below which both flotation selectivity and recovery decline sharply. It is widely accepted that the majority of ultrafine particles, including highly liberated valuable minerals, will be lost in tailings during a conventional flotation process. This is highly undesirable particularly in the processing of finely disseminated complex and refractory ores where there is a requirement for fine grinding in order to liberate the valuable minerals. In addition, the continuing decline in ore grade worldwide necessitates intensive processing of low grade mineral deposits. Recent advances in comminution allow the economic grinding of particles down to 10 micron sizes to enhance the probability of liberating locked minerals from low grade ores. Thus, it is timely that the flotation of fine and ultrafine particles is improved in order to reduce the amount of valuable minerals lost as slimes. It is believed that the use of fine bubbles in flotation increases the bubble-particle collision efficiency and hence the flotation performance. Electroflotation, where bubbles are generated by the electrolytic breakdown of water to produce oxygen and hydrogen gases, leads to the formation of extremely finely dispersed gas bubbles with dimensions varying from 5 to 95 micron. The sizes of bubbles generated by this method are significantly smaller than those found in conventional flotation (> 600 micron). In this study, microbubbles generated by electrolysis of water were injected into a bench top flotation cell to assess the performance electroflotation in enhancing the flotation of fine and ultrafine pyrite particles of sizes ranging from 5 to 53 micron. The design of the cell and the results from optimization of the process variables such as current density, pH, percent solid and particle size will be presented at this conference.

Keywords: electroflotation, fine bubbles, pyrite, ultrafine particles

Procedia PDF Downloads 311
2024 Comparison of Shell-Facemask Responses in American Football Helmets during NOCSAE Drop Tests

Authors: G. Alston Rush, Gus A. Rush III, M. F. Horstemeyer

Abstract:

This study compares the shell-facemask responses of four commonly used American football helmets, under the National Operating Committee on Standards for Athletic Equipment (NOCSAE) drop impact test method, to show that the test standard would more accurately simulate in-use conditions by modification to include the facemask. In our study, the need for a more vigorous systematic approach to football helmet testing procedures is emphasized by comparing the Head Injury Criterion (HIC), the Gadd Severity Index (SI), and peak acceleration values for different helmets at different locations on the helmet under modified NOCSAE standard drop tower tests. Drop tests were performed on the Rawlings Quantum Plus, Riddell 360, Schutt Ion 4D, and Xenith X2 helmets at eight impact locations, impact velocities of 5.46 and 4.88 meters per second, and helmet configurations with and without facemasks. Analysis of NOCSAE drop test results reveal significant differences (p < 0.05) for when the facemasks were attached to helmets, as compared to the NOCSAE Standard, without facemask configuration. The boundary conditions of the facemask attachment can have up to a 50% decrease (p < 0.001) in helmet performance with respect to peak acceleration. While generally, all helmets with the facemasks gave greater HIC, SI, and acceleration values than helmets without the facemasks, significant helmet dependent variations were observed across impact locations and impact velocities. The variations between helmet responses could be attributed to the unique design features of each helmet tested, which include different liners, chin strap attachments, and faceguard attachment systems. In summary, these comparative drop test results revealed that the current NOCSAE standard test methods need improvement by attaching the facemasks to helmets during testing. The modified NOCSAE football helmet standard test gives a more accurate representation of a helmet’s performance and its ability to mitigate the on-field impact.

Keywords: football helmet testing, gadd severity index, head injury criterion, mild traumatic brain injury

Procedia PDF Downloads 435
2023 Prevalence of Common Mental Disorders and Its Correlation with Mental Toughness among Professional South African Rugby Players

Authors: H. B. Grobler, K. Du Plooy, P. Kruger, S. Ellis

Abstract:

Objectives: The primary objective of the study was to determine the common mental disorders (CMD) identified by professional South African rugby players and its correlation with their mental toughness, as a first step towards developing such a programme within a larger research project. Design: Survey research, within the theoretical perspective of field theory, was conducted, utilising an adaptation of an already existing mental health questionnaire. The aim was to obtain feedback from as many possible professional South African rugby players in order to make certain generalizations and come to conclusions with regard to the current mental health experiences of these rugby players. Methods: Non-randomized sampling was done, linking it with internet research in the form of the online completion of a questionnaire. A sample of 215 rugby players participated and completed the online questionnaire. Permission was obtained to make use of an existing questionnaire, previously used by the specific authors with retired professional rugby players. A section on mental toughness was added. Data were descriptively analysed by means of the SPSS software platform. Results: Results indicated that the most significant problem that the players are experiencing, is a problem with alcohol (47.9%). Other problems that featured are distress (16.3%), sleep disturbances (7%), as well as anxiety and depression (4.2%). 4.7% of the players indicated that they smoke. 3.3% of the players experience themselves as not being mentally tough. A positive correlation between mental toughness and sound sleep (0.262) was found while a negative correlation was found between mental toughness and the following: anxiety/depression (-0.401), anxiety/depression positive (-0.423), distress (-0.259) and common mental disorder problems in general (-0.220). Conclusions: Although the presence of CMD at first glance do not seem significantly high amongst all the players, it must be considered that if one player in a team experiences the presence of CMD, it will have an impact on his mental toughness and most likely on his performance, as well as on the performance of the whole team. It is therefore important to ensure mental health in the whole team, by addressing individual CMD problems. A mental health support programme is therefore needed to be implemented to the benefit of these players within the South African context.

Keywords: common mental disorders, mental toughness, professional athletes, rugby players

Procedia PDF Downloads 199
2022 A Review of Critical Framework Assessment Matrices for Data Analysis on Overheating in Buildings Impact

Authors: Martin Adlington, Boris Ceranic, Sally Shazhad

Abstract:

In an effort to reduce carbon emissions, changes in UK regulations, such as Part L Conservation of heat and power, dictates improved thermal insulation and enhanced air tightness. These changes were a direct response to the UK Government being fully committed to achieving its carbon targets under the Climate Change Act 2008. The goal is to reduce emissions by at least 80% by 2050. Factors such as climate change are likely to exacerbate the problem of overheating, as this phenomenon expects to increase the frequency of extreme heat events exemplified by stagnant air masses and successive high minimum overnight temperatures. However, climate change is not the only concern relevant to overheating, as research signifies, location, design, and occupation; construction type and layout can also play a part. Because of this growing problem, research shows the possibility of health effects on occupants of buildings could be an issue. Increases in temperature can perhaps have a direct impact on the human body’s ability to retain thermoregulation and therefore the effects of heat-related illnesses such as heat stroke, heat exhaustion, heat syncope and even death can be imminent. This review paper presents a comprehensive evaluation of the current literature on the causes and health effects of overheating in buildings and has examined the differing applied assessment approaches used to measure the concept. Firstly, an overview of the topic was presented followed by an examination of overheating research work from the last decade. These papers form the body of the article and are grouped into a framework matrix summarizing the source material identifying the differing methods of analysis of overheating. Cross case evaluation has identified systematic relationships between different variables within the matrix. Key areas focused on include, building types and country, occupants behavior, health effects, simulation tools, computational methods.

Keywords: overheating, climate change, thermal comfort, health

Procedia PDF Downloads 337
2021 Preservice Science Teachers' Understanding of Equitable Assessment

Authors: Kemal Izci, Ahmet Oguz Akturk

Abstract:

Learning is dependent on cognitive and physical differences as well as other differences such as ethnicity, language, and culture. Furthermore, these differences also influence how students show their learning. Assessment is an integral part of learning and teaching process and is essential for effective instruction. In order to provide effective instruction, teachers need to provide equal assessment opportunities for all students to see their learning difficulties and use them to modify instruction to aid learning. Successful assessment practices are dependent upon the knowledge and value of teachers. Therefore, in order to use assessment to assess and support diverse students learning, preservice and inservice teachers should hold an appropriate understanding of equitable assessment. In order to prepare teachers to help them support diverse student learning, as a first step, this study aims to explore how preservice teachers’ understand equitable assessment. 105 preservice science teachers studying at teacher preparation program in a large university located at Eastern part of Turkey participated in the current study. A questionnaire, preservice teachers’ reflection papers and interviews served as data sources for this study. All collected data qualitatively analyzed to develop themes that illustrate preservice science teachers’ understanding of equitable assessment. Results of the study showed that preservice teachers mostly emphasized fairness including fairness in grading and fairness in asking questions not out of covered concepts for equitable assessment. However, most of preservice teachers do not show an understanding of equity for providing equal opportunities for all students to display their understanding of related content. For some preservice teachers providing different opportunities (providing extra time for non-native speaking students) for some students seems to be unfair for other students and therefore, these kinds of refinements do not need to be used. The results of the study illustrated that preservice science teachers mostly understand equitable assessment as fairness and less highlight the role of using equitable assessment to support all student learning, which is more important in order to improve students’ achievement of science. Therefore, we recommend that more opportunities should be provided for preservice teachers engage in a more broad understanding of equitable assessment and learn how to use equitable assessment practices to aid and support all students learning trough classroom assessment.

Keywords: science teaching, equitable assessment, assessment literacy, preservice science teachers

Procedia PDF Downloads 290
2020 Application of Human Biomonitoring and Physiologically-Based Pharmacokinetic Modelling to Quantify Exposure to Selected Toxic Elements in Soil

Authors: Eric Dede, Marcus Tindall, John W. Cherrie, Steve Hankin, Christopher Collins

Abstract:

Current exposure models used in contaminated land risk assessment are highly conservative. Use of these models may lead to over-estimation of actual exposures, possibly resulting in negative financial implications due to un-necessary remediation. Thus, we are carrying out a study seeking to improve our understanding of human exposure to selected toxic elements in soil: arsenic (As), cadmium (Cd), chromium (Cr), nickel (Ni), and lead (Pb) resulting from allotment land-use. The study employs biomonitoring and physiologically-based pharmacokinetic (PBPK) modelling to quantify human exposure to these elements. We recruited 37 allotment users (adults > 18 years old) in Scotland, UK, to participate in the study. Concentrations of the elements (and their bioaccessibility) were measured in allotment samples (soil and allotment produce). Amount of produce consumed by the participants and participants’ biological samples (urine and blood) were collected for up to 12 consecutive months. Ethical approval was granted by the University of Reading Research Ethics Committee. PBPK models (coded in MATLAB) were used to estimate the distribution and accumulation of the elements in key body compartments, thus indicating the internal body burden. Simulating low element intake (based on estimated ‘doses’ from produce consumption records), predictive models suggested that detection of these elements in urine and blood was possible within a given period of time following exposure. This information was used in planning biomonitoring, and is currently being used in the interpretation of test results from biological samples. Evaluation of the models is being carried out using biomonitoring data, by comparing model predicted concentrations and measured biomarker concentrations. The PBPK models will be used to generate bioavailability values, which could be incorporated in contaminated land exposure models. Thus, the findings from this study will promote a more sustainable approach to contaminated land management.

Keywords: biomonitoring, exposure, PBPK modelling, toxic elements

Procedia PDF Downloads 302
2019 Upconversion Nanoparticle-Mediated Carbon Monoxide Prodrug Delivery System for Cancer Therapy

Authors: Yaw Opoku-Damoah, Run Zhang, Hang Thu Ta, Zhi Ping Xu

Abstract:

Gas therapy is still at an early stage of research and development. Even though most gasotransmitters have proven their therapeutic potential, their handling, delivery, and controlled release have been extremely challenging. This research work employs a versatile nanosystem that is capable of delivering a gasotransmitter in the form of a photo-responsive carbon monoxide-releasing molecule (CORM) for targeted cancer therapy. The therapeutic action was mediated by upconversion nanoparticles (UCNPs) designed to transfer bio-friendly low energy near-infrared (NIR) light to ultraviolet (UV) light capable of triggering carbon monoxide (CO) from a water-soluble amphiphilic manganese carbonyl complex CORM incorporated into a carefully designed lipid drug delivery system. Herein, gaseous CO that plays a role as a gasotransmitter with cytotoxic and homeostatic properties was investigated to instigate cellular apoptosis. After successfully synthesizing the drug delivery system, the ability of the system to encapsulate and mediate the sustained release of CO after light excitation was demonstrated. CO fluorescence probe (COFP) was successfully employed to determine the in vitro drug release profile upon NIR light irradiation. The uptake of nanoparticles enhanced by folates and its receptor interaction was also studied for cellular uptake purposes. The anticancer potential of the final lipid nanoparticle Lipid/UCNPs/CORM/FA (LUCF) was also determined by cell viability assay. Intracellular CO release and a subsequent therapeutic action involving ROS production, mitochondrial damage, and CO production was also evaluated. In all, this current project aims to use in vitro studies to determine the potency and efficiency of a NIR-mediated CORM prodrug delivery system.

Keywords: carbon monoxide-releasing molecule, upconversion nanoparticles, site-specific delivery, amphiphilic manganese carbonyl complex, prodrug delivery system.

Procedia PDF Downloads 96
2018 Microfluidic Device for Real-Time Electrical Impedance Measurements of Biological Cells

Authors: Anil Koklu, Amin Mansoorifar, Ali Beskok

Abstract:

Dielectric spectroscopy (DS) is a noninvasive, label free technique for a long term real-time measurements of the impedance spectra of biological cells. DS enables characterization of cellular dielectric properties such as membrane capacitance and cytoplasmic conductivity. We have developed a lab-on-a-chip device that uses an electro-activated microwells array for loading, DS measurements, and unloading of biological cells. We utilized from dielectrophoresis (DEP) to capture target cells inside the wells and release them after DS measurement. DEP is a label-free technique that exploits differences among dielectric properties of the particles. In detail, DEP is the motion of polarizable particles suspended in an ionic solution and subjected to a spatially non-uniform external electric field. To the best of our knowledge, this is the first microfluidic chip that combines DEP and DS to analyze biological cells using electro-activated wells. Device performance is tested using two different cell lines of prostate cancer cells (RV122, PC-3). Impedance measurements were conducted at 0.2 V in the 10 kHz to 40 MHz range with 6 s time resolution. An equivalent circuit model was developed to extract the cell membrane capacitance and cell cytoplasmic conductivity from the impedance spectra. We report the time course of the variations in dielectric properties of PC-3 and RV122 cells suspended in low conductivity medium (LCB), which enhances dielectrophoretic and impedance responses, and their response to sudden pH change from a pH of 7.3 to a pH of 5.8. It is shown that microfluidic chip allowed online measurements of dielectric properties of prostate cancer cells and the assessment of the cellular level variations under external stimuli such as different buffer conductivity and pH. Based on these data, we intend to deploy the current device for single cell measurements by fabricating separately addressable N × N electrode platforms. Such a device will allow time-dependent dielectric response measurements for individual cells with the ability of selectively releasing them using negative-DEP and pressure driven flow.

Keywords: microfluidic, microfabrication, lab on a chip, AC electrokinetics, dielectric spectroscopy

Procedia PDF Downloads 133
2017 A Dissipative Particle Dynamics Study of a Capsule in Microfluidic Intracellular Delivery System

Authors: Nishanthi N. S., Srikanth Vedantam

Abstract:

Intracellular delivery of materials has always proved to be a challenge in research and therapeutic applications. Usually, vector-based methods, such as liposomes and polymeric materials, and physical methods, such as electroporation and sonoporation have been used for introducing nucleic acids or proteins. Reliance on exogenous materials, toxicity, off-target effects was the short-comings of these methods. Microinjection was an alternative process which addressed the above drawbacks. However, its low throughput had hindered its adoption widely. Mechanical deformation of cells by squeezing them through constriction channel can cause the temporary development of pores that would facilitate non-targeted diffusion of materials. Advantages of this method include high efficiency in intracellular delivery, a wide choice of materials, improved viability and high throughput. This cell squeezing process can be studied deeper by employing simple models and efficient computational procedures. In our current work, we present a finite sized dissipative particle dynamics (FDPD) model to simulate the dynamics of the cell flowing through a constricted channel. The cell is modeled as a capsule with FDPD particles connected through a spring network to represent the membrane. The total energy of the capsule is associated with linear and radial springs in addition to constraint of the fixed area. By performing detailed simulations, we studied the strain on the membrane of the capsule for channels with varying constriction heights. The strain on the capsule membrane was found to be similar though the constriction heights vary. When strain on the membrane was correlated to the development of pores, we found higher porosity in capsule flowing in wider channel. This is due to localization of strain to a smaller region in the narrow constriction channel. But the residence time of the capsule increased as the channel constriction narrowed indicating that strain for an increased time will cause less cell viability.

Keywords: capsule, cell squeezing, dissipative particle dynamics, intracellular delivery, microfluidics, numerical simulations

Procedia PDF Downloads 127
2016 Quality Assessment of Pedestrian Streets in Iran: Case Study of Saf, Tehran

Authors: Fstemeh Rais Esmaili, Ehsan Ranjbar

Abstract:

Pedestrian streets as one type of urban public spaces have an important role in improving the quality of urban life. In Iran, planning and designing of pedestrian streets is in its primary steps. In spite of starting this approach in Iran, and designing several pedestrian streets, there are still not organized studies about quality assessment of pedestrian streets. As a result, the strength and weakness points of the initial experiences have not been utilized. This inattention to quality assessment have caused designing pedestrian streets to be limited to just vehicles traffic control and preliminary actions like paving; so that, special potentials of pedestrian streets for creating social, livable and dynamic public spaces have not been used. This article, as an organized study about quality assessment of pedestrian streets in Iran, tries to reach two main goals: first, introducing a framework for quality assessment of pedestrian streets in Iran, and second, creating a context for improving the quality of pedestrian streets especially for further experiences. The main research methods are description and context analyzing. With respect to comparative analysis of ideas about quality, considering international and local case studies and analyzing existing condition of Saf Pedestrian Street, a particular model for quality assessment has been introduced. In this model, main components and assessment criteria have been presented. On the basis of this model, questionnaire and checklist for assessment have been prepared. The questionnaire and interview have been used to assess qualities which are in direct contact with people and the checklist has been used for analyzing visual qualities by authors through observation. Some results of questionnaire and checklist show that 7 of 11 primary components, diversity, flexibility, cleanness, legibility and imaginably, identity, livability, form and physical setting are rated low and very low in quality degree. Three components, efficiency, comfort and distinctiveness, have medium and low quality degree and one component, access, linkage and permeability has high quality degree. Therefore, based on implemented analyzing process, Saf Pedestrian Street needs to be improved and these quality improvement priorities are determined based on presented criteria. Adaption of final results with existing condition illustrates the shortage of services for satisfying user’s needs, inflexibility and impossibility of using spaces in various times, lack of facilities for different climatic conditions, lack of facilities such as drinking fountain, inappropriate designing of existing urban furniture like garbage cans, and creating pollution and unsuitable view, lack of visual attractions, neglecting disabled persons in designing entrances, shortage of benches and their undesirable designing, lack of vegetation, absence of special characters making it different from other streets, preventing people taking part in the space causing lack of affiliation, lack of appropriate elements for leisure time and lack of exhilaration in the space. On the other hand, these results present high access and permeability, high safety, less sound pollution and more relief, comfortable movement along the way due to suitable pavement and economic efficiency, as the strength points of Saf pedestrian street.

Keywords: pedestrian streets, quality assessment, quality criteria, Saf Pedestrian Street

Procedia PDF Downloads 238
2015 Two-Level Graph Causality to Detect and Predict Random Cyber-Attacks

Authors: Van Trieu, Shouhuai Xu, Yusheng Feng

Abstract:

Tracking attack trajectories can be difficult, with limited information about the nature of the attack. Even more difficult as attack information is collected by Intrusion Detection Systems (IDSs) due to the current IDSs having some limitations in identifying malicious and anomalous traffic. Moreover, IDSs only point out the suspicious events but do not show how the events relate to each other or which event possibly cause the other event to happen. Because of this, it is important to investigate new methods capable of performing the tracking of attack trajectories task quickly with less attack information and dependency on IDSs, in order to prioritize actions during incident responses. This paper proposes a two-level graph causality framework for tracking attack trajectories in internet networks by leveraging observable malicious behaviors to detect what is the most probable attack events that can cause another event to occur in the system. Technically, given the time series of malicious events, the framework extracts events with useful features, such as attack time and port number, to apply to the conditional independent tests to detect the relationship between attack events. Using the academic datasets collected by IDSs, experimental results show that the framework can quickly detect the causal pairs that offer meaningful insights into the nature of the internet network, given only reasonable restrictions on network size and structure. Without the framework’s guidance, these insights would not be able to discover by the existing tools, such as IDSs. It would cost expert human analysts a significant time if possible. The computational results from the proposed two-level graph network model reveal the obvious pattern and trends. In fact, more than 85% of causal pairs have the average time difference between the causal and effect events in both computed and observed data within 5 minutes. This result can be used as a preventive measure against future attacks. Although the forecast may be short, from 0.24 seconds to 5 minutes, it is long enough to be used to design a prevention protocol to block those attacks.

Keywords: causality, multilevel graph, cyber-attacks, prediction

Procedia PDF Downloads 145
2014 Capacities of Early Childhood Education Professionals for the Prevention of Social Exclusion of Children

Authors: Dejana Bouillet, Vlatka Domović

Abstract:

Both policymakers and researchers recognize that participating in early childhood education and care (ECEC) is useful for all children, especially for those who are exposed to the high risk of social exclusion. Social exclusion of children is understood as a multidimensional construct including economic, social, cultural, health, and other aspects of disadvantage and deprivation, which individually or combined can have an unfavorable effect on the current life and development of a child, as well as on the child’s development and on disadvantaged life chances in adult life. ECEC institutions should be able to promote educational approaches that portray developmental, cultural, language, and other diversity amongst children. However, little is known about the ways in which Croatian ECEC institutions recognize and respect the diversity of children and their families and how they respond to their educational needs. That is why this paper is dedicated to the analysis of the capacities of ECEC professionals to respond to the demands of educational needs of this very diverse group of children and their families. The results obtained in the frame of the project “Models of response to educational needs of children at risk of social exclusion in ECEC institutions,” funded by the Croatian Science Foundation, will be presented. The research methodology arises from explanations of educational processes and risks of social exclusion as a complex and heterogeneous phenomenon. The preliminary results of the qualitative data analysis of educational practices regarding capacities to identify and appropriately respond to the requirements of children at risk of social exclusion will be presented. The data have been collected by interviewing educational staff in 10 Croatian ECEC institutions (n = 10). The questions in the interviews were related to various aspects of inclusive institutional policy, culture, and practices. According to the analysis, it is possible to conclude that Croatian ECEC professionals are still faced with great challenges in the process of implementation of inclusive policies, culture, and practices. There are several baselines of this conclusion. The interviewed educational professionals are not familiar enough with the whole complexity and diversity of needs of children at risk of social exclusion, and the ECEC institutions do not have enough resources to provide all interventions that these children and their families need.

Keywords: children at risk of social exclusion, ECEC professionals, inclusive policies, culture and practices, quallitative analysis

Procedia PDF Downloads 99
2013 The Potential of Acanthaster Plancii Fractions as Anti-Atherosclerotic Agent by Inhibiting the Expression of Proprotein Convertase Subtilisin-Kexin Type 9

Authors: Nurjannatul Naim Kamaruddin, Tengku Sifziuzl Tengku Muhammad, Aina Farahiyah Abdul Manan, Habsah Mohamad

Abstract:

Atherosclerosis which leads to cardiovascular diseases such as myocardial infarction, unstable angina (ischemic heart pain), sudden cardiac death and stroke is the principal cause of death worldwide. It has been a very critical issue as current common drug treatment, statin therapy has left bad side effects like rhabdomyolysis, atrial fibrillation, liver disease, abdominal and chest pain. Interestingly, the discoveries of proprotein convertase subtilisin-kexin type 9 have paved a new way in the treatment of atherosclerosis. This serine protease is believed to involve in the regulation of LDL- uptake by LDL-receptor. Therefore, this study was conducted to evaluate the potential of Acanthaster plancii fractions to reduce the transcriptional activity of the PCSK9 promoter. In this study, the marine organism which is Acanthaster plancii has been used as the source for marine compounds in inhibiting PCSK9. The cytotoxicity activity of ten fractions from the methanol extracts of Acanthaster plancii was investigated on HepG2 cell lines using MTS assay and dual glo luciferase assay was carried out later to analyses the effects of the samples in reducing the transcriptional activity of the PCSK9 promoter. Both assays used fractions with five different concentrations, 3.13µg/mL, 6.25µg/mL, 12.5µg/mL, 25µg/mL, and 50µg/mL. MTS assay indicated that the fractions are non-cytotoxic towards HepG2 cell lines as their IC50 value is greater than 30µg/mL. Whilst, for the dual glo luciferase assay, among all the fractions, Enhance Fraction 2 (EF2) showed the best potential in reducing the transcriptional activity of the PCSK9 promoter. The results indicated that this EF2 gave the lowest PCSK9 promoter expression at low concentration which is 0.2 fold change at 6.25µg/mL. This finding suggested that further analysis should be done to validate the potential of Acanthaster plancii as the source of anti-atherosclerotic agent.

Keywords: Acanthaster plancii, atherosclerosis, luciferase assay, PCSK9

Procedia PDF Downloads 126
2012 The Effectiveness of Energy-related Tax in Curbing Transport-related Carbon Emissions: The Role of Green Finance and Technology in OECD Economies

Authors: Hassan Taimoor, Piotr Krajewski, Piotr Gabrielzcak

Abstract:

Being responsible for the largest source of energy-related emissions, the transportation sector is driven by more than half of global oil demand and total energy consumption, making it a crucial factor in tackling climate change and environmental degradation. The present study empirically tests the effectives of the energy-related tax (TXEN) in curbing transport-related carbon emissions (CO2TRANSP) in Organization for Economic Cooperation and Development (OECD) economies over the period of 1990-2020. Moreover, Green Finance (GF), Technology (TECH), and Gross domestic product (GDP) have also been added as explanatory factors which might affect CO2TRANSP emissions. The study employs the Method of Moment Quantile Regression (MMQR), an advance econometric technique to observe the variations along each quantile. Based on the results of the preliminary test, we confirm the presence of cross-sectional dependence and slope heterogeneity. Whereas the result of the panel unit root test report mixed order of variables’ integration. The findings reveal that rise in income level activates CO2TRANSP, confirming the first stage of Environmental Kuznet Hypothesis. Surprisingly, the present TXEN policies of OECD member states are not mature enough to tackle the CO2TRANSP emissions. However, the findings confirm that GF and TECH are solely responsible for the reduction in the CO2TRANSP. The outcomes of Bootstrap Quantile Regression (BSQR) further validate and support the earlier findings of MMQR. Based on the findings of this study, it is revealed that the current TXEN policies are too moderate, and an incremental and progressive rise in TXEN may help in a transition toward a cleaner and sustainable transportation sector in the study region.

Keywords: transport-related CO2 emissions, energy-related tax, green finance, technological development, oecd member states

Procedia PDF Downloads 61
2011 A Systematic Approach to Mitigate the Impact of Increased Temperature and Air Pollution in Urban Settings

Authors: Samain Sabrin, Joshua Pratt, Joshua Bryk, Maryam Karimi

Abstract:

Globally, extreme heat events have led to a surge in the number of heat-related moralities. These incidents are further exacerbated in high-density population centers due to the Urban Heat Island (UHI) effect. Varieties of anthropogenic activities such as unsupervised land surface modifications, expansion of impervious areas, and lack of use of vegetation are all contributors to an increase in the amount of heat flux trapped by an urban canopy which intensifies the UHI effect. This project aims to propose a systematic approach to measure the impact of air quality and increased temperature based on urban morphology in the selected metropolitan cities. This project will measure the impact of build environment for urban and regional planning using human biometeorological evaluations (mean radiant temperature, Tmrt). We utilized the Rayman model (capable of calculating short and long wave radiation fluxes affecting the human body) to estimate the Tmrt in an urban environment incorporating location and height of buildings and trees as a supplemental tool in urban planning, and street design. Our current results suggest a strong correlation between building height and increased surface temperature in megacities. This model will help with; 1. Quantify the impacts of the built environment and surface properties on surrounding temperature, 2. Identify priority urban neighborhoods by analyzing Tmrt and air quality data at pedestrian level, 3. Characterizing the need for urban green infrastructure or better urban planning- maximizing the cooling benefit from existing Urban Green Infrastructure (UGI), and 4. Developing a hierarchy of streets for new UGI integration and propose new UGI based on site characteristics and cooling potential.

Keywords: air quality, heat mitigation, human-biometeorological indices, increased temperature, mean radiant temperature, radiation flux, sustainable development, thermal comfort, urban canopy, urban planning

Procedia PDF Downloads 128
2010 Microbial Fuel Cells and Their Applications in Electricity Generating and Wastewater Treatment

Authors: Shima Fasahat

Abstract:

This research is an experimental research which was done about microbial fuel cells in order to study them for electricity generating and wastewater treatment. These days, it is very important to find new, clean and sustainable ways for energy supplying. Because of this reason there are many researchers around the world who are studying about new and sustainable energies. There are different ways to produce these kind of energies like: solar cells, wind turbines, geothermal energy, fuel cells and many other ways. Fuel cells have different types one of these types is microbial fuel cell. In this research, an MFC was built in order to study how it can be used for electricity generating and wastewater treatment. The microbial fuel cell which was used in this research is a reactor that has two tanks with a catalyst solution. The chemical reaction in microbial fuel cells is a redox reaction. The microbial fuel cell in this research is a two chamber MFC. Anode chamber is an anaerobic one (ABR reactor) and the other chamber is a cathode chamber. Anode chamber consists of stabilized sludge which is the source of microorganisms that do redox reaction. The main microorganisms here are: Propionibacterium and Clostridium. The electrodes of anode chamber are graphite pages. Cathode chamber consists of graphite page electrodes and catalysts like: O2, KMnO4 and C6N6FeK4. The membrane which separates the chambers is Nafion117. The reason of choosing this membrane is explained in the complete paper. The main goal of this research is to generate electricity and treating wastewater. It was found that when you use electron receptor compounds like: O2, MnO4, C6N6FeK4 the velocity of electron receiving speeds up and in a less time more current will be achieved. It was found that the best compounds for this purpose are compounds which have iron in their chemical formula. It is also important to pay attention to the amount of nutrients which enters to bacteria chamber. By adding extra nutrients in some cases the result will be reverse.  By using ABR the amount of chemical oxidation demand reduces per day till it arrives to a stable amount.

Keywords: anaerobic baffled reactor, bioenergy, electrode, energy efficient, microbial fuel cell, renewable chemicals, sustainable

Procedia PDF Downloads 207
2009 Protective Efficacy of Moringa oleifera against Oxidative Ovarian Damage and Reproductive Failure in Female Rats Caused by Cyclophosphamide

Authors: Seham Samir Soliman, Ahmed A.Suliman, Khaled Fathy, Ahmed A. Sedik

Abstract:

Cyclophosphamide (CP), an antineoplastic drug, has been found to induce reproductive damage. It is essential to develop approaches aimed at safeguarding ovarian tissue integrity in women experiencing reproductive toxicity as a result of chemotherapy. The current study was conducted to assess the impact of an extract derived from Moringa oleifera (M. oleifera) leaves on ovarian damage produced by CP. A total of 32 female Wistar Albino rats, which were in a healthy cycling state, were randomly separated into 4 groups, with every group contains 8 rats. The first group was administered intraperitoneal (i.p.) saline. The second group was administered a solitary intraperitoneal dosage of cyclophosphamide (200 mg/kg). The third one received M. oleifera extract (150 mg/kg orally) for 20 days, followed by i.p. of CP on the last day of the experiment. The fourth group received M. oleifera extract (250 mg/kg orally) for 20 days, followed by i.p. of CP on the last day of the experiment. Hormonal assessments, including luteinizing hormone (LH), estrogen (ES), and follicle-stimulating hormone (FSH), were performed 24 hours after CP administration. In addition, evaluating the antioxidant status and inflammatory response against CP. Moreover, conducting detailed histopathological and ultra-structural pictures of the ovary. Our findings reported that rats intoxicated with CP exhibited elevated levels of FSH, LH, malondialdehyde (MDA), tumor necrosis factor-alpha (TNF-α), and a decrease in E₂, and glutathione (GSH) levels. Pre-treatment with M. oleifera extract (250 mg/kg orally) ameliorated the disturbance in hormonal changes, oxidative stress indices, and the levels of pro-inflammatory mediators. Also, the histopathological and ultra-structural pictures of the ovaries were improved significantly in rats. In conclusion, M. oleifera extract possesses a significant protective role against CP-induced acute reproductive toxicity via modulating the values of FSH, LH, E₂ and quenching the release of reactive oxygen species and inflammatory mediators in female rats.

Keywords: cyclophosphamide, Moringa oleifera, ovarian function, oxidative stress, pro-inflammatory mediators

Procedia PDF Downloads 52
2008 Characterization of Agroforestry Systems in Burkina Faso Using an Earth Observation Data Cube

Authors: Dan Kanmegne

Abstract:

Africa will become the most populated continent by the end of the century, with around 4 billion inhabitants. Food security and climate changes will become continental issues since agricultural practices depend on climate but also contribute to global emissions and land degradation. Agroforestry has been identified as a cost-efficient and reliable strategy to address these two issues. It is defined as the integrated management of trees and crops/animals in the same land unit. Agroforestry provides benefits in terms of goods (fruits, medicine, wood, etc.) and services (windbreaks, fertility, etc.), and is acknowledged to have a great potential for carbon sequestration; therefore it can be integrated into reduction mechanisms of carbon emissions. Particularly in sub-Saharan Africa, the constraint stands in the lack of information about both areas under agroforestry and the characterization (composition, structure, and management) of each agroforestry system at the country level. This study describes and quantifies “what is where?”, earliest to the quantification of carbon stock in different systems. Remote sensing (RS) is the most efficient approach to map such a dynamic technology as agroforestry since it gives relatively adequate and consistent information over a large area at nearly no cost. RS data fulfill the good practice guidelines of the Intergovernmental Panel On Climate Change (IPCC) that is to be used in carbon estimation. Satellite data are getting more and more accessible, and the archives are growing exponentially. To retrieve useful information to support decision-making out of this large amount of data, satellite data needs to be organized so to ensure fast processing, quick accessibility, and ease of use. A new solution is a data cube, which can be understood as a multi-dimensional stack (space, time, data type) of spatially aligned pixels and used for efficient access and analysis. A data cube for Burkina Faso has been set up from the cooperation project between the international service provider WASCAL and Germany, which provides an accessible exploitation architecture of multi-temporal satellite data. The aim of this study is to map and characterize agroforestry systems using the Burkina Faso earth observation data cube. The approach in its initial stage is based on an unsupervised image classification of a normalized difference vegetation index (NDVI) time series from 2010 to 2018, to stratify the country based on the vegetation. Fifteen strata were identified, and four samples per location were randomly assigned to define the sampling units. For safety reasons, the northern part will not be part of the fieldwork. A total of 52 locations will be visited by the end of the dry season in February-March 2020. The field campaigns will consist of identifying and describing different agroforestry systems and qualitative interviews. A multi-temporal supervised image classification will be done with a random forest algorithm, and the field data will be used for both training the algorithm and accuracy assessment. The expected outputs are (i) map(s) of agroforestry dynamics, (ii) characteristics of different systems (main species, management, area, etc.); (iii) assessment report of Burkina Faso data cube.

Keywords: agroforestry systems, Burkina Faso, earth observation data cube, multi-temporal image classification

Procedia PDF Downloads 127
2007 Construction and Cross-Linking of Polyelectrolyte Multilayers Based on Polysaccharides as Antifouling Coatings

Authors: Wenfa Yu, Thuva Gnanasampanthan, John Finlay, Jessica Clarke, Charlotte Anderson, Tony Clare, Axel Rosenhahn

Abstract:

Marine biofouling is a worldwide problem at vast economic and ecological costs. Historically it was combated with toxic coatings such as tributyltin. As those coatings being banned nowadays, finding environmental friendly antifouling solution has become an urgent topic. In this study antifouling coatings consisted of natural occurring polysaccharides hyaluronic acid (HA), alginic acid (AA), chitosan (Ch) and polyelectrolyte polyethylenimine (PEI) are constructed into polyelectrolyte multilayers (PEMs) in a Layer-by-Layer (LbL) method. LbL PEM construction is a straightforward way to assemble biomacromolecular coatings on surfaces. Advantages about PEM include ease of handling, highly diverse PEM composition, precise control over the thickness and so on. PEMs have been widely employed in medical application and there are numerous studies regarding their protein adsorption, elasticity and cell adhesive properties. With the adjustment of coating composition, termination layer charge, coating morphology and cross-linking method, it is possible to prepare low marine biofouling coatings with PEMs. In this study, using spin coating technology, PEM construction was achieved at smooth multilayers with roughness as low as 2nm rms and highly reproducible thickness around 50nm. To obtain stability in sea water, the multilayers were covalently cross-linked either thermally or chemically. The cross-linking method affected surface energy, which was reflected in water contact angle, thermal cross-linking led to hydrophobic surfaces and chemical cross-linking generated hydrophilic surfaces. The coatings were then evaluated regarding its protein resistance and biological species resistance. While the hydrophobic thermally cross-linked PEM had low resistance towards proteins, the resistance of chemically cross-linked PEM strongly depended on the PEM termination layer and the charge of the protein, opposite charge caused high adsorption and same charge low adsorption, indicating electrostatic interaction plays a crucial role in the protein adsorption processes. Ulva linza was chosen as the biological species for antifouling performance evaluation. Despite of the poor resistance towards protein adsorption, thermally cross-linked PEM showed good resistance against Ulva spores settlement, the chemically cross-linked multilayers showed poor resistance regardless of the termination layer. Marine species adhesion is a complex process, although it involves proteins as bioadhesives, protein resistance its own is not a fully indicator for its antifouling performance. The species will pre select the surface, responding to cues like surface energy, chemistry, or charge and so on. Thus making it difficult for one single factors to determine its antifouling performance. Preparing PEM coating is a comprehensive work involving choosing polyelectrolyte combination, determining termination layer and the method for cross-linking. These decisions will affect PEM properties such as surface energy, charge, which is crucial, since biofouling is a process responding to surface properties in a highly sensitive and dynamic way.

Keywords: hyaluronic acid, polyelectrolyte multilayers, protein resistance, Ulva linza zoospores

Procedia PDF Downloads 149
2006 Brachypodium: A Model Genus to Study Grass Genome Organisation at the Cytomolecular Level

Authors: R. Hasterok, A. Betekhtin, N. Borowska, A. Braszewska-Zalewska, E. Breda, K. Chwialkowska, R. Gorkiewicz, D. Idziak, J. Kwasniewska, M. Kwasniewski, D. Siwinska, A. Wiszynska, E. Wolny

Abstract:

In contrast to animals, the organisation of plant genomes at the cytomolecular level is still relatively poorly studied and understood. However, the Brachypodium genus in general and B. distachyon in particular represent exceptionally good model systems for such study. This is due not only to their highly desirable ‘model’ biological features, such as small nuclear genome, low chromosome number and complex phylogenetic relations, but also to the rapidly and continuously growing repertoire of experimental tools, such as large collections of accessions, WGS information, large insert (BAC) libraries of genomic DNA, etc. Advanced cytomolecular techniques, such as fluorescence in situ hybridisation (FISH) with evermore sophisticated probes, empowered by cutting-edge microscope and digital image acquisition and processing systems, offer unprecedented insight into chromatin organisation at various phases of the cell cycle. A good example is chromosome painting which uses pools of chromosome-specific BAC clones, and enables the tracking of individual chromosomes not only during cell division but also during interphase. This presentation outlines the present status of molecular cytogenetic analyses of plant genome structure, dynamics and evolution using B. distachyon and some of its relatives. The current projects focus on important scientific questions, such as: What mechanisms shape the karyotypes? Is the distribution of individual chromosomes within an interphase nucleus determined? Are there hot spots of structural rearrangement in Brachypodium chromosomes? Which epigenetic processes play a crucial role in B. distachyon embryo development and selective silencing of rRNA genes in Brachypodium allopolyploids? The authors acknowledge financial support from the Polish National Science Centre (grants no. 2012/04/A/NZ3/00572 and 2011/01/B/NZ3/00177)

Keywords: Brachypodium, B. distachyon, chromosome, FISH, molecular cytogenetics, nucleus, plant genome organisation

Procedia PDF Downloads 330
2005 Experimental Study of the Efficacy and Emission Properties of a Compression Ignition Engine Running on Fuel Additives with Varying Engine Loads

Authors: Faisal Mahroogi, Mahmoud Bady, Yaser H. Alahmadi, Ahmed Alsisi, Sunny Narayan, Muhammad Usman Kaisan

Abstract:

The Kingdom of Saudi Arabia established Saudi Vision 2030, an initiative of the government with the goal of promoting more socioeconomic as well as cultural diversity. The kingdom, which is dedicated to sustainable development and clean energy, uses cutting-edge approaches to address energy-related issues, including the circular carbon economy (CCE) and a more varied energy mix. In order for Saudi Arabia to achieve its Vision 2030 goal of having a net zero future by 2060, sustainability is essential. By addressing the energy and climate issues of the modern world with responsibility and innovation, Vision 2030 is turning into a global role model for the transition to a sustainable future. As per the Ambitions of the National Environment Strategy of the Saudi Ministry of Environment, Agriculture, and Water (MEWA), raising environmental compliance across all sectors and reducing pollution and adverse environmental impacts are critical focus areas. As a result, the current study presents an experimental analysis of the performance and exhaust emissions of a diesel engine running mostly on waste cooking oil (WCO). A one-cylinder direct-injection diesel engine with constant speed and natural aspiration is the engine type utilized. Research was done on how the engine performed and emission parameters when fueled with a mixture of 10% butanol, 10% diesel, 10% WCO, and 10% diethyl ether (D70B10W10DD10). The study's findings demonstrated that engine emissions of nitrogen oxides (NOX) and carbon monoxide (CO) varied significantly depending on the load being applied. The brake thermal efficiency, cylinder pressure, and the brake power of the engine were all impacted by load change.

Keywords: ICE, waste cooking oil, fuel additives, butanol, combustion, emission characteristics

Procedia PDF Downloads 21
2004 Documenting the 15th Century Prints with RTI

Authors: Peter Fornaro, Lothar Schmitt

Abstract:

The Digital Humanities Lab and the Institute of Art History at the University of Basel are collaborating in the SNSF research project ‘Digital Materiality’. Its goal is to develop and enhance existing methods for the digital reproduction of cultural heritage objects in order to support art historical research. One part of the project focuses on the visualization of a small eye-catching group of early prints that are noteworthy for their subtle reliefs and glossy surfaces. Additionally, this group of objects – known as ‘paste prints’ – is characterized by its fragile state of preservation. Because of the brittle substances that were used for their production, most paste prints are heavily damaged and thus very hard to examine. These specific material properties make a photographic reproduction extremely difficult. To obtain better results we are working with Reflectance Transformation Imaging (RTI), a computational photographic method that is already used in archaeological and cultural heritage research. This technique allows documenting how three-dimensional surfaces respond to changing lighting situations. Our first results show that RTI can capture the material properties of paste prints and their current state of preservation more accurately than conventional photographs, although there are limitations with glossy surfaces because the mathematical models that are included in RTI are kept simple in order to keep the software robust and easy to use. To improve the method, we are currently developing tools for a more detailed analysis and simulation of the reflectance behavior. An enhanced analytical model for the representation and visualization of gloss will increase the significance of digital representations of cultural heritage objects. For collaborative efforts, we are working on a web-based viewer application for RTI images based on WebGL in order to make acquired data accessible to a broader international research community. At the ICDH Conference, we would like to present unpublished results of our work and discuss the implications of our concept for art history, computational photography and heritage science.

Keywords: art history, computational photography, paste prints, reflectance transformation imaging

Procedia PDF Downloads 263
2003 Methadone Maintenance Treatment Patients' and Medical Students' Common Trait: Low Mindfulness Trait Associated with High Perceived Stress

Authors: Einat Peles, Anat Sason, Ariel Claman, Gabriel Barkay, Miriam Adelson

Abstract:

Individuals with opioid addiction are characterized as suffering from stress responses disturbance, including the hypothalamic-pituitary-adrenal (HPA) axis, and autonomic nervous system function. HPA axis is known to be stabilized during methadone maintenance treatment (MMT). Mindfulness (present-oriented, nonjudgmental awareness of cognitions, emotions, perceptions, and habitual behavioral reactions in daily life) counteracts stress. To our knowledge, the relation between perceived stress and mindfulness trait among MMT patients has never been studied. To measure indices of mindfulness and their relation to perceived stress among MMT patients, a cross-sectional random sample of current MMT patients was performed using questionnaires for perceived stress (PSS) and mindfulness trait (FFMQ- yields a total score and individual scores for five internally consistent mindfulness factors: Observing, Describing, Acting with awareness and consciousness, Non-judging the inner experience, Non-reactivity to the inner experience). Two additional groups were studied to serve as reference groups; Medical students that are known to suffer from stress, and Axis II psychiatric diagnosis patients that are known to characterized with poor mindfulness trait. Results: Groups included 41 MMT patients, 27 Axis II patients and 36 medical students. High perceived stressed (PSS≥18) defined among 61% of the MMT patients and 50% of the medical students. Highest mindfulness score observed among non-stressed MMT patients (153.5±17.2) followed by the groups of stressed MMT and non-stressed student (128.9±17.0 and 130.5±13.3 respectively), with the lowest score among stressed students (116.3±17.9) (multivariate analyses, corrected model p (F=14.3) < 0.0005, p (group) < 0.0005, p (stress) < 0.0005, p (interaction) =0.2). Linear inverse correlations were found between perceived stress score and mindfulness score among MMT patients (R=-0.65, p < 0.0005) and students (R=-0.51, p=0.002). Axis II patients had the lowest mindfulness score (103.4±25.3). Conclusion: High prevalence of high perceived stressed which characterized with poor mindfulness trait observed in both MMT patients and medical students, two different population groups. The effectiveness of mindfulness treatment in reducing stress and improve mindfulness trait should be evaluated to improve rehabilitation of MMT patients, and students success.

Keywords: mindfulness, stress, methadone maintenance treatment, medical students

Procedia PDF Downloads 165
2002 Effects of Machining Parameters on the Surface Roughness and Vibration of the Milling Tool

Authors: Yung C. Lin, Kung D. Wu, Wei C. Shih, Jui P. Hung

Abstract:

High speed and high precision machining have become the most important technology in manufacturing industry. The surface roughness of high precision components is regarded as the important characteristics of the product quality. However, machining chatter could damage the machined surface and restricts the process efficiency. Therefore, selection of the appropriate cutting conditions is of importance to prevent the occurrence of chatter. In addition, vibration of the spindle tool also affects the surface quality, which implies the surface precision can be controlled by monitoring the vibration of the spindle tool. Based on this concept, this study was aimed to investigate the influence of the machining conditions on the surface roughness and the vibration of the spindle tool. To this end, a series of machining tests were conducted on aluminum alloy. In tests, the vibration of the spindle tool was measured by using the acceleration sensors. The surface roughness of the machined parts was examined using white light interferometer. The response surface methodology (RSM) was employed to establish the mathematical models for predicting surface finish and tool vibration, respectively. The correlation between the surface roughness and spindle tool vibration was also analyzed by ANOVA analysis. According to the machining tests, machined surface with or without chattering was marked on the lobes diagram as the verification of the machining conditions. Using multivariable regression analysis, the mathematical models for predicting the surface roughness and tool vibrations were developed based on the machining parameters, cutting depth (a), feed rate (f) and spindle speed (s). The predicted roughness is shown to agree well with the measured roughness, an average percentage of errors of 10%. The average percentage of errors of the tool vibrations between the measurements and the predictions of mathematical model is about 7.39%. In addition, the tool vibration under various machining conditions has been found to have a positive influence on the surface roughness (r=0.78). As a conclusion from current results, the mathematical models were successfully developed for the predictions of the surface roughness and vibration level of the spindle tool under different cutting condition, which can help to select appropriate cutting parameters and to monitor the machining conditions to achieve high surface quality in milling operation.

Keywords: machining parameters, machining stability, regression analysis, surface roughness

Procedia PDF Downloads 214