Search results for: online learning tools
2019 Demotivation-Reducing Strategies Employed by Turkish EFL Learners in L2 Writing
Authors: kaveh Jalilzadeh, Maryam Rastgari
Abstract:
Motivation for learning a foreign language is needed for learners of any foreign language to effectively learn language skills. However, there are some factors that lead to the learners’ demotivation. Therefore, teachers of foreign languages, most notably English language which turned out to be an international language for academic and business purposes, need to be well aware of the demotivation sources and know how to reduce learners’ demotivation. This study is an attempt to explore demotivation-reducing strategies employed by Turkish EFL learners in L2 writing. The researchers used a qualitative case study and employed semi-structured interviews to collect data. The informants recruited in this study were 20 English writing lecturers who were selected through purposive sampling among university lecturers/instructors at the state and non-state universities in Istanbul and Ankara. Interviews were transcribed verbatim, and MAXQDA software (version 2022) was used for performing coding and thematic analysis of the data. Findings revealed that Turkish EFL teachers use 18 strategies to reduce language learners’ demotivation. The most frequently reported strategies were: writing in a group, writing about interesting topics, writing about new topics, writing about familiar topics, writing about simple topics, and writing about relevant topics. The findings have practical implications for writing teachers and learners of the English language.Keywords: phenomenological study, emotional vulnerability, motivation, digital Settings
Procedia PDF Downloads 702018 Use of Gaussian-Euclidean Hybrid Function Based Artificial Immune System for Breast Cancer Diagnosis
Authors: Cuneyt Yucelbas, Seral Ozsen, Sule Yucelbas, Gulay Tezel
Abstract:
Due to the fact that there exist only a small number of complex systems in artificial immune system (AIS) that work out nonlinear problems, nonlinear AIS approaches, among the well-known solution techniques, need to be developed. Gaussian function is usually used as similarity estimation in classification problems and pattern recognition. In this study, diagnosis of breast cancer, the second type of the most widespread cancer in women, was performed with different distance calculation functions that euclidean, gaussian and gaussian-euclidean hybrid function in the clonal selection model of classical AIS on Wisconsin Breast Cancer Dataset (WBCD), which was taken from the University of California, Irvine Machine-Learning Repository. We used 3-fold cross validation method to train and test the dataset. According to the results, the maximum test classification accuracy was reported as 97.35% by using of gaussian-euclidean hybrid function for fold-3. Also, mean of test classification accuracies for all of functions were obtained as 94.78%, 94.45% and 95.31% with use of euclidean, gaussian and gaussian-euclidean, respectively. With these results, gaussian-euclidean hybrid function seems to be a potential distance calculation method, and it may be considered as an alternative distance calculation method for hard nonlinear classification problems.Keywords: artificial immune system, breast cancer diagnosis, Euclidean function, Gaussian function
Procedia PDF Downloads 4352017 Domain specific Ontology-Based Knowledge Extraction Using R-GNN and Large Language Models
Authors: Andrey Khalov
Abstract:
The rapid proliferation of unstructured data in IT infrastructure management demands innovative approaches for extracting actionable knowledge. This paper presents a framework for ontology-based knowledge extraction that combines relational graph neural networks (R-GNN) with large language models (LLMs). The proposed method leverages the DOLCE framework as the foundational ontology, extending it with concepts from ITSMO for domain-specific applications in IT service management and outsourcing. A key component of this research is the use of transformer-based models, such as DeBERTa-v3-large, for automatic entity and relationship extraction from unstructured texts. Furthermore, the paper explores how transfer learning techniques can be applied to fine-tune large language models (LLaMA) for using to generate synthetic datasets to improve precision in BERT-based entity recognition and ontology alignment. The resulting IT Ontology (ITO) serves as a comprehensive knowledge base that integrates domain-specific insights from ITIL processes, enabling more efficient decision-making. Experimental results demonstrate significant improvements in knowledge extraction and relationship mapping, offering a cutting-edge solution for enhancing cognitive computing in IT service environments.Keywords: ontology mapping, R-GNN, knowledge extraction, large language models, NER, knowlege graph
Procedia PDF Downloads 162016 Development of an Automatic Calibration Framework for Hydrologic Modelling Using Approximate Bayesian Computation
Authors: A. Chowdhury, P. Egodawatta, J. M. McGree, A. Goonetilleke
Abstract:
Hydrologic models are increasingly used as tools to predict stormwater quantity and quality from urban catchments. However, due to a range of practical issues, most models produce gross errors in simulating complex hydraulic and hydrologic systems. Difficulty in finding a robust approach for model calibration is one of the main issues. Though automatic calibration techniques are available, they are rarely used in common commercial hydraulic and hydrologic modelling software e.g. MIKE URBAN. This is partly due to the need for a large number of parameters and large datasets in the calibration process. To overcome this practical issue, a framework for automatic calibration of a hydrologic model was developed in R platform and presented in this paper. The model was developed based on the time-area conceptualization. Four calibration parameters, including initial loss, reduction factor, time of concentration and time-lag were considered as the primary set of parameters. Using these parameters, automatic calibration was performed using Approximate Bayesian Computation (ABC). ABC is a simulation-based technique for performing Bayesian inference when the likelihood is intractable or computationally expensive to compute. To test the performance and usefulness, the technique was used to simulate three small catchments in Gold Coast. For comparison, simulation outcomes from the same three catchments using commercial modelling software, MIKE URBAN were used. The graphical comparison shows strong agreement of MIKE URBAN result within the upper and lower 95% credible intervals of posterior predictions as obtained via ABC. Statistical validation for posterior predictions of runoff result using coefficient of determination (CD), root mean square error (RMSE) and maximum error (ME) was found reasonable for three study catchments. The main benefit of using ABC over MIKE URBAN is that ABC provides a posterior distribution for runoff flow prediction, and therefore associated uncertainty in predictions can be obtained. In contrast, MIKE URBAN just provides a point estimate. Based on the results of the analysis, it appears as though ABC the developed framework performs well for automatic calibration.Keywords: automatic calibration framework, approximate bayesian computation, hydrologic and hydraulic modelling, MIKE URBAN software, R platform
Procedia PDF Downloads 3072015 Design, Construction, Validation And Use Of A Novel Portable Fire Effluent Sampling Analyser
Authors: Gabrielle Peck, Ryan Hayes
Abstract:
Current large scale fire tests focus on flammability and heat release measurements. Smoke toxicity isn’t considered despite it being a leading cause of death and injury in unwanted fires. A key reason could be that the practical difficulties associated with quantifying individual toxic components present in a fire effluent often require specialist equipment and expertise. Fire effluent contains a mixture of unreactive and reactive gases, water, organic vapours and particulate matter, which interact with each other. This interferes with the operation of the analytical instrumentation and must be removed without changing the concentration of the target analyte. To mitigate the need for expensive equipment and time-consuming analysis, a portable gas analysis system was designed, constructed and tested for use in large-scale fire tests as a simpler and more robust alternative to online FTIR measurements. The novel equipment aimed to be easily portable and able to run on battery or mains electricity; be able to be calibrated at the test site; be capable of quantifying CO, CO2, O2, HCN, HBr, HCl, NOx and SO2 accurately and reliably; be capable of independent data logging; be capable of automated switchover of 7 bubblers; be able to withstand fire effluents; be simple to operate; allow individual bubbler times to be pre-set; be capable of being controlled remotely. To test the analysers functionality, it was used alongside the ISO/TS 19700 Steady State Tube Furnace (SSTF). A series of tests were conducted to assess the validity of the box analyser measurements and the data logging abilities of the apparatus. PMMA and PA 6.6 were used to assess the validity of the box analyser measurements. The data obtained from the bench-scale assessments showed excellent agreement. Following this, the portable analyser was used to monitor gas concentrations during large-scale testing using the ISO 9705 room corner test. The analyser was set up, calibrated and set to record smoke toxicity measurements in the doorway of the test room. The analyser was successful in operating without manual interference and successfully recorded data for 12 of the 12 tests conducted in the ISO room tests. At the end of each test, the analyser created a data file (formatted as .csv) containing the measured gas concentrations throughout the test, which do not require specialist knowledge to interpret. This validated the portable analyser’s ability to monitor fire effluent without operator intervention on both a bench and large-scale. The portable analyser is a validated and significantly more practical alternative to FTIR, proven to work for large-scale fire testing for quantification of smoke toxicity. The analyser is a cheaper, more accessible option to assess smoke toxicity, mitigating the need for expensive equipment and specialist operators.Keywords: smoke toxicity, large-scale tests, iso 9705, analyser, novel equipment
Procedia PDF Downloads 772014 Implementing Search-Based Activities in Mathematics Instruction, Grounded in Intuitive Reasoning
Authors: Zhanna Dedovets
Abstract:
Fostering a mathematical style of thinking is crucial for cultivating intellectual personalities capable of thriving in modern society. Intuitive thinking stands as a cornerstone among the components of mathematical cognition, playing a pivotal role in grasping mathematical truths across various disciplines. This article delves into the exploration of leveraging search activities rooted in students' intuitive thinking, particularly when tackling geometric problems. Emphasizing both student engagement with the task and their active involvement in the search process, the study underscores the importance of heuristic procedures and the freedom for students to chart their own problem-solving paths. Spanning several years (2019-2023) at the Physics and Mathematics Lyceum of Dushanbe, the research engaged 17 teachers and 78 high school students. After assessing the initial levels of intuitive thinking in both control and experimental groups, the experimental group underwent training following the authors' methodology. Subsequent analysis revealed a significant advancement in thinking levels among the experimental group students. The methodological approaches and teaching materials developed through this process offer valuable resources for mathematics educators seeking to enhance their students' learning experiences effectively.Keywords: teaching of mathematics, intuitive thinking, heuristic procedures, geometric problem, students.
Procedia PDF Downloads 462013 Automated Multisensory Data Collection System for Continuous Monitoring of Refrigerating Appliances Recycling Plants
Authors: Georgii Emelianov, Mikhail Polikarpov, Fabian Hübner, Jochen Deuse, Jochen Schiemann
Abstract:
Recycling refrigerating appliances plays a major role in protecting the Earth's atmosphere from ozone depletion and emissions of greenhouse gases. The performance of refrigerator recycling plants in terms of material retention is the subject of strict environmental certifications and is reviewed periodically through specialized audits. The continuous collection of Refrigerator data required for the input-output analysis is still mostly manual, error-prone, and not digitalized. In this paper, we propose an automated data collection system for recycling plants in order to deduce expected material contents in individual end-of-life refrigerating appliances. The system utilizes laser scanner measurements and optical data to extract attributes of individual refrigerators by applying transfer learning with pre-trained vision models and optical character recognition. Based on Recognized features, the system automatically provides material categories and target values of contained material masses, especially foaming and cooling agents. The presented data collection system paves the way for continuous performance monitoring and efficient control of refrigerator recycling plants.Keywords: automation, data collection, performance monitoring, recycling, refrigerators
Procedia PDF Downloads 1642012 Export and Import Indicators of Georgian Agri-food Products during the Pandemic: Challenges and Opportunities
Authors: Eteri Kharaishvili
Abstract:
Introduction. The paper analyzes the main indicators of export and import of Georgian agri-food products; identifies positive and negative trends under the pandemic; based on the revealed problemssubstantiates the need formodernization ofin agri-food sector. It is argued that low production and productivity rates of food products negatively impact achieving the optimal export-to-import ratio; therefore, it leads toincreaseddependence on other countries andreduces the level of food security. Research objectives. The objective of the research is to identify the key challenges based on the analysis of export-import indicators of Georgian food products during the pandemic period and develop recommendations on the possibilities of post-pandemic perspectives. Research methods. Various theoretical and methodological research tools are used in the paper; in particular, a desk research is carried out on the research topic; endogenous and exogenous variables affecting export and import are determined through factor analysis; SWOT and PESTEL analysis are used to identify development opportunities; selection and groupingof data, identification of similarities and differences is carried outby using analysis, synthesis, sampling, induction and other methods; a qualitative study is conducted based on a survey of agri-food experts and exporters for clarifying the factors that impede export-import flows. Contributions. The factors that impede the export of Georgian agri-food products in the short run under COVID-19 pandemic are identified. These are: reduced income of farmers, delays in the supply of raw materials and supplies to the agri-food sectorfrom the neighboring industries, as well as in harvesting, processing, marketing, transportation, and other sectors; increased indirect costs, etc. The factors that impede the export in the long run areas follows loss of public confidence in the industry, risk of losing positions in traditional markets, etc. Conclusions are made on the problems in the field of export and import of Georgian agri-food products in terms of the pandemic; development opportunities are evaluated based on the analysis of the agri-food sector potential. Recommendations on the development opportunities for export and import of Georgian agri-food products in the post-pandemic period are proposed.Keywords: agri-food products, export, and import, pandemic period, hindering factor, development potential
Procedia PDF Downloads 1422011 The Impact of HKUST-1 Metal-Organic Framework Pretreatment on Dynamic Acetaldehyde Adsorption
Authors: M. François, L. Sigot, C. Vallières
Abstract:
Volatile Organic Compounds (VOCs) are a real health issue, particularly in domestic indoor environments. Among these VOCs, acetaldehyde is frequently monitored in dwellings ‘air, especially due to smoking and spontaneous emissions from the new wall and soil coverings. It is responsible for respiratory complaints and is classified as possibly carcinogenic to humans. Adsorption processes are commonly used to remove VOCs from the air. Metal-Organic Frameworks (MOFs) are a promising type of material for high adsorption performance. These hybrid porous materials composed of metal inorganic clusters and organic ligands are interesting thanks to their high porosity and surface area. The HKUST-1 (also referred to as MOF-199) is a copper-based MOF with the formula [Cu₃(BTC)₂(H₂O)₃]n (BTC = benzene-1,3,5-tricarboxylate) and exhibits unsaturated metal sites that can be attractive sites for adsorption. The objective of this study is to investigate the impact of HKUST-1 pretreatment on acetaldehyde adsorption. Thus, dynamic adsorption experiments were conducted in 1 cm diameter glass column packed with 2 cm MOF bed height. MOF were sieved to 630 µm - 1 mm. The feed gas (Co = 460 ppmv ± 5 ppmv) was obtained by diluting a 1000 ppmv acetaldehyde gas cylinder in air. The gas flow rate was set to 0.7 L/min (to guarantee a suitable linear velocity). Acetaldehyde concentration was monitored online by gas chromatography coupled with a flame ionization detector (GC-FID). Breakthrough curves must allow to understand the interactions between the MOF and the pollutant as well as the impact of the HKUST-1 humidity in the adsorption process. Consequently, different MOF water content conditions were tested, from a dry material with 7 % water content (dark blue color) to water saturated state with approximately 35 % water content (turquoise color). The rough material – without any pretreatment – containing 30 % water serves as a reference. First, conclusions can be drawn from the comparison of the evolution of the ratio of the column outlet concentration (C) on the inlet concentration (Co) as a function of time for different HKUST-1 pretreatments. The shape of the breakthrough curves is significantly different. The saturation of the rough material is slower (20 h to reach saturation) than that of the dried material (2 h). However, the breakthrough time defined for C/Co = 10 % appears earlier in the case of the rough material (0.75 h) compared to the dried HKUST-1 (1.4 h). Another notable difference is the shape of the curve before the breakthrough at 10 %. An abrupt increase of the outlet concentration is observed for the material with the lower humidity in comparison to a smooth increase for the rough material. Thus, the water content plays a significant role on the breakthrough kinetics. This study aims to understand what can explain the shape of the breakthrough curves associated to the pretreatments of HKUST-1 and which mechanisms take place in the adsorption process between the MOF, the pollutant, and the water.Keywords: acetaldehyde, dynamic adsorption, HKUST-1, pretreatment influence
Procedia PDF Downloads 2372010 Importance of Positive Education: A Focus on the Importance of Character Strength Building
Authors: Hajra Hussain
Abstract:
Positive education, the inclusion of social, emotional and intellectual skills across a curriculum, is fundamental to the optimal functioning of young people in any society because it combines the best teaching practices with the principles of positive psychology. While learning institutions foster academic skills, little attention is being paid to the identification and development of character strengths and their integration into teaching. There is an increasing recognition of the important role education plays in equipping today’s youth with 21st century social skills. For youth to succeed in this highly competitive environment, there is a need for positive education that is focused on character strengths such as the growth of social, emotional and intellectual skills that promote the flourishing of well-rounded individuals. Character strength programs and awareness are a necessity if the human capital within a region is to be competitive, productive and happy. The Counselling & Wellbeing Centre at Amity University Dubai has consistently implemented Character Strength awareness workshops and has found that such workshops have increased student life satisfaction due to individual awareness of signature strengths. A positive education/positive psychology framework with its key focus on the development of character strengths can be fundamental to individual's confidence and self-awareness; thus allowing both optimum flourishing and functioning.Keywords: positive psychology, positive education, strengths, youth, happiness
Procedia PDF Downloads 2722009 Victimization in Schizophrenia: A Cross-Sectional Prospective Study
Authors: Mehmet Budak, Mehmet Fatih Ustundag
Abstract:
Objectives: In this research, we studied the extent of exposure to physical violence and committing violence in patients diagnosed with schizophrenia in comparison to a control group consisting of patients with psychiatric diseases other than psychotic and mood disorders. Method: Between August 2019 and October 2019, a total of 100 hospitalized patients diagnosed with schizophrenia (clinically in remission, Brief Psychiatric Rate Scale < 30) were sequentially studied while undergoing inpatient treatment at Erenkoy Mental Health Training and Research Hospital. From the outpatient clinic, 50 patients with psychiatric disorders other than psychotic disorders or mood disorders were consecutively included as a control group. All participants were evaluated by the sociodemographic data that also questions the history of violence, physical examination, bilateral comparative hand, and forearm anterior-posterior and lateral radiography. Results: While 59% of patients with schizophrenia and 28% of the control group stated that they were exposed to physical violence at least once in a lifetime (p < 0,001); a defensive wound or fracture was detected in 29% of patients with schizophrenia and 2% of the control group (p < 0.001). On the other hand, 61% of patients diagnosed with schizophrenia, and 32% of the control group expressed that they committed physical violence at least once in a lifetime (p: 0.001). A self-destructive wound or fracture was detected in 53% of the patients with schizophrenia and 24% of the control group (p: 0,001). In the schizophrenia group, the rate of committing physical violence is higher in those with substance use compared to those without substance use (p:0.049). Also, wounds and bone fractures (boxer’s fracture) resulting from self-injury are more common in schizophrenia patients with substance use (p:0,002). In the schizophrenia group, defensive wounds and parry fractures (which are located in the hand, forearm, and arm usually occur as a result of a trial to shield the face against an aggressive attack and are known to be the indicators of interpersonal violence) are higher in those with substance use compared to those who do not (p:0,007). Conclusion: This study shows that exposure to physical violence and the rate of violence is higher in patients with schizophrenia compared to the control group. It is observed that schizophrenia patients who are stigmatized as being aggressive are more exposed to violence. Substance use in schizophrenia patients increases both exposure to physical violence and the use of physical violence. Physical examination and anamnesis that question violence are important tools to reveal the exposure to violence in patients. Furthermore, some specific bone fractures and wounds could be used to detect victimization even after plenty of time passes.Keywords: fracture, physical violence, schizophrenia, substance use
Procedia PDF Downloads 1692008 Survey of Related Field for Artificial Intelligence Window Development
Authors: Young Kwon Yang, Bo Rang Park, Hyo Eun Lee, Tea Won Kim, Eun Ji Choi, Jin Chul Park
Abstract:
To develop an artificial intelligence based automatic ventilation system, recent research trends were analyzed and analyzed. This research method is as follows. In the field of architecture and window technology, the use of artificial intelligence, the existing study of machine learning model and the theoretical review of the literature were carried out. This paper collected journals such as Journal of Energy and Buildings, Journal of Renewable and Sustainable Energy Reviews, and articles published on Web-sites. The following keywords were searched for articles from 2000 to 2016. We searched for the above keywords mainly in the title, keyword, and abstract. As a result, the global artificial intelligence market is expected to grow at a CAGR of 14.0% from USD127bn in 2015 to USD165bn in 2017. Start-up investments in artificial intelligence increased from the US $ 45 million in 2010 to the US $ 310 million in 2015, and the number of investments increased from 6 to 54. Although AI is making efforts to advance to advanced countries, the level of technology is still in its infant stage. Especially in the field of architecture, artificial intelligence (AI) is very rare. Based on the data of this study, it is expected that the application of artificial intelligence and the application of architectural field will be revitalized through the activation of artificial intelligence in the field of architecture and window.Keywords: artificial intelligence, window, fine dust, thermal comfort, ventilation system
Procedia PDF Downloads 2752007 The GRIT Study: Getting Global Rare Disease Insights Through Technology Study
Authors: Aneal Khan, Elleine Allapitan, Desmond Koo, Katherine-Ann Piedalue, Shaneel Pathak, Utkarsh Subnis
Abstract:
Background: Disease management of metabolic, genetic disorders is long-term and can be cumbersome to patients and caregivers. Patient-Reported Outcome Measures (PROMs) have been a useful tool in capturing patient perspectives to help enhance treatment compliance and engagement with health care providers, reduce utilization of emergency services, and increase satisfaction with their treatment choices. Currently, however, PROMs are collected during infrequent and decontextualized clinic visits, which makes translation of patient experiences challenging over time. The GRIT study aims to evaluate a digital health journal application called Zamplo that provides a personalized health diary to record self-reported health outcomes accurately and efficiently in patients with metabolic, genetic disorders. Methods: This is a randomized controlled trial (RCT) (1:1) that assesses the efficacy of Zamplo to increase patient activation (primary outcome), improve healthcare satisfaction and confidence to manage medications (secondary outcomes), and reduce costs to the healthcare system (exploratory). Using standardized online surveys, assessments will be collected at baseline, 1 month, 3 months, 6 months, and 12 months. Outcomes will be compared between patients who were given access to the application versus those with no access. Results: Seventy-seven patients were recruited as of November 30, 2021. Recruitment for the study commenced in November 2020 with a target of n=150 patients. The accrual rate was 50% from those eligible and invited for the study, with the majority of patients having Fabry disease (n=48) and the remaining having Pompe disease and mitochondrial disease. Real-time clinical responses, such as pain, are being measured and correlated to disease-modifying therapies, supportive treatments like pain medications, and lifestyle interventions. Engagement with the application, along with compliance metrics of surveys and journal entries, are being analyzed. An interim analysis of the engagement data along with preliminary findings from this pilot RCT, and qualitative patient feedback will be presented. Conclusions: The digital self-care journal provides a unique approach to disease management, allowing patients direct access to their progress and actively participating in their care. Findings from the study can help serve the virtual care needs of patients with metabolic, genetic disorders in North America and the world over.Keywords: eHealth, mobile health, rare disease, patient outcomes, quality of life (QoL), pain, Fabry disease, Pompe disease
Procedia PDF Downloads 1512006 Relevance Feedback within CBIR Systems
Authors: Mawloud Mosbah, Bachir Boucheham
Abstract:
We present here the results for a comparative study of some techniques, available in the literature, related to the relevance feedback mechanism in the case of a short-term learning. Only one method among those considered here is belonging to the data mining field which is the K-Nearest Neighbours Algorithm (KNN) while the rest of the methods is related purely to the information retrieval field and they fall under the purview of the following three major axes: Shifting query, Feature Weighting and the optimization of the parameters of similarity metric. As a contribution, and in addition to the comparative purpose, we propose a new version of the KNN algorithm referred to as an incremental KNN which is distinct from the original version in the sense that besides the influence of the seeds, the rate of the actual target image is influenced also by the images already rated. The results presented here have been obtained after experiments conducted on the Wang database for one iteration and utilizing colour moments on the RGB space. This compact descriptor, Colour Moments, is adequate for the efficiency purposes needed in the case of interactive systems. The results obtained allow us to claim that the proposed algorithm proves good results; it even outperforms a wide range of techniques available in the literature.Keywords: CBIR, category search, relevance feedback, query point movement, standard Rocchio’s formula, adaptive shifting query, feature weighting, original KNN, incremental KNN
Procedia PDF Downloads 2802005 Artificial Intelligence-Based Chest X-Ray Test of COVID-19 Patients
Authors: Dhurgham Al-Karawi, Nisreen Polus, Shakir Al-Zaidi, Sabah Jassim
Abstract:
The management of COVID-19 patients based on chest imaging is emerging as an essential tool for evaluating the spread of the pandemic which has gripped the global community. It has already been used to monitor the situation of COVID-19 patients who have issues in respiratory status. There has been increase to use chest imaging for medical triage of patients who are showing moderate-severe clinical COVID-19 features, this is due to the fast dispersal of the pandemic to all continents and communities. This article demonstrates the development of machine learning techniques for the test of COVID-19 patients using Chest X-Ray (CXR) images in nearly real-time, to distinguish the COVID-19 infection with a significantly high level of accuracy. The testing performance has covered a combination of different datasets of CXR images of positive COVID-19 patients, patients with viral and bacterial infections, also, people with a clear chest. The proposed AI scheme successfully distinguishes CXR scans of COVID-19 infected patients from CXR scans of viral and bacterial based pneumonia as well as normal cases with an average accuracy of 94.43%, sensitivity 95%, and specificity 93.86%. Predicted decisions would be supported by visual evidence to help clinicians speed up the initial assessment process of new suspected cases, especially in a resource-constrained environment.Keywords: COVID-19, chest x-ray scan, artificial intelligence, texture analysis, local binary pattern transform, Gabor filter
Procedia PDF Downloads 1452004 English Language Performance and Emotional Intelligence of Senior High School Students of Pit-Laboratory High School
Authors: Sonia Arradaza-Pajaron
Abstract:
English as a second language is widely spoken in the Philippines. In fact, it is used as a medium of instruction in school. However, Filipino students, in general, are still not proficient in the use of the language. Since it plays a very crucial role in the learning and comprehension of some subjects in the school where important key concepts and in English, it is imperative to look into other factors that may affect such concern. This study may post an answer to the said concern because it aimed to investigate the association between a psychological construct, known as emotional intelligence, and the English language performance of the 55 senior high school students. The study utilized a descriptive correlational method to determine the significant relationship of variables with preliminary data, like GPA in English subject as baseline information of their performance. Results revealed that the respondents had an average GPA in the English subject; however, improving from their first-year high school level to the fourth year. Their English performance resulted to an above average level with a notable higher performance in the speaking test than in the written. Further, a strong correlation between English performance and emotional intelligence was manifested. Based on the findings, it can be concluded that students with higher emotional intelligence their English language performance is expected to be the same. It can be said further that when students’ emotional intelligence (EI components) is facilitated well through various classroom activities, a better English performance would just be spontaneous among them.Keywords: English language performance, emotional intelligence, EI components, emotional literacy, emotional quotient competence, emotional quotient outcomes, values and beliefs
Procedia PDF Downloads 4492003 Using the Delphi Method to Determine the Change in Knowledge and Skills of Professional Quantity Surveyors as a Result of COVID-19 Pandemic
Authors: Veronica Kah Jo Wong, Yoke Mui Lim, Nurul Sakina Mokhtar Azizi
Abstract:
The impact on the construction industry in Malaysia is unprecedented, as the government implemented a lockdown to restrict human movement in an effort to stop COVID-19 from spreading. Quantity surveyor (QS), as one of the key construction professionals, found that the working practices and environments for quantity surveyors today have changed due to the current pandemic. The QS profession must deal not only with changes in project issues but also with a different working environment in which most people are required to work from home and follow the standard operating procedures. Therefore, QS should be flexible, agile, and have the capability to adapt to the current working practices by strengthening their competencies. Adapting to the current and recovering environment of COVID-19 may result in the emergence of a new competence such as skill and knowledge for QS in order to maintain the quality of performance in the delivery of their professional services. Thus, this paper's objective is to investigate the changes in knowledge and skills in quantity surveyors. The data will be collected through interviews with registered professional QS to gain better insights that are specific in this industry, and the findings will be verified using the Delphi method. It is hoped that new knowledge and skill will be found from the study and will not only contribute to the betterment of the professional QS but also in guiding higher learning institutions to incorporate the new competencies into their curriculum.Keywords: competency, COVID-19 pandemic, Malaysia, quantity surveying
Procedia PDF Downloads 1292002 The Effects of a Mathematics Remedial Program on Mathematics Success and Achievement among Beginning Mathematics Major Students: A Regression Discontinuity Analysis
Authors: Kuixi Du, Thomas J. Lipscomb
Abstract:
The proficiency in Mathematics skills is fundamental to success in the STEM disciplines. In the US, beginning college students who are placed in remedial/developmental Mathematics courses frequently struggle to achieve academic success. Therefore, Mathematics remediation in college has become an important concern, and providing Mathematics remediation is a prevalent way to help the students who may not be fully prepared for college-level courses. Programs vary, however, and the effectiveness of a particular remedial Mathematics program must be empirically demonstrated. The purpose of this study was to apply the sharp regression discontinuity (RD) technique to determine the effectiveness of the Jack Leaps Summer (JLS) Mathematic remediation program in supporting improved Mathematics learning outcomes among newly admitted Mathematics students in the South Dakota State University. The researchers studied the newly admitted Fall 2019 cohort of Mathematics majors (n=423). The results indicated that students whose pretest score was lower than the cut-off point and who were assigned to the JLS program experienced significantly higher scores on the post-test (Math 101 final score). Based on these results, there is evidence that the JLS program is effective in meeting its primary objective.Keywords: causal inference, mathematisc remedial program evaluation, quasi-experimental research design, regression discontinuity design, cohort studies
Procedia PDF Downloads 972001 Ocean Planner: A Web-Based Decision Aid to Design Measures to Best Mitigate Underwater Noise
Authors: Thomas Folegot, Arnaud Levaufre, Léna Bourven, Nicolas Kermagoret, Alexis Caillard, Roger Gallou
Abstract:
Concern for negative impacts of anthropogenic noise on the ocean’s ecosystems has increased over the recent decades. This concern leads to a similar increased willingness to regulate noise-generating activities, of which shipping is one of the most significant. Dealing with ship noise requires not only knowledge about the noise from individual ships, but also how the ship noise is distributed in time and space within the habitats of concern. Marine mammals, but also fish, sea turtles, larvae and invertebrates are mostly dependent on the sounds they use to hunt, feed, avoid predators, during reproduction to socialize and communicate, or to defend a territory. In the marine environment, sight is only useful up to a few tens of meters, whereas sound can propagate over hundreds or even thousands of kilometers. Directive 2008/56/EC of the European Parliament and of the Council of June 17, 2008 called the Marine Strategy Framework Directive (MSFD) require the Member States of the European Union to take the necessary measures to reduce the impacts of maritime activities to achieve and maintain a good environmental status of the marine environment. The Ocean-Planner is a web-based platform that provides to regulators, managers of protected or sensitive areas, etc. with a decision support tool that enable to anticipate and quantify the effectiveness of management measures in terms of reduction or modification the distribution of underwater noise, in response to Descriptor 11 of the MSFD and to the Marine Spatial Planning Directive. Based on the operational sound modelling tool Quonops Online Service, Ocean-Planner allows the user via an intuitive geographical interface to define management measures at local (Marine Protected Area, Natura 2000 sites, Harbors, etc.) or global (Particularly Sensitive Sea Area) scales, seasonal (regulation over a period of time) or permanent, partial (focused to some maritime activities) or complete (all maritime activities), etc. Speed limit, exclusion area, traffic separation scheme (TSS), and vessel sound level limitation are among the measures supported be the tool. Ocean Planner help to decide on the most effective measure to apply to maintain or restore the biodiversity and the functioning of the ecosystems of the coastal seabed, maintain a good state of conservation of sensitive areas and maintain or restore the populations of marine species.Keywords: underwater noise, marine biodiversity, marine spatial planning, mitigation measures, prediction
Procedia PDF Downloads 1222000 Intelligent Building as a Pragmatic Approach towards Achieving a Sustainable Environment
Authors: Zahra Hamedani
Abstract:
Many wonderful technological developments in recent years has opened up the possibility of using intelligent buildings for a number of important applications, ranging from minimizing resource usage as well as increasing building efficiency to maximizing comfort, adaption to inhabitants and responsiveness to environmental changes. The concept of an intelligent building refers to the highly embedded, interactive environment within which by exploiting the use of artificial intelligence provides the ability to know its configuration, anticipate the optimum dynamic response to prevailing environmental stimuli, and actuate the appropriate physical reaction to provide comfort and efficiency. This paper contains a general identification of the intelligence paradigm and its impacts on the architecture arena, that with examining the performance of artificial intelligence, a mechanism to analyze and finally for decision-making to control the environment will be described. This mechanism would be a hierarchy of the rational agents which includes decision-making, information, communication and physical layers. This multi-agent system relies upon machine learning techniques for automated discovery, prediction and decision-making. Then, the application of this mechanism regarding adaptation and responsiveness of intelligent building will be provided in two scales of environmental and user. Finally, we review the identifications of sustainability and evaluate the potentials of intelligent building systems in the creation of sustainable architecture and environment.Keywords: artificial intelligence, intelligent building, responsiveness, adaption, sustainability
Procedia PDF Downloads 4101999 Alternate Approaches to Quality Measurement: An Exploratory Study in Differentiation of “Quality” Characteristics in Services and Supports
Authors: Caitlin Bailey, Marian Frattarola Saulino, Beth Steinberg
Abstract:
Today, virtually all programs offered to people with intellectual and developmental disabilities tout themselves as person-centered, community-based and inclusive, yet there is a vast range in type and quality of services that use these similar descriptors. The issue is exacerbated by the fields’ measurement practices around quality, inclusion, independent living, choice and person-centered outcomes. For instance, community inclusion for people with disabilities is often measured by the number of times person steps into his or her community. These measurement approaches set standards for quality too low so that agencies supporting group home residents to go bowling every week can report the same outcomes as an agency that supports one person to join a book club that includes people based on their literary interests rather than disability labels. Ultimately, lack of delineation in measurement contributes to the confusion between face value “quality” and true quality services and supports for many people with disabilities and their families. This exploratory study adopts alternative approaches to quality measurement including co-production methods and systems theoretical framework in order to identify the factors that 1) lead to high-quality supports and, 2) differentiate high-quality services. Project researchers have partnered with community practitioners who are all committed to providing quality services and supports but vary in the degree to which they are actually able to provide them. The study includes two parts; first, an online survey distributed to more than 500 agencies that have demonstrated commitment to providing high-quality services; and second, four in-depth case studies with agencies in three United States and Israel providing a variety of supports to children and adults with disabilities. Results from both the survey and in-depth case studies were thematically analyzed and coded. Results show that there are specific factors that differentiate service quality; however meaningful quality measurement practices also require that researchers explore the contextual factors that contribute to quality. These not only include direct services and interactions, but also characteristics of service users, their environments as well as organizations providing services, such as management and funding structures, culture and leadership. Findings from this study challenge researchers, policy makers and practitioners to examine existing quality service standards and measurements and to adopt alternate methodologies and solutions to differentiate and scale up evidence-based quality practices so that all people with disabilities have access to services that support them to live, work, and enjoy where and with whom they choose.Keywords: co-production, inclusion, independent living, quality measurement, quality supports
Procedia PDF Downloads 3991998 Translation and Validation of the Pain Resilience Scale in a French Population Suffering from Chronic Pain
Authors: Angeliki Gkiouzeli, Christine Rotonda, Elise Eby, Claire Touchet, Marie-Jo Brennstuhl, Cyril Tarquinio
Abstract:
Resilience is a psychological concept of possible relevance to the development and maintenance of chronic pain (CP). It refers to the ability of individuals to maintain reasonably healthy levels of physical and psychological functioning when exposed to an isolated and potentially highly disruptive event. Extensive research in recent years has supported the importance of this concept in the CP literature. Increased levels of resilience were associated with lower levels of perceived pain intensity and better mental health outcomes in adults with persistent pain. The ongoing project seeks to include the concept of pain-specific resilience in the French literature in order to provide more appropriate measures for assessing and understanding the complexities of CP in the near future. To the best of our knowledge, there is currently no validated version of the pain-specific resilience measure, the Pain Resilience scale (PRS), for French-speaking populations. Therefore, the present work aims to address this gap, firstly by performing a linguistic and cultural translation of the scale into French and secondly by studying the internal validity and reliability of the PRS for French CP populations. The forward-translation-back translation methodology was used to achieve as perfect a cultural and linguistic translation as possible according to the recommendations of the COSMIN (Consensus-based Standards for the selection of health Measurement Instruments) group, and an online survey is currently conducted among a representative sample of the French population suffering from CP. To date, the survey has involved one hundred respondents, with a total target of around three hundred participants at its completion. We further seek to study the metric properties of the French version of the PRS, ''L’Echelle de Résilience à la Douleur spécifique pour les Douleurs Chroniques'' (ERD-DC), in French patients suffering from CP, assessing the level of pain resilience in the context of CP. Finally, we will explore the relationship between the level of pain resilience in the context of CP and other variables of interest commonly assessed in pain research and treatment (i.e., general resilience, self-efficacy, pain catastrophising, and quality of life). This study will provide an overview of the methodology used to address our research objectives. We will also present for the first time the main findings and further discuss the validity of the scale in the field of CP research and pain management. We hope that this tool will provide a better understanding of how CP-specific resilience processes can influence the development and maintenance of this disease. This could ultimately result in better treatment strategies specifically tailored to individual needs, thus leading to reduced healthcare costs and improved patient well-being.Keywords: chronic pain, pain measure, pain resilience, questionnaire adaptation
Procedia PDF Downloads 901997 D-Lysine Assisted 1-Ethyl-3-(3-Dimethylaminopropyl)Carbodiimide / N-Hydroxy Succinimide Initiated Crosslinked Collagen Scaffold with Controlled Structural and Surface Properties
Authors: G. Krishnamoorthy, S. Anandhakumar
Abstract:
The effect of D-Lysine (D-Lys) on collagen with 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide(EDC)/N-hydroxysuccinimide(NHS) initiated cross linking using experimental and modelling tools are evaluated. The results of the Coll-D-Lys-EDC/NHS scaffold also indicate an increase in the tensile strength (TS), percentage of elongation (% E), denaturation temperature (Td), and decrease the decomposition rate compared to L-Lys-EDC/NHS. Scanning electron microscopic (SEM) and atomic force microscopic (AFM) analyses revealed a well ordered with properly oriented and well-aligned structure of scaffold. The D-Lys stabilizes the scaffold against degradation by collagenase than L-Lys. The cell assay showed more than 98% fibroblast viability (NIH3T3) and improved cell adhesions, protein adsorption after 72h of culture when compared with native scaffold. Cell attachment after 74h was robust, with cytoskeletal analysis showing that the attached cells were aligned along the fibers assuming a spindle-shape appearance, despite, gene expression analyses revealed no apparent alterations in mRNA levels, although cell proliferation was not adversely affected. D-Lysine (D-Lys) plays a pivotal role in the self-assembly and conformation of collagen fibrils. The D-Lys assisted EDC/NHS initiated cross-linking induces the formation of an carboxamide by the activation of the side chain -COOH group, followed by aminolysis of the O-iso acylurea intermediates by the -NH2 groups are directly joined via an isopeptides bond. This leads to the formation of intra- and inter-helical cross links. Modeling studies indicated that D-Lys bind with collagen-like peptide (CLP) through multiple H-bonding and hydrophobic interactions. Orientational changes in collagenase on CLP-D-Lys are observed which may decrease its accessibility to degradation and stabilize CLP against the action of the former. D-Lys has lowest binding energy and improved fibrillar-assembly and staggered alignment without the undesired structural stiffness and aggregations. The proteolytic machinery is not well equipped to deal with Coll-D-Lys than Coll-L-Lys scaffold. The information derived from the present study could help in designing collagenolytically stable heterochiral collagen based scaffold for biomedical applications.Keywords: collagen, collagenase, collagen like peptide, D-lysine, heterochiral collagen scaffold
Procedia PDF Downloads 3911996 Support Provided by Teachers to Learners With Special Education Needs in Selected Amathole West District Primary Schools South Africa
Authors: Toyin Mary Adewumi, Cina Mosito
Abstract:
Part of enabling learners with special education needs (SEN) to succeed is providing them with adequate support. Support is all activities in a school that enhance its capacity to respond to diversity by making learning contexts and lessons accessible to all learners. The paper reports findings of support provided by teachers to learners with SEN and the pockets of good practice found in the support provided by teachers to these learners in schools in the Amathole West District, Eastern Cape. A purposeful sample, comprising eight teachers, eight principals in eight schools, including one provincial and two district education officials, was selected. Thematic analysis was used for analyzing data gathered through semi-structured interviews. The results established that despite the challenges such as lack of qualifications and training in special education needs, learners with SEN received varied support from teachers which include extra exercises, extra time, special attention during break times or after school hours and homework. The study reveals pockets of good practice in some selected primary schools particularly in the poverty-stricken locations in the Amathole West District. This paper recommends adequate training for teachers for the support of learners with SEN.Keywords: good practice, learner, special education needs, inclusion, support
Procedia PDF Downloads 1341995 The Conceptual and Procedural Knowledge of Rational Numbers in Primary School Teachers
Authors: R. M. Kashim
Abstract:
The study investigates the conceptual and procedural knowledge of rational number in primary school teachers, specifically, the primary school teachers level of conceptual knowledge about rational number and the primary school teachers level of procedural knowledge about rational numbers. The study was carried out in Bauchi metropolis in Bauchi state of Nigeria. A Conceptual and Procedural Knowledge Test was used as the instrument for data collection, 54 mathematics teachers in Bauchi primary schools were involved in the study. The collections were analyzed using mean and standard deviation. The findings revealed that the primary school mathematics teachers in Bauchi metropolis posses a low level of conceptual knowledge of rational number and also possess a high level of Procedural knowledge of rational number. It is therefore recommended that to be effective, teachers teaching mathematics most posses a deep understanding of both conceptual and procedural knowledge. That way the most knowledgeable teachers in mathematics deliver highly effective rational number instructions. Teachers should not ignore the mathematical concept aspect of rational number teaching. This is because only the procedural aspect of Rational number is highlighted during instructions; this often leads to rote - learning of procedures without understanding the meanings. It is necessary for teachers to learn rational numbers teaching method that focus on both conceptual knowledge and procedural knowledge teaching.Keywords: conceptual knowledge, primary school teachers, procedural knowledge, rational numbers
Procedia PDF Downloads 3281994 Geographic Information System-Based Map for Best Suitable Place for Cultivating Permanent Trees in South-Lebanon
Authors: Allaw Kamel, Al-Chami Leila
Abstract:
It is important to reduce the human influence on natural resources by identifying an appropriate land use. Moreover, it is essential to carry out the scientific land evaluation. Such kind of analysis allows identifying the main factors of agricultural production and enables decision makers to develop crop management in order to increase the land capability. The key is to match the type and intensity of land use with its natural capability. Therefore; in order to benefit from these areas and invest them to obtain good agricultural production, they must be organized and managed in full. Lebanon suffers from the unorganized agricultural use. We take south Lebanon as a study area, it is the most fertile ground and has a variety of crops. The study aims to identify and locate the most suitable area to cultivate thirteen type of permanent trees which are: apples, avocados, stone fruits in coastal regions and stone fruits in mountain regions, bananas, citrus, loquats, figs, pistachios, mangoes, olives, pomegranates, and grapes. Several geographical factors are taken as criterion for selection of the best location to cultivate. Soil, rainfall, PH, temperature, and elevation are main inputs to create the final map. Input data of each factor is managed, visualized and analyzed using Geographic Information System (GIS). Management GIS tools are implemented to produce input maps capable of identifying suitable areas related to each index. The combination of the different indices map generates the final output map of the suitable place to get the best permanent tree productivity. The output map is reclassified into three suitability classes: low, moderate, and high suitability. Results show different locations suitable for different kinds of trees. Results also reflect the importance of GIS in helping decision makers finding a most suitable location for every tree to get more productivity and a variety in crops.Keywords: agricultural production, crop management, geographical factors, Geographic Information System, GIS, land capability, permanent trees, suitable location
Procedia PDF Downloads 1411993 Delineation of Green Infrastructure Buffer Areas with a Simulated Annealing: Consideration of Ecosystem Services Trade-Offs in the Objective Function
Authors: Andres Manuel Garcia Lamparte, Rocio Losada Iglesias, Marcos BoullóN Magan, David Miranda Barros
Abstract:
The biodiversity strategy of the European Union for 2030, mentions climate change as one of the key factors for biodiversity loss and considers green infrastructure as one of the solutions to this problem. In this line, the European Commission has developed a green infrastructure strategy which commits members states to consider green infrastructure in their territorial planning. This green infrastructure is aimed at granting the provision of a wide number of ecosystem services to support biodiversity and human well-being by countering the effects of climate change. Yet, there are not too many tools available to delimit green infrastructure. The available ones consider the potential of the territory to provide ecosystem services. However, these methods usually aggregate several maps of ecosystem services potential without considering possible trade-offs. This can lead to excluding areas with a high potential for providing ecosystem services which have many trade-offs with other ecosystem services. In order to tackle this problem, a methodology is proposed to consider ecosystem services trade-offs in the objective function of a simulated annealing algorithm aimed at delimiting green infrastructure multifunctional buffer areas. To this end, the provision potential maps of the regulating ecosystem services considered to delimit the multifunctional buffer areas are clustered in groups, so that ecosystem services that create trade-offs are excluded in each group. The normalized provision potential maps of the ecosystem services in each group are added to obtain a potential map per group which is normalized again. Then the potential maps for each group are combined in a raster map that shows the highest provision potential value in each cell. The combined map is then used in the objective function of the simulated annealing algorithm. The algorithm is run both using the proposed methodology and considering the ecosystem services individually. The results are analyzed with spatial statistics and landscape metrics to check the number of ecosystem services that the delimited areas produce, as well as their regularity and compactness. It has been observed that the proposed methodology increases the number of ecosystem services produced by delimited areas, improving their multifunctionality and increasing their effectiveness in preventing climate change impacts.Keywords: ecosystem services trade-offs, green infrastructure delineation, multifunctional buffer areas, climate change
Procedia PDF Downloads 1741992 Enhancing Patch Time Series Transformer with Wavelet Transform for Improved Stock Prediction
Authors: Cheng-yu Hsieh, Bo Zhang, Ahmed Hambaba
Abstract:
Stock market prediction has long been an area of interest for both expert analysts and investors, driven by its complexity and the noisy, volatile conditions it operates under. This research examines the efficacy of combining the Patch Time Series Transformer (PatchTST) with wavelet transforms, specifically focusing on Haar and Daubechies wavelets, in forecasting the adjusted closing price of the S&P 500 index for the following day. By comparing the performance of the augmented PatchTST models with traditional predictive models such as Recurrent Neural Networks (RNNs), Convolutional Neural Networks (CNNs), Long Short-Term Memory (LSTM) networks, and Transformers, this study highlights significant enhancements in prediction accuracy. The integration of the Daubechies wavelet with PatchTST notably excels, surpassing other configurations and conventional models in terms of Mean Absolute Error (MAE) and Mean Squared Error (MSE). The success of the PatchTST model paired with Daubechies wavelet is attributed to its superior capability in extracting detailed signal information and eliminating irrelevant noise, thus proving to be an effective approach for financial time series forecasting.Keywords: deep learning, financial forecasting, stock market prediction, patch time series transformer, wavelet transform
Procedia PDF Downloads 501991 Non-Targeted Adversarial Object Detection Attack: Fast Gradient Sign Method
Authors: Bandar Alahmadi, Manohar Mareboyana, Lethia Jackson
Abstract:
Today, there are many applications that are using computer vision models, such as face recognition, image classification, and object detection. The accuracy of these models is very important for the performance of these applications. One challenge that facing the computer vision models is the adversarial examples attack. In computer vision, the adversarial example is an image that is intentionally designed to cause the machine learning model to misclassify it. One of very well-known method that is used to attack the Convolution Neural Network (CNN) is Fast Gradient Sign Method (FGSM). The goal of this method is to find the perturbation that can fool the CNN using the gradient of the cost function of CNN. In this paper, we introduce a novel model that can attack Regional-Convolution Neural Network (R-CNN) that use FGSM. We first extract the regions that are detected by R-CNN, and then we resize these regions into the size of regular images. Then, we find the best perturbation of the regions that can fool CNN using FGSM. Next, we add the resulted perturbation to the attacked region to get a new region image that looks similar to the original image to human eyes. Finally, we placed the regions back to the original image and test the R-CNN with the attacked images. Our model could drop the accuracy of the R-CNN when we tested with Pascal VOC 2012 dataset.Keywords: adversarial examples, attack, computer vision, image processing
Procedia PDF Downloads 1931990 JaCoText: A Pretrained Model for Java Code-Text Generation
Authors: Jessica Lopez Espejel, Mahaman Sanoussi Yahaya Alassan, Walid Dahhane, El Hassane Ettifouri
Abstract:
Pretrained transformer-based models have shown high performance in natural language generation tasks. However, a new wave of interest has surged: automatic programming language code generation. This task consists of translating natural language instructions to a source code. Despite the fact that well-known pre-trained models on language generation have achieved good performance in learning programming languages, effort is still needed in automatic code generation. In this paper, we introduce JaCoText, a model based on Transformer neural network. It aims to generate java source code from natural language text. JaCoText leverages the advantages of both natural language and code generation models. More specifically, we study some findings from state of the art and use them to (1) initialize our model from powerful pre-trained models, (2) explore additional pretraining on our java dataset, (3) lead experiments combining the unimodal and bimodal data in training, and (4) scale the input and output length during the fine-tuning of the model. Conducted experiments on CONCODE dataset show that JaCoText achieves new state-of-the-art results.Keywords: java code generation, natural language processing, sequence-to-sequence models, transformer neural networks
Procedia PDF Downloads 284