Search results for: child behaviour problem
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10241

Search results for: child behaviour problem

101 Protected Cultivation of Horticultural Crops: Increases Productivity per Unit of Area and Time

Authors: Deepak Loura

Abstract:

The most contemporary method of producing horticulture crops both qualitatively and quantitatively is protected cultivation, or greenhouse cultivation, which has gained widespread acceptance in recent decades. Protected farming, commonly referred to as controlled environment agriculture (CEA), is extremely productive, land- and water-wise, as well as environmentally friendly. The technology entails growing horticulture crops in a controlled environment where variables such as temperature, humidity, light, soil, water, fertilizer, etc. are adjusted to achieve optimal output and enable a consistent supply of them even during the off-season. Over the past ten years, protected cultivation of high-value crops and cut flowers has demonstrated remarkable potential. More and more agricultural and horticultural crop production systems are moving to protected environments as a result of the growing demand for high-quality products by global markets. By covering the crop, it is possible to control the macro- and microenvironments, enhancing plant performance and allowing for longer production times, earlier harvests, and higher yields of higher quality. These shielding features alter the environment of the plant while also offering protection from wind, rain, and insects. Protected farming opens up hitherto unexplored opportunities in agriculture as the liberalised economy and improved agricultural technologies advance. Typically, the revenues from fruit, vegetable, and flower crops are 4 to 8 times higher than those from other crops. If any of these high-value crops are cultivated in protected environments like greenhouses, net houses, tunnels, etc., this profit can be multiplied. Vegetable and cut flower post-harvest losses are extremely high (20–0%), however sheltered growing techniques and year-round cropping can greatly minimize post-harvest losses and enhance yield by 5–10 times. Seasonality and weather have a big impact on the production of vegetables and flowers. The variety of their products results in significant price and quality changes for vegetables. For the application of current technology in crop production, achieving a balance between year-round availability of vegetables and flowers with minimal environmental impact and remaining competitive is a significant problem. The future of agriculture will be protected since population growth is reducing the amount of land that may be held. Protected agriculture is a particularly profitable endeavor for tiny landholdings. Small greenhouses, net houses, nurseries, and low tunnel greenhouses can all be built by farmers to increase their income. Protected agriculture is also aided by the rise in biotic and abiotic stress factors. As a result of the greater productivity levels, these technologies are not only opening up opportunities for producers with larger landholdings, but also for those with smaller holdings. Protected cultivation can be thought of as a kind of precise, forward-thinking, parallel agriculture that covers almost all aspects of farming and is rather subject to additional inspection for technical applicability to circumstances, farmer economics, and market economics.

Keywords: protected cultivation, horticulture, greenhouse, vegetable, controlled environment agriculture

Procedia PDF Downloads 76
100 Evaluation of the Suitability of a Microcapsule-Based System for the Manufacturing of Self-Healing Low-Density Polyethylene

Authors: Małgorzata Golonka, Jadwiga Laska

Abstract:

Among self-healing materials, the most unexplored group are thermoplastic polymers. These polymers are used not only to produce packaging with a relatively short life but also to obtain coatings, insulation, casings, or parts of machines and devices. Due to its exceptional resistance to weather conditions, hydrophobicity, sufficient mechanical strength, and ease of extrusion, polyethylene is used in the production of polymer pipelines and as an insulating layer for steel pipelines. Polyethylene or PE coated steel pipelines can be used in difficult conditions such as underground or underwater installations. Both installation and use under such conditions are associated with high stresses and consequently the formation of microdamages in the structure of the material, loss of its integrity and final applicability. The ideal solution would be to include a self-healing system in the polymer material. In the presented study the behavior of resin-coated microcapsules in the extrusion process of low-density polyethylene was examined. Microcapsules are a convenient element of the repair system because they can be filled with appropriate reactive substances to ensure the repair process, but the main problem is their durability under processing conditions. Rapeseed oil, which has a relatively high boiling point of 240⁰C and low volatility, was used as the core material that simulates the reactive agents. The capsule shell, which is a key element responsible for its mechanical strength, was obtained by in situ polymerising urea-formaldehyde, melamine-urea-formaldehyde or melamine-formaldehyde resin on the surface of oil droplets dispersed in water. The strength of the capsules was compared based on the shell material, and in addition, microcapsules with single- and multilayer shells were obtained using different combinations of the chemical composition of the resins. For example, the first layer of appropriate tightness and stiffness was made of melamine-urea-formaldehyde resin, and the second layer was a melamine-formaldehyde reinforcing layer. The size, shape, distribution of capsule diameters and shell thickness were determined using digital optical microscopy and electron microscopy. The efficiency of encapsulation (i.e., the presence of rapeseed oil as the core) and the tightness of the shell were determined by FTIR spectroscopic examination. The mechanical strength and distribution of microcapsules in polyethylene were tested by extruding samples of crushed low-density polyethylene mixed with microcapsules in a ratio of 1 and 2.5% by weight. The extrusion process was carried out in a mini extruder at a temperature of 150⁰C. The capsules obtained had a diameter range of 70-200 µm. FTIR analysis confirmed the presence of rapeseed oil in both single- and multilayer shell microcapsules. Microscopic observations of cross sections of the extrudates confirmed the presence of both intact and cracked microcapsules. However, the melamine-formaldehyde resin shells showed higher processing strength compared to that of the melamine-urea-formaldehyde coating and the urea-formaldehyde coating. Capsules with a urea-formaldehyde shell work very well in resin coating systems and cement composites, i.e., in pressureless processing and moulding conditions. The addition of another layer of melamine-formaldehyde coating to both the melamine-urea-formaldehyde and melamine-formaldehyde resin layers significantly increased the number of microcapsules undamaged during the extrusion process. The properties of multilayer coatings were also determined and compared with each other using computer modelling.

Keywords: self-healing polymers, polyethylene, microcapsules, extrusion

Procedia PDF Downloads 28
99 Catchment Nutrient Balancing Approach to Improve River Water Quality: A Case Study at the River Petteril, Cumbria, United Kingdom

Authors: Nalika S. Rajapaksha, James Airton, Amina Aboobakar, Nick Chappell, Andy Dyer

Abstract:

Nutrient pollution and their impact on water quality is a key concern in England. Many water quality issues originate from multiple sources of pollution spread across the catchment. The river water quality in England has improved since 1990s and wastewater effluent discharges into rivers now contain less phosphorus than in the past. However, excess phosphorus is still recognised as the prevailing issue for rivers failing Water Framework Directive (WFD) good ecological status. To achieve WFD Phosphorus objectives, Wastewater Treatment Works (WwTW) permit limits are becoming increasingly stringent. Nevertheless, in some rural catchments, the apportionment of Phosphorus pollution can be greater from agricultural runoff and other sources such as septic tanks. Therefore, the challenge of meeting the requirements of watercourses to deliver WFD objectives often goes beyond water company activities, providing significant opportunities to co-deliver activities in wider catchments to reduce nutrient load at source. The aim of this study was to apply the United Utilities' Catchment Systems Thinking (CaST) strategy and pilot an innovative permitting approach - Catchment Nutrient Balancing (CNB) in a rural catchment in Cumbria (the River Petteril) in collaboration with the regulator and others to achieve WFD objectives and multiple benefits. The study area is mainly agricultural land, predominantly livestock farms. The local ecology is impacted by significant nutrient inputs which require intervention to meet WFD obligations. There are a range of Phosphorus inputs into the river, including discharges from wastewater assets but also significantly from agricultural contributions. Solely focusing on the WwTW discharges would not have resolved the problem hence in order to address this issue effectively, a CNB trial was initiated at a small WwTW, targeting the removal of a total of 150kg of Phosphorus load, of which 13kg were to be reduced through the use of catchment interventions. Various catchment interventions were implemented across selected farms in the upstream of the catchment and also an innovative polonite reactive filter media was implemented at the WwTW as an alternative to traditional Phosphorus treatment methods. During the 3 years of this trial, the impact of the interventions in the catchment and the treatment works were monitored. In 2020 and 2022, it respectively achieved a 69% and 63% reduction in the phosphorus level in the catchment against the initial reduction target of 9%. Phosphorus treatment at the WwTW had a significant impact on overall load reduction. The wider catchment impact, however, was seven times greater than the initial target when wider catchment interventions were also established. While it is unlikely that all the Phosphorus load reduction was delivered exclusively from the interventions implemented though this project, this trial evidenced the enhanced benefits that can be achieved with an integrated approach, that engages all sources of pollution within the catchment - rather than focusing on a one-size-fits-all solution. Primarily, the CNB approach and the act of collaboratively engaging others, particularly the agriculture sector is likely to yield improved farm and land management performance and better compliance, which can lead to improved river quality as well as wider benefits.

Keywords: agriculture, catchment nutrient balancing, phosphorus pollution, water quality, wastewater

Procedia PDF Downloads 65
98 Thermodynamic Modeling of Cryogenic Fuel Tanks with a Model-Based Inverse Method

Authors: Pedro A. Marques, Francisco Monteiro, Alessandra Zumbo, Alessia Simonini, Miguel A. Mendez

Abstract:

Cryogenic fuels such as Liquid Hydrogen (LH₂) must be transported and stored at extremely low temperatures. Without expensive active cooling solutions, preventing fuel boil-off over time is impossible. Hence, one must resort to venting systems at the cost of significant energy and fuel mass loss. These losses increase significantly in propellant tanks installed on vehicles, as the presence of external accelerations induces sloshing. Sloshing increases heat and mass transfer rates and leads to significant pressure oscillations, which might further trigger propellant venting. To make LH₂ economically viable, it is essential to minimize these factors by using advanced control techniques. However, these require accurate modelling and a full understanding of the tank's thermodynamics. The present research aims to implement a simple thermodynamic model capable of predicting the state of a cryogenic fuel tank under different operating conditions (i.e., filling, pressurization, fuel extraction, long-term storage, and sloshing). Since this model relies on a set of closure parameters to drive the system's transient response, it must be calibrated using experimental or numerical data. This work focuses on the former approach, wherein the model is calibrated through an experimental campaign carried out on a reduced-scale model of a cryogenic tank. The thermodynamic model of the system is composed of three control volumes: the ullage, the liquid, and the insulating walls. Under this lumped formulation, the governing equations are derived from energy and mass balances in each region, with mass-averaged properties assigned to each of them. The gas-liquid interface is treated as an infinitesimally thin region across which both phases can exchange mass and heat. This results in a coupled system of ordinary differential equations, which must be closed with heat and mass transfer coefficients between each control volume. These parameters are linked to the system evolution via empirical relations derived from different operating regimes of the tank. The derivation of these relations is carried out using an inverse method to find the optimal relations that allow the model to reproduce the available data. This approach extends classic system identification methods beyond linear dynamical systems via a nonlinear optimization step. Thanks to the data-driven assimilation of the closure problem, the resulting model accurately predicts the evolution of the tank's thermodynamics at a negligible computational cost. The lumped model can thus be easily integrated with other submodels to perform complete system simulations in real time. Moreover, by setting the model in a dimensionless form, a scaling analysis allowed us to relate the tested configurations to a representative full-size tank for naval applications. It was thus possible to compare the relative importance of different transport phenomena between the laboratory model and the full-size prototype among the different operating regimes.

Keywords: destratification, hydrogen, modeling, pressure-drop, pressurization, sloshing, thermodynamics

Procedia PDF Downloads 92
97 Deconstructing Reintegration Services for Survivors of Human Trafficking: A Feminist Analysis of Australian and Thai Government and Non-Government Responses

Authors: Jessica J. Gillies

Abstract:

Awareness of the tragedy that is human trafficking has increased exponentially over the past two decades. The four pillars widely recognised as global solutions to the problem are prevention, prosecution, protection, and partnership between government and non-government organisations. While ‘sex-trafficking’ initially received major attention, this focus has shifted to other industries that conceal broader experiences of exploitation. However, within the regions of focus for this study, namely Australia and Thailand, trafficking for the purpose of sexual exploitation remains the commonly uncovered narrative of criminal justice investigations. In these regions anti-trafficking action is characterised by government-led prevention and prosecution efforts; whereas protection and reintegration practices have received criticism. Typically, non-government organisations straddle the critical chasm between policy and practice; therefore, they are perfectly positioned to contribute valuable experiential knowledge toward understanding how both sectors can support survivors in the post-trafficking experience. The aim of this research is to inform improved partnerships throughout government and non-government post-trafficking services by illuminating gaps in protection and reintegration initiatives. This research will explore government and non-government responses to human trafficking in Thailand and Australia, in order to understand how meaning is constructed in this context and how the construction of meaning effects survivors in the post-trafficking experience. A qualitative, three-stage methodology was adopted for this study. The initial stage of enquiry consisted of a discursive analysis, in order to deconstruct the broader discourses surrounding human trafficking. The data included empirical papers, grey literature such as publicly available government and non-government reports, and anti-trafficking policy documents. The second and third stages of enquiry will attempt to further explore the findings of the discourse analysis and will focus more specifically on protection and reintegration in Australia and Thailand. Stages two and three will incorporate process observations in government and non-government survivor support services, and semi-structured interviews with employees and volunteers within these settings. Two key findings emerged from the discursive analysis. The first exposed conflicting feminist arguments embedded throughout anti-trafficking discourse. Informed by conflicting feminist discourses on sex-work, a discursive relationship has been constructed between sex-industry policy and anti-trafficking policy. In response to this finding, data emerging from the process observations and semi-structured interviews will be interpreted using a feminist theoretical framework. The second finding progresses from the construction in the first. The discursive construction of sex-trafficking appears to have had influence over perceptions of the legitimacy of survivors, and therefore the support they receive in the post-trafficking experience. For example; women who willingly migrate for employment in the sex-industry, and on arrival are faced with exploitative conditions, are not perceived to be deserving of the same support as a woman who is not coerced, but rather physically forced, into such circumstances, yet both meet the criteria for a victim of human trafficking. The forthcoming study is intended to contribute toward building knowledge and understanding around the implications of the construction of legitimacy; and contextualise this in reference to government led protection and reintegration support services for survivors in the post-trafficking experience.

Keywords: Australia, government, human trafficking, non-government, reintegration, Thailand

Procedia PDF Downloads 112
96 The Study of Fine and Nanoscale Gold in the Ores of Primary Deposits and Gold-Bearing Placers of Kazakhstan

Authors: Omarova Gulnara, Assubayeva Saltanat, Tugambay Symbat, Bulegenov Kanat

Abstract:

The article discusses the problem of developing a methodology for studying thin and nanoscale gold in ores and placers of primary deposits, which will allow us to develop schemes for revealing dispersed gold inclusions and thus improve its recovery rate to increase the gold reserves of the Republic of Kazakhstan. The type of studied gold, is characterized by a number of features. In connection with this, the conditions of its concentration and distribution in ore bodies and formations, as well as the possibility of reliably determining it by "traditional" methods, differ significantly from that of fine gold (less than 0.25 microns) and even more so from that of larger grains. The mineral composition of rocks (metasomatites) and gold ore and the mineralization associated with them were studied in detail on the Kalba ore field in Kazakhstan. Mineralized zones were identified, and samples were taken from them for analytical studies. The research revealed paragenetic relationships of newly formed mineral formations at the nanoscale, which makes it possible to clarify the conditions for the formation of deposits with a particular type of mineralization. This will provide significant assistance in developing a scheme for study. Typomorphic features of gold were revealed, and mechanisms of formation and aggregation of gold nanoparticles were proposed. The presence of a large number of particles isolated at the laboratory stage from concentrates of gravitational enrichment can serve as an indicator of the presence of even smaller particles in the object. Even the most advanced devices based on gravitational methods for gold concentration provide extraction of metal at a level of around 50%, while pulverized metal is extracted much worse, and gold of less than 1 micron size is extracted at only a few percent. Therefore, when particles of gold smaller than 10 microns are detected, their actual numbers may be significantly higher than expected. In particular, at the studied sites, enrichment of slurry and samples with volumes up to 1 m³ was carried out using a screw lock or separator to produce a final concentrate weighing up to several kilograms. Free gold particles were extracted from the concentrates in the laboratory using a number of processes (magnetic and electromagnetic separation, washing with bromoform in a cup to obtain an ultracontentrate, etc.) and examined under electron microscopes to investigate the nature of their surface and chemical composition. The main result of the study was the detection of gold nanoparticles located on the surface of loose metal grains. The most characteristic forms of gold secretions are individual nanoparticles and aggregates of different configurations. Sometimes, aggregates form solid dense films, deposits, and crusts, all of which are confined to the negative forms of the nano- and microrelief on the surfaces of golden. The results will provide significant knowledge about the prevalence and conditions for the distribution of fine and nanoscale gold in Kazakhstan deposits, as well as the development of methods for studying it, which will minimize losses of this type of gold during extraction. Acknowledgments: This publication has been produced within the framework of the Grant "Development of methodology for studying fine and nanoscale gold in ores of primary deposits, placers and products of their processing" (АР23485052, №235/GF24-26).

Keywords: electron microscopy, microminerology, placers, thin and nanoscale gold

Procedia PDF Downloads 21
95 Transformers in Gene Expression-Based Classification

Authors: Babak Forouraghi

Abstract:

A genetic circuit is a collection of interacting genes and proteins that enable individual cells to implement and perform vital biological functions such as cell division, growth, death, and signaling. In cell engineering, synthetic gene circuits are engineered networks of genes specifically designed to implement functionalities that are not evolved by nature. These engineered networks enable scientists to tackle complex problems such as engineering cells to produce therapeutics within the patient's body, altering T cells to target cancer-related antigens for treatment, improving antibody production using engineered cells, tissue engineering, and production of genetically modified plants and livestock. Construction of computational models to realize genetic circuits is an especially challenging task since it requires the discovery of flow of genetic information in complex biological systems. Building synthetic biological models is also a time-consuming process with relatively low prediction accuracy for highly complex genetic circuits. The primary goal of this study was to investigate the utility of a pre-trained bidirectional encoder transformer that can accurately predict gene expressions in genetic circuit designs. The main reason behind using transformers is their innate ability (attention mechanism) to take account of the semantic context present in long DNA chains that are heavily dependent on spatial representation of their constituent genes. Previous approaches to gene circuit design, such as CNN and RNN architectures, are unable to capture semantic dependencies in long contexts as required in most real-world applications of synthetic biology. For instance, RNN models (LSTM, GRU), although able to learn long-term dependencies, greatly suffer from vanishing gradient and low-efficiency problem when they sequentially process past states and compresses contextual information into a bottleneck with long input sequences. In other words, these architectures are not equipped with the necessary attention mechanisms to follow a long chain of genes with thousands of tokens. To address the above-mentioned limitations of previous approaches, a transformer model was built in this work as a variation to the existing DNA Bidirectional Encoder Representations from Transformers (DNABERT) model. It is shown that the proposed transformer is capable of capturing contextual information from long input sequences with attention mechanism. In a previous work on genetic circuit design, the traditional approaches to classification and regression, such as Random Forrest, Support Vector Machine, and Artificial Neural Networks, were able to achieve reasonably high R2 accuracy levels of 0.95 to 0.97. However, the transformer model utilized in this work with its attention-based mechanism, was able to achieve a perfect accuracy level of 100%. Further, it is demonstrated that the efficiency of the transformer-based gene expression classifier is not dependent on presence of large amounts of training examples, which may be difficult to compile in many real-world gene circuit designs.

Keywords: transformers, generative ai, gene expression design, classification

Procedia PDF Downloads 59
94 Common Space Production as a Solution to the Affordable Housing Problem: Its Relationship with the Squating Process in Turkey

Authors: Gözde Arzu Sarıcan

Abstract:

Contemporary urbanization processes and spatial transformations are intensely debated across various fields of social sciences. One prominent concept in these discussions is "common spaces." Common spaces offer a critical theoretical framework, particularly for addressing the social and economic inequalities brought about by urbanization. This study examines the processes of commoning and their impacts through the lens of squatter neighborhoods in Turkey, emphasizing the importance of affordable housing. It focuses on the role and significance of these neighborhoods in the formation of common spaces, analyzing the collective actions and resistance strategies of residents. This process, which began with the construction of shelters to meet the shelter needs of low-income households migrating from rural to urban areas, has turned into low-quality squatter settlements over time. For low-income households lacking the economic power to rent or buy homes in the city, these areas provided an affordable housing solution. Squatter neighborhoods reflect the efforts of local communities to protect and develop their communal living spaces through collective actions and resistance strategies. This collective creation process involves the appropriation of occupied land as a common resource through the rules established by the commons. Organized occupations subdivide these lands, shaped through collective creation processes. For the squatter communities striving for economic and social adaptation, these areas serve as buffer zones for urban integration. In squatter neighborhoods, bonds of friendship, kinship, and compatriotism are strong, playing a significant role in the creation and dissemination of collective knowledge. Squatter areas can be described as common spaces that emerge out of necessity for low-income and marginalized groups. The design and construction of housing in squatter neighborhoods are shaped by the collective participation and skills of the residents. Streets are formed through collective decision-making and labor. Over time, the demands for housing are communicated to local authorities, enhancing the potential for commoning. Common spaces are shaped by collective needs and demands, appropriated, and transformed into potential new spaces. Common spaces are continually redefined and recreated. In this context, affordable housing becomes an essential aspect of these common spaces, providing a foundation for social and economic stability. This study evaluates the processes of commoning and their effects through the lens of squatter neighborhoods in Turkey. Communities living in squatter neighborhoods have managed to create and protect communal living spaces, especially in situations where official authorities have been inadequate. Common spaces are built on values such as solidarity, cooperation, and collective resistance. In urban planning and policy development processes, it is crucial to consider the concept of common spaces. Policies that support the collective efforts and resistance strategies of communities can contribute to more just and sustainable living conditions in urban areas. In this context, the concept of common spaces is considered an important tool in the fight against urban inequalities and in the expression and defense mechanisms of communities. By emphasizing the importance of affordable housing within these spaces, this study highlights the critical role of common spaces in addressing urban social and economic challenges.

Keywords: affordable housing, common space, squating process, turkey

Procedia PDF Downloads 31
93 Destination Management Organization in the Digital Era: A Data Framework to Leverage Collective Intelligence

Authors: Alfredo Fortunato, Carmelofrancesco Origlia, Sara Laurita, Rossella Nicoletti

Abstract:

In the post-pandemic recovery phase of tourism, the role of a Destination Management Organization (DMO) as a coordinated management system of all the elements that make up a destination (attractions, access, marketing, human resources, brand, pricing, etc.) is also becoming relevant for local territories. The objective of a DMO is to maximize the visitor's perception of value and quality while ensuring the competitiveness and sustainability of the destination, as well as the long-term preservation of its natural and cultural assets, and to catalyze benefits for the local economy and residents. In carrying out the multiple functions to which it is called, the DMO can leverage a collective intelligence that comes from the ability to pool information, explicit and tacit knowledge, and relationships of the various stakeholders: policymakers, public managers and officials, entrepreneurs in the tourism supply chain, researchers, data journalists, schools, associations and committees, citizens, etc. The DMO potentially has at its disposal large volumes of data and many of them at low cost, that need to be properly processed to produce value. Based on these assumptions, the paper presents a conceptual framework for building an information system to support the DMO in the intelligent management of a tourist destination tested in an area of southern Italy. The approach adopted is data-informed and consists of four phases: (1) formulation of the knowledge problem (analysis of policy documents and industry reports; focus groups and co-design with stakeholders; definition of information needs and key questions); (2) research and metadatation of relevant sources (reconnaissance of official sources, administrative archives and internal DMO sources); (3) gap analysis and identification of unconventional information sources (evaluation of traditional sources with respect to the level of consistency with information needs, the freshness of information and granularity of data; enrichment of the information base by identifying and studying web sources such as Wikipedia, Google Trends, Booking.com, Tripadvisor, websites of accommodation facilities and online newspapers); (4) definition of the set of indicators and construction of the information base (specific definition of indicators and procedures for data acquisition, transformation, and analysis). The framework derived consists of 6 thematic areas (accommodation supply, cultural heritage, flows, value, sustainability, and enabling factors), each of which is divided into three domains that gather a specific information need to be represented by a scheme of questions to be answered through the analysis of available indicators. The framework is characterized by a high degree of flexibility in the European context, given that it can be customized for each destination by adapting the part related to internal sources. Application to the case study led to the creation of a decision support system that allows: •integration of data from heterogeneous sources, including through the execution of automated web crawling procedures for data ingestion of social and web information; •reading and interpretation of data and metadata through guided navigation paths in the key of digital story-telling; •implementation of complex analysis capabilities through the use of data mining algorithms such as for the prediction of tourist flows.

Keywords: collective intelligence, data framework, destination management, smart tourism

Procedia PDF Downloads 121
92 Deep Learning for SAR Images Restoration

Authors: Hossein Aghababaei, Sergio Vitale, Giampaolo Ferraioli

Abstract:

In the context of Synthetic Aperture Radar (SAR) data, polarization is an important source of information for Earth's surface monitoring. SAR Systems are often considered to transmit only one polarization. This constraint leads to either single or dual polarimetric SAR imaging modalities. Single polarimetric systems operate with a fixed single polarization of both transmitted and received electromagnetic (EM) waves, resulting in a single acquisition channel. Dual polarimetric systems, on the other hand, transmit in one fixed polarization and receive in two orthogonal polarizations, resulting in two acquisition channels. Dual polarimetric systems are obviously more informative than single polarimetric systems and are increasingly being used for a variety of remote sensing applications. In dual polarimetric systems, the choice of polarizations for the transmitter and the receiver is open. The choice of circular transmit polarization and coherent dual linear receive polarizations forms a special dual polarimetric system called hybrid polarimetry, which brings the properties of rotational invariance to geometrical orientations of features in the scene and optimizes the design of the radar in terms of reliability, mass, and power constraints. The complete characterization of target scattering, however, requires fully polarimetric data, which can be acquired with systems that transmit two orthogonal polarizations. This adds further complexity to data acquisition and shortens the coverage area or swath of fully polarimetric images compared to the swath of dual or hybrid polarimetric images. The search for solutions to augment dual polarimetric data to full polarimetric data will therefore take advantage of full characterization and exploitation of the backscattered field over a wider coverage with less system complexity. Several methods for reconstructing fully polarimetric images using hybrid polarimetric data can be found in the literature. Although the improvements achieved by the newly investigated and experimented reconstruction techniques are undeniable, the existing methods are, however, mostly based upon model assumptions (especially the assumption of reflectance symmetry), which may limit their reliability and applicability to vegetation and forest scenarios. To overcome the problems of these techniques, this paper proposes a new framework for reconstructing fully polarimetric information from hybrid polarimetric data. The framework uses Deep Learning solutions to augment hybrid polarimetric data without relying on model assumptions. A convolutional neural network (CNN) with a specific architecture and loss function is defined for this augmentation problem by focusing on different scattering properties of the polarimetric data. In particular, the method controls the CNN training process with respect to several characteristic features of polarimetric images defined by the combination of different terms in the cost or loss function. The proposed method is experimentally validated with real data sets and compared with a well-known and standard approach from the literature. From the experiments, the reconstruction performance of the proposed framework is superior to conventional reconstruction methods. The pseudo fully polarimetric data reconstructed by the proposed method also agree well with the actual fully polarimetric images acquired by radar systems, confirming the reliability and efficiency of the proposed method.

Keywords: SAR image, polarimetric SAR image, convolutional neural network, deep learnig, deep neural network

Procedia PDF Downloads 67
91 Rethinking Urban Voids: An Investigation beneath the Kathipara Flyover, Chennai into a Transit Hub by Adaptive Utilization of Space

Authors: V. Jayanthi

Abstract:

Urbanization and pace of urbanization have increased tremendously in last few decades. More towns are now getting converted into cities. Urbanization trend is seen all over the world but is becoming most dominant in Asia. Today, the scale of urbanization in India is so huge that Indian cities are among the fastest-growing in the world, including Bangalore, Hyderabad, Pune, Chennai, Delhi, and Mumbai. Urbanization remains a single predominant factor that is continuously linked to the destruction of urban green spaces. With reference to Chennai as a case study, which is suffering from rapid deterioration of its green spaces, this paper sought to fill this gap by exploring key factors aside urbanization that is responsible for the destruction of green spaces. The paper relied on a research approach and triangulated data collection techniques such as interviews, focus group discussion, personal observation and retrieval of archival data. It was observed that apart from urbanization, problem of ownership of green space lands, low priority to green spaces, poor maintenance, enforcement of development controls, wastage of underpass spaces, and uncooperative attitudes of the general public, play a critical role in the destruction of urban green spaces. Therefore the paper narrows down to a point, that for a city to have a proper sustainable urban green space, broader city development plans are essential. Though rapid urbanization is an indicator of positive development, it is also accompanied by a host of challenges. Chennai lost a lot of greenery, as the city urbanized rapidly that led to a steep fall in vegetation cover. Environmental deterioration will be the big price we pay if Chennai continues to grow at the expense of greenery. Soaring skyscrapers, multistoried complexes, gated communities, and villas, frame the iconic skyline of today’s Chennai city which reveals that we overlook the importance of our green cover, which is important to balance our urban and lung spaces. Chennai, with a clumped landscape at the center of the city, is predicted to convert 36% of its total area into urban areas by 2026. One major issue is that a city designed and planned in isolation creates underused spaces all around the cities which are of negligence. These urban voids are dead, underused, unused spaces in the cities that are formed due to inefficient decision making, poor land management, and poor coordination. Urban voids have huge potential of creating a stronger urban fabric, exploited as public gathering spaces, pocket parks or plazas or just enhance public realm, rather than dumping of debris and encroachments. Flyovers need to justify their existence themselves by being more than just traffic and transport solutions. The vast, unused space below the Kathipara flyover is a case in point. This flyover connects three major routes: Tambaram, Koyambedu, and Adyar. This research will focus on the concept of urban voids, how these voids under the flyovers, can be used for place making process, how this space beneath flyovers which are neglected, can be a part of the urban realm through urban design and landscaping.

Keywords: landscape design, flyovers, public spaces, reclaiming lost spaces, urban voids

Procedia PDF Downloads 280
90 Absenteeism in Polytechnical University Studies: Quantification and Identification of the Causes at Universitat Politècnica de Catalunya

Authors: E. Mas de les Valls, M. Castells-Sanabra, R. Capdevila, N. Pla, Rosa M. Fernandez-Canti, V. de Medina, A. Mujal, C. Barahona, E. Velo, M. Vigo, M. A. Santos, T. Soto

Abstract:

Absenteeism in universities, including polytechnical universities, is influenced by a variety of factors. Some factors overlap with those causing absenteeism in schools, while others are specific to the university and work-related environments. Indeed, these factors may stem from various sources, including students, educators, the institution itself, or even the alignment of degree curricula with professional requirements. In Spain, there has been an increase in absenteeism in polytechnical university studies, especially after the Covid crisis, posing a significant challenge for institutions to address. This study focuses on Universitat Politècnica de Catalunya• BarcelonaTech (UPC) and aims to quantify the current level of absenteeism and identify its main causes. The study is part of the teaching innovation project ASAP-UPC, which aims to minimize absenteeism through the redesign of teaching methodologies. By understanding the factors contributing to absenteeism, the study seeks to inform the subsequent phases of the ASAP-UPC project, which involve implementing methodologies to minimize absenteeism and evaluating their effectiveness. The study utilizes surveys conducted among students and polytechnical companies. Students' perspectives are gathered through both online surveys and in-person interviews. The surveys inquire about students' interest in attending classes, skill development throughout their UPC experience, and their perception of the skills required for a career in a polytechnical field. Additionally, polytechnical companies are surveyed regarding the skills they seek in prospective employees. The collected data is then analyzed to identify patterns and trends. This analysis involves organizing and categorizing the data, identifying common themes, and drawing conclusions based on the findings. This mixed-method approach has revealed that higher levels of absenteeism are observed in large student groups at both the Bachelor's and Master's degree levels. However, the main causes of absenteeism differ between these two levels. At the Bachelor's level, many students express dissatisfaction with in-person classes, perceiving them as overly theoretical and lacking a balance between theory, experimental practice, and problem-solving components. They also find a lack of relevance to professional needs. Consequently, they resort to using online available materials developed during the Covid crisis and attending private academies for exam preparation instead. On the other hand, at the Master's level, absenteeism primarily arises from schedule incompatibility between university and professional work. There is a discrepancy between the skills highly valued by companies and the skills emphasized during the studies, aligning partially with students' perceptions. These findings are of theoretical importance as they shed light on areas that can be improved to offer a more beneficial educational experience to students at UPC. The study also has potential applicability to other polytechnic universities, allowing them to adapt the surveys and apply the findings to their specific contexts. By addressing the identified causes of absenteeism, universities can enhance the educational experience and better prepare students for successful careers in polytechnical fields.

Keywords: absenteeism, polytechnical studies, professional skills, university challenges

Procedia PDF Downloads 68
89 A Simulation Study of Direct Injection Compressed Natural Gas Spark Ignition Engine Performance Utilizing Turbulent Jet Ignition with Controlled Air Charge

Authors: Siyamak Ziyaei, Siti Khalijah Mazlan, Petros Lappas

Abstract:

Compressed Natural Gas (CNG) mainly consists of Methane CH₄ and has a low carbon to hydrogen ratio relative to other hydrocarbons. As a result, it has the potential to reduce CO₂ emissions by more than 20% relative to conventional fuels like diesel or gasoline Although Natural Gas (NG) has environmental advantages compared to other hydrocarbon fuels whether they are gaseous or liquid, its main component, CH₄, burns at a slower rate than conventional fuels A higher pressure and a leaner cylinder environment will overemphasize slow burn characteristic of CH₄. Lean combustion and high compression ratios are well-known methods for increasing the efficiency of internal combustion engines. In order to achieve successful CNG lean combustion in Spark Ignition (SI) engines, a strong ignition system is essential to avoid engine misfires, especially in ultra-lean conditions. Turbulent Jet Ignition (TJI) is an ignition system that employs a pre-combustion chamber to ignite the lean fuel mixture in the main combustion chamber using a fraction of the total fuel per cycle. TJI enables ultra-lean combustion by providing distributed ignition sites through orifices. The fast burn rate provided by TJI enables the ordinary SI engine to be comparable to other combustion systems such as Homogeneous Charge Compression Ignition (HCCI) or Controlled Auto-Ignition (CAI) in terms of thermal efficiency, through the increased levels of dilution without the need of sophisticated control systems. Due to the physical geometry of TJIs, which contain small orifices that connect the prechamber to the main chamber, scavenging is one of the main factors that reduce TJI performance. Specifically, providing the right mixture of fuel and air has been identified as a key challenge. The reason for this is the insufficient amount of air that is pushed into the pre-chamber during each compression stroke. There is also the problem that combustion residual gases such as CO₂, CO and NOx from the previous combustion cycle dilute the pre- chamber fuel-air mixture preventing rapid combustion in the pre-chamber. An air-controlled active TJI is presented in this paper in order to address these issues. By applying air to the pre-chamber at a sufficient pressure, residual gases are exhausted, and the air-fuel ratio is controlled within the pre-chamber, thereby improving the quality of combustion. This paper investigates the 3D-simulated combustion characteristics of a Direct Injected (DI-CNG) fuelled SI en- gine with a pre-chamber equipped with an air channel by using AVL FIRE software. Experiments and simulations were performed at the Worldwide Mapping Point (WWMP) at 1500 Revolutions Per Minute (RPM), 3.3 bar Indicated Mean Effective Pressure (IMEP), using only conventional spark plugs as the baseline. After validating simulation data, baseline engine conditions were set for all simulation scenarios at λ=1. Following that, the pre-chambers with and without an auxiliary fuel supply were simulated. In the simulated (DI-CNG) SI engine, active TJI was observed to perform better than passive TJI and spark plug. In conclusion, the active pre-chamber with an air channel demon-strated an improved thermal efficiency (ηth) over other counterparts and conventional spark ignition systems.

Keywords: turbulent jet ignition, active air control turbulent jet ignition, pre-chamber ignition system, active and passive pre-chamber, thermal efficiency, methane combustion, internal combustion engine combustion emissions

Procedia PDF Downloads 87
88 An Exploratory Case Study of Pre-Service Teachers' Learning to Teach Mathematics to Culturally Diverse Students through a Community-Based After-School Field Experience

Authors: Eugenia Vomvoridi-Ivanovic

Abstract:

It is broadly assumed that participation in field experiences will help pre-service teachers (PSTs) bridge theory to practice. However, this is often not the case since PSTs who are placed in classrooms with large numbers of students from diverse linguistic, cultural, racial, and ethnic backgrounds (culturally diverse students (CDS)) usually observe ineffective mathematics teaching practices that are in contrast to those discussed in their teacher preparation program. Over the past decades, the educational research community has paid increasing attention to investigating out-of-school learning contexts and how participation in such contexts can contribute to the achievement of underrepresented groups in Science, Technology, Engineering, and mathematics (STEM) education and their expanded participation in STEM fields. In addition, several research studies have shown that students display different kinds of mathematical behaviors and discourse practices in out-of-school contexts than they do in the typical mathematics classroom since they draw from a variety of linguistic and cultural resources to negotiate meanings and participate in joint problem solving. However, almost no attention has been given to exploring these contexts as field experiences for pre-service mathematics teachers. The purpose of this study was to explore how participation in a community based after-school field experience promotes understanding of the content pedagogy concepts introduced in elementary mathematics methods courses, particularly as they apply to teaching mathematics to CDS. This study draws upon a situated, socio-cultural theory of teacher learning that centers on the concept of learning as situated social practice, which includes discourse, social interaction, and participation structures. Consistent with exploratory case study methodology, qualitative methods were employed to investigate how a cohort of twelve participating pre-service teacher's approach to pedagogy and their conversations around teaching and learning mathematics to CDS evolved through their participation in the after-school field experience, and how they connected the content discussed in their mathematics methods course with their interactions with the CDS in the after-school. Data were collected over a period of one academic year from the following sources: (a) audio recordings of the PSTs' interactions with the students during the after-school sessions, (b) PSTs' after-school field-notes, (c) audio-recordings of weekly methods course meetings, and (d) other document data (e.g., PST and student generated artifacts, PSTs' written course assignments). The findings of this study reveal that the PSTs benefitted greatly through their participation in the after-school field experience. Specifically, after-school participation promoted a deeper understanding of the content pedagogy concepts introduced in the mathematics methods course and gained a greater appreciation for how students learn mathematics with understanding. Further, even though many of PSTs' assumptions about the mathematical abilities of CDS were challenged and PSTs began to view CDSs' cultural and linguistic backgrounds as resources (rather than obstacles) for learning, some PSTs still held negative stereotypes about CDS and teaching and learning mathematics to CDS in particular. Insights gained through this study contribute to a better understanding of how informal mathematics learning contexts may provide a valuable context for pre-service teacher's learning to teach mathematics to CDS.

Keywords: after-school mathematics program, pre-service mathematical education of teachers, qualitative methods, situated socio-cultural theory, teaching culturally diverse students

Procedia PDF Downloads 130
87 Deep Learning Based Polarimetric SAR Images Restoration

Authors: Hossein Aghababaei, Sergio Vitale, Giampaolo ferraioli

Abstract:

In the context of Synthetic Aperture Radar (SAR) data, polarization is an important source of information for Earth's surface monitoring . SAR Systems are often considered to transmit only one polarization. This constraint leads to either single or dual polarimetric SAR imaging modalities. Single polarimetric systems operate with a fixed single polarization of both transmitted and received electromagnetic (EM) waves, resulting in a single acquisition channel. Dual polarimetric systems, on the other hand, transmit in one fixed polarization and receive in two orthogonal polarizations, resulting in two acquisition channels. Dual polarimetric systems are obviously more informative than single polarimetric systems and are increasingly being used for a variety of remote sensing applications. In dual polarimetric systems, the choice of polarizations for the transmitter and the receiver is open. The choice of circular transmit polarization and coherent dual linear receive polarizations forms a special dual polarimetric system called hybrid polarimetry, which brings the properties of rotational invariance to geometrical orientations of features in the scene and optimizes the design of the radar in terms of reliability, mass, and power constraints. The complete characterization of target scattering, however, requires fully polarimetric data, which can be acquired with systems that transmit two orthogonal polarizations. This adds further complexity to data acquisition and shortens the coverage area or swath of fully polarimetric images compared to the swath of dual or hybrid polarimetric images. The search for solutions to augment dual polarimetric data to full polarimetric data will therefore take advantage of full characterization and exploitation of the backscattered field over a wider coverage with less system complexity. Several methods for reconstructing fully polarimetric images using hybrid polarimetric data can be found in the literature. Although the improvements achieved by the newly investigated and experimented reconstruction techniques are undeniable, the existing methods are, however, mostly based upon model assumptions (especially the assumption of reflectance symmetry), which may limit their reliability and applicability to vegetation and forest scenarios. To overcome the problems of these techniques, this paper proposes a new framework for reconstructing fully polarimetric information from hybrid polarimetric data. The framework uses Deep Learning solutions to augment hybrid polarimetric data without relying on model assumptions. A convolutional neural network (CNN) with a specific architecture and loss function is defined for this augmentation problem by focusing on different scattering properties of the polarimetric data. In particular, the method controls the CNN training process with respect to several characteristic features of polarimetric images defined by the combination of different terms in the cost or loss function. The proposed method is experimentally validated with real data sets and compared with a well-known and standard approach from the literature. From the experiments, the reconstruction performance of the proposed framework is superior to conventional reconstruction methods. The pseudo fully polarimetric data reconstructed by the proposed method also agree well with the actual fully polarimetric images acquired by radar systems, confirming the reliability and efficiency of the proposed method.

Keywords: SAR image, deep learning, convolutional neural network, deep neural network, SAR polarimetry

Procedia PDF Downloads 90
86 SPARK: An Open-Source Knowledge Discovery Platform That Leverages Non-Relational Databases and Massively Parallel Computational Power for Heterogeneous Genomic Datasets

Authors: Thilina Ranaweera, Enes Makalic, John L. Hopper, Adrian Bickerstaffe

Abstract:

Data are the primary asset of biomedical researchers, and the engine for both discovery and research translation. As the volume and complexity of research datasets increase, especially with new technologies such as large single nucleotide polymorphism (SNP) chips, so too does the requirement for software to manage, process and analyze the data. Researchers often need to execute complicated queries and conduct complex analyzes of large-scale datasets. Existing tools to analyze such data, and other types of high-dimensional data, unfortunately suffer from one or more major problems. They typically require a high level of computing expertise, are too simplistic (i.e., do not fit realistic models that allow for complex interactions), are limited by computing power, do not exploit the computing power of large-scale parallel architectures (e.g. supercomputers, GPU clusters etc.), or are limited in the types of analysis available, compounded by the fact that integrating new analysis methods is not straightforward. Solutions to these problems, such as those developed and implemented on parallel architectures, are currently available to only a relatively small portion of medical researchers with access and know-how. The past decade has seen a rapid expansion of data management systems for the medical domain. Much attention has been given to systems that manage phenotype datasets generated by medical studies. The introduction of heterogeneous genomic data for research subjects that reside in these systems has highlighted the need for substantial improvements in software architecture. To address this problem, we have developed SPARK, an enabling and translational system for medical research, leveraging existing high performance computing resources, and analysis techniques currently available or being developed. It builds these into The Ark, an open-source web-based system designed to manage medical data. SPARK provides a next-generation biomedical data management solution that is based upon a novel Micro-Service architecture and Big Data technologies. The system serves to demonstrate the applicability of Micro-Service architectures for the development of high performance computing applications. When applied to high-dimensional medical datasets such as genomic data, relational data management approaches with normalized data structures suffer from unfeasibly high execution times for basic operations such as insert (i.e. importing a GWAS dataset) and the queries that are typical of the genomics research domain. SPARK resolves these problems by incorporating non-relational NoSQL databases that have been driven by the emergence of Big Data. SPARK provides researchers across the world with user-friendly access to state-of-the-art data management and analysis tools while eliminating the need for high-level informatics and programming skills. The system will benefit health and medical research by eliminating the burden of large-scale data management, querying, cleaning, and analysis. SPARK represents a major advancement in genome research technologies, vastly reducing the burden of working with genomic datasets, and enabling cutting edge analysis approaches that have previously been out of reach for many medical researchers.

Keywords: biomedical research, genomics, information systems, software

Procedia PDF Downloads 270
85 Calpains; Insights Into the Pathogenesis of Heart Failure

Authors: Mohammadjavad Sotoudeheian

Abstract:

Heart failure (HF) prevalence, as a global cardiovascular problem, is increasing gradually. A variety of molecular mechanisms contribute to HF. Proteins involved in cardiac contractility regulation, such as ion channels and calcium handling proteins, are altered. Additionally, epigenetic modifications and gene expression can lead to altered cardiac function. Moreover, inflammation and oxidative stress contribute to HF. The progression of HF can be attributed to mitochondrial dysfunction that impairs energy production and increases apoptosis. Molecular mechanisms such as these contribute to the development of cardiomyocyte defects and HF and can be therapeutically targeted. The heart's contractile function is controlled by cardiomyocytes. Calpain, and its related molecules, including Bax, VEGF, and AMPK, are among the proteins involved in regulating cardiomyocyte function. Apoptosis is facilitated by Bax. Cardiomyocyte apoptosis is regulated by this protein. Furthermore, cardiomyocyte survival, contractility, wound healing, and proliferation are all regulated by VEGF, which is produced by cardiomyocytes during inflammation and cytokine stress. Cardiomyocyte proliferation and survival are also influenced by AMPK, an enzyme that plays an active role in energy metabolism. They all play key roles in apoptosis, angiogenesis, hypertrophy, and metabolism during myocardial inflammation. The role of calpains has been linked to several molecular pathways. The calpain pathway plays an important role in signal transduction and apoptosis, as well as autophagy, endocytosis, and exocytosis. Cell death and survival are regulated by these calcium-dependent cysteine proteases that cleave proteins. As a result, protein fragments can be used for various cellular functions. By cleaving adhesion and motility proteins, calcium proteins also contribute to cell migration. HF may be brought about by calpain-mediated pathways. Many physiological processes are mediated by the calpain molecular pathways. Signal transduction, cell death, and cell migration are all regulated by these molecular pathways. Calpain is activated by calcium binding to calmodulin. In the presence of calcium, calmodulin activates calpain. Calpains are stimulated by calcium, which increases matrix metalloproteinases (MMPs). In order to develop novel treatments for these diseases, we must understand how this pathway works. A variety of myocardial remodeling processes involve calpains, including remodeling of the extracellular matrix and hypertrophy of cardiomyocytes. Calpains also play a role in maintaining cardiac homeostasis through apoptosis and autophagy. The development of HF may be in part due to calpain-mediated pathways promoting cardiomyocyte death. Numerous studies have suggested the importance of the Ca2+ -dependent protease calpain in cardiac physiology and pathology. Therefore, it is important to consider this pathway to develop and test therapeutic options in humans that targets calpain in HF. Apoptosis, autophagy, endocytosis, exocytosis, signal transduction, and disease progression all involve calpain molecular pathways. Therefore, it is conceivable that calpain inhibitors might have therapeutic potential as they have been investigated in preclinical models of several conditions in which the enzyme has been implicated that might be treated with them. Ca 2+ - dependent proteases and calpains contribute to adverse ventricular remodeling and HF in multiple experimental models. In this manuscript, we will discuss the calpain molecular pathway's important roles in HF development.

Keywords: calpain, heart failure, autophagy, apoptosis, cardiomyocyte

Procedia PDF Downloads 68
84 Quantifying Impairments in Whiplash-Associated Disorders and Association with Patient-Reported Outcomes

Authors: Harpa Ragnarsdóttir, Magnús Kjartan Gíslason, Kristín Briem, Guðný Lilja Oddsdóttir

Abstract:

Introduction: Whiplash-Associated Disorder (WAD) is a health problem characterized by motor, neurological and psychosocial symptoms, stressing the need for a multimodal treatment approach. To achieve individualized multimodal approach, prognostic factors need to be identified early using validated patient-reported and objective outcome measures. The aim of this study is to demonstrate the degree of association between patient-reported and clinical outcome measures of WAD patients in the subacute phase. Methods: Individuals (n=41) with subacute (≥1, ≤3 months) WAD (I-II), medium to high-risk symptoms, or neck pain rating ≥ 4/10 on the Visual Analog Scale (VAS) were examined. Outcome measures included measurements for movement control (Butterfly test) and cervical active range of motion (cAROM) using the NeckSmart system, a computer system using an inertial measurement unit (IMU) that connects to a computer. The IMU sensor is placed on the participant’s head, who receives visual feedback about the movement of the head. Patient-reported neck disability, pain intensity, general health, self-perceived handicap, central sensitization, and difficulties due to dizziness were measured using questionnaires. Excel and R statistical software were used for statistical analyses. Results: Forty-one participants, 15 males (37%), 26 females (63%), mean (SD) age 36.8 (±12.7), underwent data collection. Mean amplitude accuracy (AA) (SD) in the Butterfly test for easy, medium, and difficult paths were 2.4mm (0.9), 4.4mm (1.8), and 6.8mm (2.7), respectively. Mean cAROM (SD) for flexion, extension, left-, and right rotation were 46.3° (18.5), 48.8° (17.8), 58.2° (14.3), and 58.9° (15.0), respectively. Mean scores on the Neck Disability Index (NDI), VAS, Dizziness Handicap Inventory (DHI), Central Sensitization Inventory (CSI), and 36-Item Short Form Survey RAND version (RAND) were 43% (17.4), 7 (1.7), 37 (25.4), 51 (17.5), and 39.2 (17.7) respectively. Females showed significantly greater deviation for AA compared to males for easy and medium Butterfly paths (p<0.05). Statistically significant moderate to strong positive correlation was found between the DHI and easy (r=0.6, p=0.05), medium (r=0.5, p=0.05)) and difficult (r=0.5, p<0.05) Butterfly paths, between the total RAND score and all cAROMs (r between 0.4-0.7, p≤0.05) except flexion (r=0.4, p=0.7), and between the NDI score and CSI (r=0.7, p<0.01), VAS (r=0.5, p<0.01), and DHI (r=0.7, p<0.01) scores respectively. Discussion: All patient-reported and objective measures were found to be outside the reference range. Results suggest females have worse movement control in the neck in the subacute WAD phase. However, no statistical difference based on gender was found in patient-reported measures. Suggesting females might have worse movement control than males in general in this phase. The correlation found between DHI and the Butterfly test can be explained because the DHI measures proprioceptive symptoms like dizziness and eye movement disorders that can affect the outcome of movement control tests. A correlation was found between the total RAND score and cAROM, suggesting that a reduced range of motion affects the quality of life. Significance: The NeckSmart system can detect abnormalities in cAROM, fine movement control, and kinesthesia of the neck. Results suggest females have worse movement control than males. Results show a moderate to a high correlation between several patient-reported and objective measurements.

Keywords: whiplash associated disorders, car-collision, neck, trauma, subacute

Procedia PDF Downloads 70
83 Decrease in Olfactory Cortex Volume and Alterations in Caspase Expression in the Olfactory Bulb in the Pathogenesis of Alzheimer’s Disease

Authors: Majed Al Otaibi, Melissa Lessard-Beaudoin, Amel Loudghi, Raphael Chouinard-Watkins, Melanie Plourde, Frederic Calon, C. Alexandre Castellano, Stephen Cunnane, Helene Payette, Pierrette Gaudreau, Denis Gris, Rona K. Graham

Abstract:

Introduction: Alzheimer disease (AD) is a chronic disorder that affects millions of individuals worldwide. Symptoms include memory dysfunction, and also alterations in attention, planning, language and overall cognitive function. Olfactory dysfunction is a common symptom of several neurological disorders including AD. Studying the mechanisms underlying the olfactory dysfunction may therefore lead to the discovery of potential biomarkers and/or treatments for neurodegenerative diseases. Objectives: To determine if olfactory dysfunction predicts future cognitive impairment in the aging population and to characterize the olfactory system in a murine model expressing a genetic factor of AD. Method: For the human study, quantitative olfactory tests (UPSIT and OMT) have been done on 93 subjects (aged 80 to 94 years) from the Quebec Longitudinal Study on Nutrition and Successful Aging (NuAge) cohort accepting to participate in the ORCA secondary study. The telephone Modified Mini Mental State examination (t-MMSE) was used to assess cognition levels, and an olfactory self-report was also collected. In a separate cohort, olfactory cortical volume was calculated using MRI results from healthy old adults (n=25) and patients with AD (n=18) using the AAL single-subject atlas and performed with the PNEURO tool (PMOD 3.7). For the murine study, we are using Western blotting, RT-PCR and immunohistochemistry. Result: Human Study: Based on the self-report, 81% of the participants claimed to not suffer from any problem with olfaction. However, based on the UPSIT, 94% of those subjects showed a poor olfactory performance and different forms of microsmia. Moreover, the results confirm that olfactory function declines with age. We also detected a significant decrease in olfactory cortical volume in AD individuals compared to controls. Murine study: Preliminary data demonstrate there is a significant decrease in expression levels of the proform of caspase-3 and the caspase substrate STK3, in the olfactory bulb of mice expressing human APOE4 compared with controls. In addition, there is a significant decrease in the expression level of the caspase-9 proform and caspase-8 active fragment. Analysis of the mature neuron marker, NeuN, shows decreased expression levels of both isoforms. The data also suggest that Iba-1 immunostaining is increased in the olfactory bulb of APOE4 mice compared to wild type mice. Conclusions: The activation of caspase-3 may be the cause of the decreased levels of STK3 through caspase cleavage and may play role in the inflammation observed. In the clinical study, our results suggest that seniors are unaware of their olfactory function status and therefore it is not sufficient to measure olfaction using the self-report in the elderly. Studying olfactory function and cognitive performance in the aging population will help to discover biomarkers in the early stage of the AD.

Keywords: Alzheimer's disease, APOE4, cognition, caspase, brain atrophy, neurodegenerative, olfactory dysfunction

Procedia PDF Downloads 258
82 An Integrated Approach to the Carbonate Reservoir Modeling: Case Study of the Eastern Siberia Field

Authors: Yana Snegireva

Abstract:

Carbonate reservoirs are known for their heterogeneity, resulting from various geological processes such as diagenesis and fracturing. These complexities may cause great challenges in understanding fluid flow behavior and predicting the production performance of naturally fractured reservoirs. The investigation of carbonate reservoirs is crucial, as many petroleum reservoirs are naturally fractured, which can be difficult due to the complexity of their fracture networks. This can lead to geological uncertainties, which are important for global petroleum reserves. The problem outlines the key challenges in carbonate reservoir modeling, including the accurate representation of fractures and their connectivity, as well as capturing the impact of fractures on fluid flow and production. Traditional reservoir modeling techniques often oversimplify fracture networks, leading to inaccurate predictions. Therefore, there is a need for a modern approach that can capture the complexities of carbonate reservoirs and provide reliable predictions for effective reservoir management and production optimization. The modern approach to carbonate reservoir modeling involves the utilization of the hybrid fracture modeling approach, including the discrete fracture network (DFN) method and implicit fracture network, which offer enhanced accuracy and reliability in characterizing complex fracture systems within these reservoirs. This study focuses on the application of the hybrid method in the Nepsko-Botuobinskaya anticline of the Eastern Siberia field, aiming to prove the appropriateness of this method in these geological conditions. The DFN method is adopted to model the fracture network within the carbonate reservoir. This method considers fractures as discrete entities, capturing their geometry, orientation, and connectivity. But the method has significant disadvantages since the number of fractures in the field can be very high. Due to limitations in the amount of main memory, it is very difficult to represent these fractures explicitly. By integrating data from image logs (formation micro imager), core data, and fracture density logs, a discrete fracture network (DFN) model can be constructed to represent fracture characteristics for hydraulically relevant fractures. The results obtained from the DFN modeling approaches provide valuable insights into the East Siberia field's carbonate reservoir behavior. The DFN model accurately captures the fracture system, allowing for a better understanding of fluid flow pathways, connectivity, and potential production zones. The analysis of simulation results enables the identification of zones of increased fracturing and optimization opportunities for reservoir development with the potential application of enhanced oil recovery techniques, which were considered in further simulations on the dual porosity and dual permeability models. This approach considers fractures as separate, interconnected flow paths within the reservoir matrix, allowing for the characterization of dual-porosity media. The case study of the East Siberia field demonstrates the effectiveness of the hybrid model method in accurately representing fracture systems and predicting reservoir behavior. The findings from this study contribute to improved reservoir management and production optimization in carbonate reservoirs with the use of enhanced and improved oil recovery methods.

Keywords: carbonate reservoir, discrete fracture network, fracture modeling, dual porosity, enhanced oil recovery, implicit fracture model, hybrid fracture model

Procedia PDF Downloads 75
81 Bee Keeping for Human-Elephant Conflict Mitigation: A Success Story for Sustainable Tourism in Kibale National Park, Western Uganda

Authors: Dorothy Kagazi

Abstract:

The African elephant (Loxodonta africana) remains one of the most crop-damaging species around Kibale National Park, western Uganda. Elephant crop raiding deprives communities of food and incomes, consequently impacting livelihoods, attitude, and support for conservation. It also attracts an aggressive reaction from local communities including the retaliatory killing of a species that is already endangered and listed under Appendix I of the Convention on Endangered Species of Flora and Fauna (CITES). In order to mitigate against elephant crop raiding and minimize conflict, a number of interventions were devised by the government of Uganda such as physical guarding, scare-shooting, excavation of trenches, growing of unpalatable crops and fire lighting all of which have over the years been implemented around the park. These generated varying degrees of effectiveness but largely never solved the problem of elephants crossing into communities to destroy food and shelter which had a negative effect onto sustainable tourism of the communities who often resorted to killing these animals and hence contributing the falling numbers of these animals. It was until government discovered that there are far more effective ways of deterring these animals from crossing to communities that it commissioned a study to deploy the African honeybee (Apis mellifera scutellata) as a deterrent against elephant crop raiding and income enhancement for local people around the park. These efforts led to a number of projects around Kibale National Park where communities were facilitated to keep bees for human-elephant conflict mitigation and rural income enhancement through the sale of honey. These projects have registered tremendous success in reducing crop damage, enhance rural incomes, influence positive attitude change and ultimately secure community support for elephant and park conservation which is a clear manifestation of sustainable tourism development in the area. To address the issue of sustainability, the project was aligned with four major objectives that contributed to the overall goal of maintaining the areas around the parks and the national park itself in such a manner that it remains viable over an infinite period. Among these included determining deterrence effects of bees against elephant crop raiding, assessing the contribution of beekeeping towards rural income enhancement, determining the impact of community involvement of park conservation and management among others. The project deployed 500 improved hives by placing them at specific and previously identified and mapped out elephant crossing points along the park boundary. A control site was established without any intervention to facilitate comparison of findings and data was collected on elephant raiding frequency, patterns, honey harvested, and community attitude towards the park. A socio-economic assessment was also undertaken to ascertain the contribution of beekeeping to incomes and attitude change. In conclusion, human-wildlife conflicts have disturbed conservation and sustainable tourism development efforts. Such success stories like the beekeeping strategy should hence be extensively discussed and widely shared as a conservation technique for sustainable tourism.

Keywords: bees, communities, conservation, elephants

Procedia PDF Downloads 212
80 Engineering Design of a Chemical Launcher: An Interdisciplinary Design Activity

Authors: Mei Xuan Tan, Gim-Yang Maggie Pee, Mei Chee Tan

Abstract:

Academic performance, in the form of scoring high grades in enrolled subjects, is not the only significant trait in achieving success. Engineering graduates with experience in working on hands-on projects in a team setting are highly sought after in industry upon graduation. Such projects are typically real world problems that require the integration and application of knowledge and skills from several disciplines. In a traditional university setting, subjects are taught in a silo manner with no cross participation from other departments or disciplines. This may lead to knowledge compartmentalization and students are unable to understand and connect the relevance and applicability of the subject. University instructors thus see this integration across disciplines as a challenging task as they aim to better prepare students in understanding and solving problems for work or future studies. To improve students’ academic performance and to cultivate various skills such as critical thinking, there has been a gradual uptake in the use of an active learning approach in introductory science and engineering courses, where lecturing is traditionally the main mode of instruction. This study aims to discuss the implementation and experience of a hands-on, interdisciplinary project that involves all the four core subjects taught during the term at the Singapore University of Technology Design (SUTD). At SUTD, an interdisciplinary design activity, named 2D, is integrated into the curriculum to help students reinforce the concepts learnt. A student enrolled in SUTD experiences his or her first 2D in Term 1. This activity. which spans over one week in Week 10 of Term 1, highlights the application of chemistry, physics, mathematics, humanities, arts and social sciences (HASS) in designing an engineering product solution. The activity theme for Term 1 2D revolved around “work and play”. Students, in teams of 4 or 5, used a scaled-down model of a chemical launcher to launch a projectile across the room. It involved the use of a small chemical combustion reaction between ethanol (a highly volatile fuel) and oxygen. This reaction generated a sudden and large increase in gas pressure built up in a closed chamber, resulting in rapid gas expansion and ejection of the projectile out of the launcher. Students discussed and explored the meaning of play in their lives in HASS class while the engineering aspects of a combustion system to launch an object using underlying principles of energy conversion and projectile motion were revisited during the chemistry and physics classes, respectively. Numerical solutions on the distance travelled by the projectile launched by the chemical launcher, taking into account drag forces, was developed during the mathematics classes. At the end of the activity, students developed skills in report writing, data collection and analysis. Specific to this 2D activity, students gained an understanding and appreciation on the application and interdisciplinary nature of science, engineering and HASS. More importantly, students were exposed to design and problem solving, where human interaction and discussion are important yet challenging in a team setting.

Keywords: active learning, collaborative learning, first year undergraduate, interdisciplinary, STEAM

Procedia PDF Downloads 122
79 On the Utility of Bidirectional Transformers in Gene Expression-Based Classification

Authors: Babak Forouraghi

Abstract:

A genetic circuit is a collection of interacting genes and proteins that enable individual cells to implement and perform vital biological functions such as cell division, growth, death, and signaling. In cell engineering, synthetic gene circuits are engineered networks of genes specifically designed to implement functionalities that are not evolved by nature. These engineered networks enable scientists to tackle complex problems such as engineering cells to produce therapeutics within the patient's body, altering T cells to target cancer-related antigens for treatment, improving antibody production using engineered cells, tissue engineering, and production of genetically modified plants and livestock. Construction of computational models to realize genetic circuits is an especially challenging task since it requires the discovery of the flow of genetic information in complex biological systems. Building synthetic biological models is also a time-consuming process with relatively low prediction accuracy for highly complex genetic circuits. The primary goal of this study was to investigate the utility of a pre-trained bidirectional encoder transformer that can accurately predict gene expressions in genetic circuit designs. The main reason behind using transformers is their innate ability (attention mechanism) to take account of the semantic context present in long DNA chains that are heavily dependent on the spatial representation of their constituent genes. Previous approaches to gene circuit design, such as CNN and RNN architectures, are unable to capture semantic dependencies in long contexts, as required in most real-world applications of synthetic biology. For instance, RNN models (LSTM, GRU), although able to learn long-term dependencies, greatly suffer from vanishing gradient and low-efficiency problem when they sequentially process past states and compresses contextual information into a bottleneck with long input sequences. In other words, these architectures are not equipped with the necessary attention mechanisms to follow a long chain of genes with thousands of tokens. To address the above-mentioned limitations, a transformer model was built in this work as a variation to the existing DNA Bidirectional Encoder Representations from Transformers (DNABERT) model. It is shown that the proposed transformer is capable of capturing contextual information from long input sequences with an attention mechanism. In previous works on genetic circuit design, the traditional approaches to classification and regression, such as Random Forrest, Support Vector Machine, and Artificial Neural Networks, were able to achieve reasonably high R2 accuracy levels of 0.95 to 0.97. However, the transformer model utilized in this work, with its attention-based mechanism, was able to achieve a perfect accuracy level of 100%. Further, it is demonstrated that the efficiency of the transformer-based gene expression classifier is not dependent on the presence of large amounts of training examples, which may be difficult to compile in many real-world gene circuit designs.

Keywords: machine learning, classification and regression, gene circuit design, bidirectional transformers

Procedia PDF Downloads 60
78 Socio-Economic Determinants of Physical Activity of Non-Manual Workers, Including the Early Senior Group, from the City of Wroclaw in Poland

Authors: Daniel Puciato, Piotr Oleśniewicz, Julita Markiewicz-Patkowska, Krzysztof Widawski, Michał Rozpara, Władysław Mynarski, Agnieszka Gawlik, Małgorzata Dębska, Soňa Jandová

Abstract:

Physical activity as a part of people’s everyday life reduces the risk of many diseases, including those induced by lifestyle, e.g. obesity, type 2 diabetes, osteoporosis, coronary heart disease, degenerative arthritis, and certain types of cancer. That refers particularly to professionally active people, including the early senior group working on non-manual positions. The aim of the study is to evaluate the relationship between physical activity and the socio-economic status of non-manual workers from Wroclaw—one of the biggest cities in Poland, a model setting for such investigations in this part of Europe. The crucial problem in the research is to find out the percentage of respondents who meet the health-related recommendations of the World Health Organization (WHO) concerning the volume, frequency, and intensity of physical activity, as well as to establish if the most important socio-economic factors, such as gender, age, education, marital status, per capita income, savings and debt, determine the compliance with the WHO physical activity recommendations. During the research, conducted in 2013, 1,170 people (611 women and 559 men) aged 21–60 years were examined. A diagnostic poll method was applied to collect the data. Physical activity was measured with the use of the short form of the International Physical Activity Questionnaire with extended socio-demographic questions, i.e. concerning gender, age, education, marital status, income, savings or debts. To evaluate the relationship between physical activity and selected socio-economic factors, logistic regression was used (odds ratio statistics). Statistical inference was conducted on the adopted ex ante probability level of p<0.05. The majority of respondents met the volume of physical effort recommended for health benefits. It was particularly noticeable in the case of the examined men. The probability of compliance with the WHO physical activity recommendations was highest for workers aged 21–30 years with secondary or higher education who were single, received highest incomes and had savings. The results indicate the relations between physical activity and socio-economic status in the examined women and men. People with lower socio-economic status (e.g. manual workers) are physically active primarily at work, whereas those better educated and wealthier implement physical effort primarily in their leisure time. Among the investigated subjects, the youngest group of non-manual workers have the best chances to meet the WHO standards of physical activity. The study also confirms that secondary education has a positive effect on the public awareness on the role of physical activity in human life. In general, the analysis of the research indicates that there is a relationship between physical activity and some socio-economic factors of the respondents, such as gender, age, education, marital status, income per capita, and the possession of savings. Although the obtained results cannot be applied for the general population, they show some important trends that will be verified in subsequent studies conducted by the authors of the paper.

Keywords: IPAQ, nonmanual workers, physical activity, socioeconomic factors, WHO

Procedia PDF Downloads 535
77 Big Data Applications for the Transport Sector

Authors: Antonella Falanga, Armando Cartenì

Abstract:

Today, an unprecedented amount of data coming from several sources, including mobile devices, sensors, tracking systems, and online platforms, characterizes our lives. The term “big data” not only refers to the quantity of data but also to the variety and speed of data generation. These data hold valuable insights that, when extracted and analyzed, facilitate informed decision-making. The 4Vs of big data - velocity, volume, variety, and value - highlight essential aspects, showcasing the rapid generation, vast quantities, diverse sources, and potential value addition of these kinds of data. This surge of information has revolutionized many sectors, such as business for improving decision-making processes, healthcare for clinical record analysis and medical research, education for enhancing teaching methodologies, agriculture for optimizing crop management, finance for risk assessment and fraud detection, media and entertainment for personalized content recommendations, emergency for a real-time response during crisis/events, and also mobility for the urban planning and for the design/management of public and private transport services. Big data's pervasive impact enhances societal aspects, elevating the quality of life, service efficiency, and problem-solving capacities. However, during this transformative era, new challenges arise, including data quality, privacy, data security, cybersecurity, interoperability, the need for advanced infrastructures, and staff training. Within the transportation sector (the one investigated in this research), applications span planning, designing, and managing systems and mobility services. Among the most common big data applications within the transport sector are, for example, real-time traffic monitoring, bus/freight vehicle route optimization, vehicle maintenance, road safety and all the autonomous and connected vehicles applications. Benefits include a reduction in travel times, road accidents and pollutant emissions. Within these issues, the proper transport demand estimation is crucial for sustainable transportation planning. Evaluating the impact of sustainable mobility policies starts with a quantitative analysis of travel demand. Achieving transportation decarbonization goals hinges on precise estimations of demand for individual transport modes. Emerging technologies, offering substantial big data at lower costs than traditional methods, play a pivotal role in this context. Starting from these considerations, this study explores the usefulness impact of big data within transport demand estimation. This research focuses on leveraging (big) data collected during the COVID-19 pandemic to estimate the evolution of the mobility demand in Italy. Estimation results reveal in the post-COVID-19 era, more than 96 million national daily trips, about 2.6 trips per capita, with a mobile population of more than 37.6 million Italian travelers per day. Overall, this research allows us to conclude that big data better enhances rational decision-making for mobility demand estimation, which is imperative for adeptly planning and allocating investments in transportation infrastructures and services.

Keywords: big data, cloud computing, decision-making, mobility demand, transportation

Procedia PDF Downloads 62
76 Developing a Machine Learning-based Cost Prediction Model for Construction Projects using Particle Swarm Optimization

Authors: Soheila Sadeghi

Abstract:

Accurate cost prediction is essential for effective project management and decision-making in the construction industry. This study aims to develop a cost prediction model for construction projects using Machine Learning techniques and Particle Swarm Optimization (PSO). The research utilizes a comprehensive dataset containing project cost estimates, actual costs, resource details, and project performance metrics from a road reconstruction project. The methodology involves data preprocessing, feature selection, and the development of an Artificial Neural Network (ANN) model optimized using PSO. The study investigates the impact of various input features, including cost estimates, resource allocation, and project progress, on the accuracy of cost predictions. The performance of the optimized ANN model is evaluated using metrics such as Mean Squared Error (MSE), Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), and R-squared. The results demonstrate the effectiveness of the proposed approach in predicting project costs, outperforming traditional benchmark models. The feature selection process identifies the most influential variables contributing to cost variations, providing valuable insights for project managers. However, this study has several limitations. Firstly, the model's performance may be influenced by the quality and quantity of the dataset used. A larger and more diverse dataset covering different types of construction projects would enhance the model's generalizability. Secondly, the study focuses on a specific optimization technique (PSO) and a single Machine Learning algorithm (ANN). Exploring other optimization methods and comparing the performance of various ML algorithms could provide a more comprehensive understanding of the cost prediction problem. Future research should focus on several key areas. Firstly, expanding the dataset to include a wider range of construction projects, such as residential buildings, commercial complexes, and infrastructure projects, would improve the model's applicability. Secondly, investigating the integration of additional data sources, such as economic indicators, weather data, and supplier information, could enhance the predictive power of the model. Thirdly, exploring the potential of ensemble learning techniques, which combine multiple ML algorithms, may further improve cost prediction accuracy. Additionally, developing user-friendly interfaces and tools to facilitate the adoption of the proposed cost prediction model in real-world construction projects would be a valuable contribution to the industry. The findings of this study have significant implications for construction project management, enabling proactive cost estimation, resource allocation, budget planning, and risk assessment, ultimately leading to improved project performance and cost control. This research contributes to the advancement of cost prediction techniques in the construction industry and highlights the potential of Machine Learning and PSO in addressing this critical challenge. However, further research is needed to address the limitations and explore the identified future research directions to fully realize the potential of ML-based cost prediction models in the construction domain.

Keywords: cost prediction, construction projects, machine learning, artificial neural networks, particle swarm optimization, project management, feature selection, road reconstruction

Procedia PDF Downloads 58
75 Mean Nutrient Intake and Nutrient Adequacy Ratio in India: Occurrence of Hidden Hunger in Indians

Authors: Abha Gupta, Deepak K. Mishra

Abstract:

The focus of food security studies in India has been on the adequacy of calories and its linkage with poverty level. India currently being undergoing a massive demographic and epidemiological transition has demonstrated a decline in average physical activity with improved mechanization and urbanization. Food consumption pattern is also changing with decreasing intake of coarse cereals and a marginal increase in the consumption of fruits, vegetables and meat products resulting into a nutrition transition in the country. However, deficiency of essential micronutrients such as vitamins and minerals is rampant despite their growing importance in fighting back with lifestyle and other modern diseases. The calorie driven studies can hardly tackle the complex problem of malnutrition. This paper fills these research lacuna and analyses mean intake of different major and micro-nutrients among different socio-economic groups and adequacy of these nutrients from recommended dietary allowance. For the purpose, a cross-sectional survey covering 304 households selected through proportional stratified random sampling was conducted in six villages of Aligarh district of the state of Uttar Pradesh, India. Data on quantity consumed of 74 food items grouped into 10 food categories with a recall period of seven days was collected from the households and converted into energy, protein, fat, carbohydrate, calcium, iron, thiamine, riboflavin, niacin and vitamin C using standard guidelines of National Institute of Nutrition. These converted nutrients were compared with recommended norms given by National Nutrition Monitoring Bureau. Per capita nutrient adequacy was calculated by dividing mean nutrient intake by the household size and then by comparing it with recommended norm. Findings demonstrate that source of both macro and micro-nutrients are mainly cereals followed by milk, edible oil and sugar items. Share of meat in providing essential nutrients is very low due to vegetarian diet. Vegetables, pulses, nuts, fruits and dry fruits are a poor source for most of the nutrients. Further analysis evinces that intake of most of the nutrients is higher than the recommended norm. Riboflavin is the only vitamin whose intake is less than the standard norm. Poor group, labour, small farmers, Muslims, scheduled caste demonstrate comparatively lower intake of all nutrients than their counterpart groups, though, they get enough macro and micro-nutrients significantly higher than the norm. One of the major reasons for higher intake of most of the nutrients across all socio-economic groups is higher consumption of monotonous diet based on cereals and milk. Most of the nutrients get their major share from cereals particularly wheat and milk intake. It can be concluded from the analysis that although there is adequate intake of most of the nutrients in the diet of rural population yet their source is mainly cereals and milk products depicting a monotonous diet. Hence, more efforts are needed to diversify the diet by giving more focus to the production of other food items particularly fruits, vegetables and pulse products. Awareness among the population, more accessibility and incorporating food items other than cereals in government social safety programmes are other measures to improve food security in India.

Keywords: hidden hunger, India, nutrients, recommended norm

Procedia PDF Downloads 316
74 Metabolic Changes during Reprogramming of Wheat and Triticale Microspores

Authors: Natalia Hordynska, Magdalena Szechynska-Hebda, Miroslaw Sobczak, Elzbieta Rozanska, Joanna Troczynska, Zofia Banaszak, Maria Wedzony

Abstract:

Albinism is a common problem encountered in wheat and triticale breeding programs, which require in vitro culture steps e.g. generation of doubled haploids via androgenesis process. Genetic factor is a major determinant of albinism, however, environmental conditions such as temperature and media composition influence the frequency of albino plant formation. Cold incubation of wheat and triticale spikes induced a switch from gametophytic to sporophytic development. Further, androgenic structures formed from anthers of the genotypes susceptible to androgenesis or treated with cold stress, had a pool of structurally primitive plastids, with small starch granules or swollen thylakoids. High temperature was a factor inducing andro-genesis of wheat and triticale, but at the same time, it was a factor favoring the formation of albino plants. In genotypes susceptible to albinism or after heat stress conditions, cells formed from anthers were vacuolated, and plastids were eliminated. Partial or complete loss of chlorophyll pigments and incomplete differentiation of chloroplast membranes result in formation of tissues or whole plant unable to perform photosynthesis. Indeed, susceptibility to the andro-genesis process was associated with an increase of total concentration of photosynthetic pigments in anthers, spikes and regenerated plants. The proper balance of the synthesis of various pigments, was the starting point for their proper incorporation into photosynthetic membranes. In contrast, genotypes resistant to the androgenesis process and those treated with heat, contained 100 times lower content of photosynthetic pigments. In particular, the synthesis of violaxanthin, zeaxanthin, lutein and chlorophyll b was limited. Furthermore, deregulation of starch and lipids synthesis, which led to the formation of very complex starch granules and an increased number of oleosomes, respectively, correlated with the reduction of the efficiency of androgenesis. The content of other sugars varied depending on the genotype and the type of stress. The highest content of various sugars was found for genotypes susceptible to andro-genesis, and highly reduced for genotypes resistant to androgenesis. The most important sugars seem to be glucose and fructose. They are involved in sugar sensing and signaling pathways, which affect the expression of various genes and regulate plant development. Sucrose, on the other hand, seems to have minor effect at each stage of the androgenesis. The sugar metabolism was related to metabolic activity of microspores. The genotypes susceptible to androgenesis process had much faster mitochondrium- and chloroplast-dependent energy conversion and higher heat production by tissues. Thus, the effectiveness of metabolic processes, their balance and the flexibility under the stress was a factor determining the direction of microspore development, and in the later stages of the androgenesis process, a factor supporting the induction of androgenic structures, chloroplast formation and the regeneration of green plants. The work was financed by Ministry of Agriculture and Rural Development within Program: ‘Biological Progress in Plant Production’, project no HOR.hn.802.15.2018.

Keywords: androgenesis, chloroplast, metabolism, temperature stress

Procedia PDF Downloads 260
73 Urban Dynamics Modelling of Mixed Land Use for Sustainable Urban Development in Indian Context

Authors: Rewati Raman, Uttam K. Roy

Abstract:

One of the main adversaries of city planning in present times is the ever-expanding problem of urbanization and the antagonistic issues accompanying it. The prevalent challenges in urbanization such as population growth, urban sprawl, poverty, inequality, pollution, congestion, etc. call for reforms in the urban fabric as well as in planning theory and practice. One of the various paradigms of city planning, land use planning, has been the major instruments for spatial planning of cities and regions in India. Zoning regulation based land use planning in the form of land use and development control plans (LUDCP) and development control regulations (DCR) have been considered mainstream guiding principles in land use planning for decades. In spite of many advantages of such zoning based regulations, over a period of time, it has been critiqued by scholars for its own limitations of isolation and lack of vitality, inconvenience in business in terms of proximity to residence and low operating cost, unsuitable environment for small investments, higher travel distance for facilities, amenities and thereby higher expenditure, safety issues etc. Mixed land use has been advocated as a tool to avoid such limitations in city planning by researchers. In addition, mixed land use can offer many advantages like housing variety and density, the creation of an economic blend of compatible land use, compact development, stronger neighborhood character, walkability, and generation of jobs, etc. Alternatively, the mixed land use beyond a suitable balance of use can also bring disadvantages like traffic congestion, encroachments, very high-density housing leading to a slum like condition, parking spill out, non-residential uses operating on residential premises paying less tax, chaos hampering residential privacy, pressure on existing infrastructure facilities, etc. This research aims at studying and outlining the various challenges and potentials of mixed land use zoning, through modeling tools, as a competent instrument for city planning in lieu of the present urban scenario. The methodology of research adopted in this paper involves the study of a mixed land use neighborhood in India, identification of indicators and parameters related to its extent and spatial pattern and the subsequent use of system dynamics as a modeling tool for simulation. The findings from this analysis helped in identifying the various advantages and challenges associated with the dynamic nature of a mixed use urban settlement. The results also confirmed the hypothesis that mixed use neighborhoods are catalysts for employment generation, socioeconomic gains while improving vibrancy, health, safety, and security. It is also seen that certain challenges related to chaos, lack of privacy and pollution prevail in mixed use neighborhoods, which can be mitigated by varying the percentage of mixing as per need, ensuring compatibility of adjoining use, institutional interventions in the form of policies, neighborhood micro-climatic interventions, etc. Therefore this paper gives a consolidated and holistic framework and quantified outcome pertaining to the extent and spatial pattern of mixed land use that should be adopted to ensure sustainable urban planning.

Keywords: mixed land use, sustainable development, system dynamics analysis, urban dynamics modelling

Procedia PDF Downloads 176
72 A Postmodern Framework for Quranic Hermeneutics

Authors: Christiane Paulus

Abstract:

Post-Islamism assumes that the Quran should not be viewed in terms of what Lyotard identifies as a ‘meta-narrative'. However, its socio-ethical content can be viewed as critical of power discourse (Foucault). Practicing religion seems to be limited to rites and individual spirituality, taqwa. Alternatively, can we build on Muhammad Abduh's classic-modern reform and develop it through a postmodernist frame? This is the main question of this study. Through his general and vague remarks on the context of the Quran, Abduh was the first to refer to the historical and cultural distance of the text as an obstacle for interpretation. His application, however, corresponded to the modern absolute idea of authentic sharia. He was followed by Amin al-Khuli, who hermeneutically linked the content of the Quran to the theory of evolution. Fazlur Rahman and Nasr Hamid abu Zeid remain reluctant to go beyond the general level in terms of context. The hermeneutic circle, therefore, persists in challenging, how to get out to overcome one’s own assumptions. The insight into and the acceptance of the lasting ambivalence of understanding can be grasped as a postmodern approach; it is documented in Derrida's discovery of the shift in text meanings, difference, also in Lyotard's theory of différend. The resulting mixture of meanings (Wolfgang Welsch) can be read together with the classic ambiguity of the premodern interpreters of the Quran (Thomas Bauer). Confronting hermeneutic difficulties in general, Niklas Luhmann proves every description an attribution, tautology, i.e., remaining in the circle. ‘De-tautologization’ is possible, namely by analyzing the distinctions in the sense of objective, temporal and social information that every text contains. This could be expanded with the Kantian aesthetic dimension of reason (critique of pure judgment) corresponding to the iʽgaz of the Coran. Luhmann asks, ‘What distinction does the observer/author make?’ Quran as a speech from God to the first listeners could be seen as a discourse responding to the problems of everyday life of that time, which can be viewed as the general goal of the entire Qoran. Through reconstructing koranic Lifeworlds (Alfred Schütz) in detail, the social structure crystallizes the socio-economic differences, the enormous poverty. The koranic instruction to provide the basic needs for the neglected groups, which often intersect (old, poor, slaves, women, children), can be seen immediately in the text. First, the references to lifeworlds/social problems and discourses in longer koranic passages should be hypothesized. Subsequently, information from the classic commentaries could be extracted, the classical Tafseer, in particular, contains rich narrative material for reconstructing. By selecting and assigning suitable, specific context information, the meaning of the description becomes condensed (Clifford Geertz). In this manner, the text gets necessarily an alienation and is newly accessible. The socio-ethical implications can thus be grasped from the difference of the original problem and the revealed/improved order/procedure; this small step can be materialized as such, not as an absolute solution but as offering plausible patterns for today’s challenges as the Agenda 2030.

Keywords: postmodern hermeneutics, condensed description, sociological approach, small steps of reform

Procedia PDF Downloads 218