Search results for: shape properties
779 Neural Networks Underlying the Generation of Neural Sequences in the HVC
Authors: Zeina Bou Diab, Arij Daou
Abstract:
The neural mechanisms of sequential behaviors are intensively studied, with songbirds a focus for learned vocal production. We are studying the premotor nucleus HVC at a nexus of multiple pathways contributing to song learning and production. The HVC consists of multiple classes of neuronal populations, each has its own cellular, electrophysiological and functional properties. During singing, a large subset of motor cortex analog-projecting HVCRA neurons emit a single 6-10 ms burst of spikes at the same time during each rendition of song, a large subset of basal ganglia-projecting HVCX neurons fire 1 to 4 bursts that are similarly time locked to vocalizations, while HVCINT neurons fire tonically at average high frequency throughout song with prominent modulations whose timing in relation to song remains unresolved. This opens the opportunity to define models relating explicit HVC circuitry to how these neurons work cooperatively to control learning and singing. We developed conductance-based Hodgkin-Huxley models for the three classes of HVC neurons (based on the ion channels previously identified from in vitro recordings) and connected them in several physiologically realistic networks (based on the known synaptic connectivity and specific glutaminergic and gabaergic pharmacology) via different architecture patterning scenarios with the aim to replicate the in vivo firing patterning behaviors. We are able, through these networks, to reproduce the in vivo behavior of each class of HVC neurons, as shown by the experimental recordings. The different network architectures developed highlight different mechanisms that might be contributing to the propagation of sequential neural activity (continuous or punctate) in the HVC and to the distinctive firing patterns that each class exhibits during singing. Examples of such possible mechanisms include: 1) post-inhibitory rebound in HVCX and their population patterns during singing, 2) different subclasses of HVCINT interacting via inhibitory-inhibitory loops, 3) mono-synaptic HVCX to HVCRA excitatory connectivity, and 4) structured many-to-one inhibitory synapses from interneurons to projection neurons, and others. Replication is only a preliminary step that must be followed by model prediction and testing.Keywords: computational modeling, neural networks, temporal neural sequences, ionic currents, songbird
Procedia PDF Downloads 72778 A One-Dimensional Model for Contraction in Burn Wounds: A Sensitivity Analysis and a Feasibility Study
Authors: Ginger Egberts, Fred Vermolen, Paul van Zuijlen
Abstract:
One of the common complications in post-burn scars is contractions. Depending on the extent of contraction and the wound dimensions, the contracture can cause a limited range-of-motion of joints. A one-dimensional morphoelastic continuum hypothesis-based model describing post-burn scar contractions is considered. The beauty of the one-dimensional model is the speed; hence it quickly yields new results and, therefore, insight. This model describes the movement of the skin and the development of the strain present. Besides these mechanical components, the model also contains chemical components that play a major role in the wound healing process. These components are fibroblasts, myofibroblasts, the so-called signaling molecules, and collagen. The dermal layer is modeled as an isotropic morphoelastic solid, and pulling forces are generated by myofibroblasts. The solution to the model equations is approximated by the finite-element method using linear basis functions. One of the major challenges in biomechanical modeling is the estimation of parameter values. Therefore, this study provides a comprehensive description of skin mechanical parameter values and a sensitivity analysis. Further, since skin mechanical properties change with aging, it is important that the model is feasible for predicting the development of contraction in burn patients of different ages, and hence this study provides a feasibility study. The variability in the solutions is caused by varying the values for some parameters simultaneously over the domain of computation, for which the results of the sensitivity analysis are used. The sensitivity analysis shows that the most sensitive parameters are the equilibrium concentration of collagen, the apoptosis rate of fibroblasts and myofibroblasts, and the secretion rate of signaling molecules. This suggests that most of the variability in the evolution of contraction in burns in patients of different ages might be caused mostly by the decreasing equilibrium of collagen concentration. As expected, the feasibility study shows this model can be used to show distinct extents of contractions in burns in patients of different ages. Nevertheless, contraction formation in children differs from contraction formation in adults because of the growth. This factor has not been incorporated in the model yet, and therefore the feasibility results for children differ from what is seen in the clinic.Keywords: biomechanics, burns, feasibility, fibroblasts, morphoelasticity, sensitivity analysis, skin mechanics, wound contraction
Procedia PDF Downloads 160777 Seismic Assessment of a Pre-Cast Recycled Concrete Block Arch System
Authors: Amaia Martinez Martinez, Martin Turek, Carlos Ventura, Jay Drew
Abstract:
This study aims to assess the seismic performance of arch and dome structural systems made from easy to assemble precast blocks of recycled concrete. These systems have been developed by Lock Block Ltd. Company from Vancouver, Canada, as an extension of their currently used retaining wall system. The characterization of the seismic behavior of these structures is performed by a combination of experimental static and dynamic testing, and analytical modeling. For the experimental testing, several tilt tests, as well as a program of shake table testing were undertaken using small scale arch models. A suite of earthquakes with different characteristics from important past events are chosen and scaled properly for the dynamic testing. Shake table testing applying the ground motions in just one direction (in the weak direction of the arch) and in the three directions were conducted and compared. The models were tested with increasing intensity until collapse occurred; which determines the failure level for each earthquake. Since the failure intensity varied with type of earthquake, a sensitivity analysis of the different parameters was performed, being impulses the dominant factor. For all cases, the arches exhibited the typical four-hinge failure mechanism, which was also shown in the analytical model. Experimental testing was also performed reinforcing the arches using a steel band over the structures anchored at both ends of the arch. The models were tested with different pretension levels. The bands were instrumented with strain gauges to measure the force produced by the shaking. These forces were used to develop engineering guidelines for the design of the reinforcement needed for these systems. In addition, an analytical discrete element model was created using 3DEC software. The blocks were designed as rigid blocks, assigning all the properties to the joints including also the contribution of the interlocking shear key between blocks. The model is calibrated to the experimental static tests and validated with the obtained results from the dynamic tests. Then the model can be used to scale up the results to the full scale structure and expanding it to different configurations and boundary conditions.Keywords: arch, discrete element model, seismic assessment, shake-table testing
Procedia PDF Downloads 207776 Acid Soil Amelioration Using Coal Bio-Briquette Ash and Waste Concrete in China
Abstract:
The decrease in agricultural production due to soil deterioration has been an urgent task. Soil acidification is a potentially serious land degradation issue and it will have a major impact on agricultural productivity and sustainable farming systems. In China, acid soil is mainly distributed in the southern part, the decrease in agricultural production and heavy metal contamination are serious problems. In addition, not only environmental and health problems due to the exhaust gas such as mainly sulfur dioxide (SO₂) but also the generation of a huge amount of construction and demolition wastes with the accelerating urbanization has emerged as a social problem in China. Therefore, the need for the recycling and reuse of both desulfurization waste and waste concrete is very urgent and necessary. So we have investigated the effectiveness as acid soil amendments of both coal bio-briquette ash and waste concrete. In this paper, acid soil (AS1) in Nanjing (pH=6.0, EC=1.6dSm-1) and acid soil (AS2) in Guangzhou (pH=4.1, EC=0.2dSm-1) were investigated in soil amelioration test. Soil amendments were three coal bio-briquette ashes (BBA1, BBA2 and BBA3), the waste cement fine powders (CFP) ( < 200µm (particle diameter)), waste concrete particles (WCP) ( < 4.75mm ( < 0.6mm, 0.6-1.0mm, 1.0-2.0mm, 2.0-4.75mm)), and six mixtures with two coal bio-briquette ashes (BBA2 and BBA3), CFP, WCP( < 0.6mm) and WCP(2.0-4.75mm). In acid soil amelioration test, the three BBAs, CFP and various WCPs based on exchangeable calcium concentration were added to two acid soils. The application rates were from 0 wt% to 3.5 wt% in AS1 test and from 0 wt% to 6.0 wt% in AS2 test, respectively. Soil chemical properties (pH, EC, exchangeable and soluble ions (Na, Ca, Mg, K)) before and after mixing with soil amendments were measured. In addition, Al toxicity and the balance of salts (CaO, K₂O, MgO) in soil after amelioration was evaluated. The order of pH and exchangeable Ca concentration that is effective for acid soil amelioration was WCP(0.6mm) > CFP > WCP(2.0-4.25mm) > BB1 > BB2 > BB3. In all AS 1 and AS 2 amelioration tests using three BBAs, the pH and EC increased slightly with the increase of application rate and reached to the appropriate value range of both pH and EC in BBA1 only. Because BBA1 was higher value in pH and exchangeable Ca. After that, soil pH and EC with the increase in the application rate of BBA2, BBA3 and by using CFP, WC( < 0.6mm), WC(2.0-4.75mm) as soil amendment reached to each appropriate value range, respectively. In addition, the mixture amendments with BBA2, BBA3 CFP, WC( < 0.6mm), and WC(2.0-4.75mm) could ameliorate at a smaller amount of application rate in case of BBA only. And the exchangeable Al concentration decreased drastically with the increase in pH due to soil amelioration and was under the standard value. Lastly, the heavy metal (Cd, As, Se, Ni, Cr, Pb, Mo, B, Cu, Zn) contents in new soil amendments were under control standard values for agricultural use in China. Thus we could propose a new acid soil amelioration method using coal bio-briquette ash and waste concrete in China.Keywords: acid soil, coal bio-briquette ash, soil amelioration, waste concrete
Procedia PDF Downloads 184775 Beneficial Effects of Whey Protein Concentrate in Venous Thrombosis
Authors: Anna Tokajuk, Agnieszka Zakrzeska, Ewa Chabielska, Halina Car
Abstract:
Whey is a by-product generated mainly in the production of cheese and casein. Powder forms of whey are used widely in the food industry as well as a high-protein food for infants, for convalescents, by athletes and especially by bodybuilders to increase muscle mass during exercise. Whey protein concentrate-80 (WPC-80) is a source of bioactive peptides with beneficial effects on the cardiovascular system. It is known that whey proteins health beneficial properties include antidiabetic, blood pressure lowering, improving cardiovascular system function, antibacterial, antiviral and other effects. To study its influence on the development of thrombosis, venous thrombosis model was performed according to the protocol featured by Reyers with modification by Chabielska and Gromotowicz. Male Wistar-Crl: WI (Han) rats from researched groups were supplemented with two doses of WPC-80 (0.3 or 0.5 g/kg) for 7, 14 or 21 days and after these periods, one-hour venous thrombosis model was performed. Control group received 0.9 % NaCl solution and was sham operated. The statistical significance of results was computed by Mann – Whitney’s test. We observed that thrombus weight was decreased in animals obtaining WPC-8080 and that was statistically significant in 14 and 21-day supplemented groups. Blood count parameters did not differ significantly in rats with and without thrombosis induction whether they were fed with WPC-80 or not. Moreover, the number of platelets (PLT) was within the normal range in each group. The examined coagulation parameters in rats of the control groups were within normal limits. After WPC-80 supplementation there was the tendency to prolonged activated partial thromboplastin time (aPTT), but in comparison, the results did not turn out significant. In animals that received WPC-80 0.3 g·kg-1 for 21 days with and without induced thrombosis, prothrombin time (PT) and an international normalized ratio (INR) was somewhat decreased, remaining within the normal range, but the nature and significance of this observation are beyond the framework of the current study. Additionally, fibrinogen and thrombin time (TT) did not differ significantly between groups. Therefore the exact effect of WPC-80 on coagulation system is still elusive and requires further thorough research including mechanisms of action. Determining the potential clinical application of WPC-80 requires the selection of the optimal dose and duration of supplementation.Keywords: antithrombotic, rats, venous thrombosis, WPC-80
Procedia PDF Downloads 119774 Maneuvering Modelling of a One-Degree-of-Freedom Articulated Vehicle: Modeling and Experimental Verification
Authors: Mauricio E. Cruz, Ilse Cervantes, Manuel J. Fabela
Abstract:
The evaluation of the maneuverability of road vehicles is generally carried out through the use of specialized computer programs due to the advantages they offer compared to the experimental method. These programs are based on purely geometric considerations of the characteristics of the vehicles, such as main dimensions, the location of the axles, and points of articulation, without considering parameters such as weight distribution and magnitude, tire properties, etc. In this paper, we address the problem of maneuverability in a semi-trailer truck to navigate urban streets, maneuvering yards, and parking lots, using the Ackerman principle to propose a kinematic model that, through geometric considerations, it is possible to determine the space necessary to maneuver safely. The model was experimentally validated by conducting maneuverability tests with an articulated vehicle. The measurements were made through a GPS that allows us to know the position, trajectory, and speed of the vehicle, an inertial motion unit (IMU) that allows measuring the accelerations and angular speeds in the semi-trailer, and an instrumented steering wheel that allows measuring the angle of rotation of the flywheel, the angular velocity and the torque applied to the flywheel. To obtain the steering angle of the tires, a parameterization of the complete travel of the steering wheel and its equivalent in the tires was carried out. For the tests, 3 different angles were selected, and 3 turns were made for each angle in both directions of rotation (left and right turn). The results showed that the proposed kinematic model achieved 95% accuracy for speeds below 5 km / h. The experiments revealed that that tighter maneuvers increased significantly the space required and that the vehicle maneuverability was limited by the size of the semi-trailer. The maneuverability was also tested as a function of the vehicle load and 3 different load levels we used: light, medium, and heavy. It was found that the internal turning radii also increased with the load, probably due to the changes in the tires' adhesion to the pavement since heavier loads had larger contact wheel-road surfaces. The load was found as an important factor affecting the precision of the model (up to 30%), and therefore I should be considered. The model obtained is expected to be used to improve maneuverability through a robust control system.Keywords: articuled vehicle, experimental validation, kinematic model, maneuverability, semi-trailer truck
Procedia PDF Downloads 117773 Optimization of Chitosan Membrane Production Parameters for Zinc Ion Adsorption
Authors: Peter O. Osifo, Hein W. J. P. Neomagus, Hein V. D. Merwe
Abstract:
Chitosan materials from different sources of raw materials were characterized in order to determine optimal preparation conditions and parameters for membrane production. The membrane parameters such as molecular weight, viscosity, and degree of deacetylation were used to evaluate the membrane performance for zinc ion adsorption. The molecular weight of the chitosan was found to influence the viscosity of the chitosan/acetic acid solution. An increase in molecular weight (60000-400000 kg.kmol-1) of the chitosan resulted in a higher viscosity (0.05-0.65 Pa.s) of the chitosan/acetic acid solution. The effect of the degree of deacetylation on the viscosity is not significant. The effect of the membrane production parameters (chitosan- and acetic acid concentration) on the viscosity is mainly determined by the chitosan concentration. For higher chitosan concentrations, a membrane with a better adsorption capacity was obtained. The membrane adsorption capacity increases from 20-130 mg Zn per gram of wet membrane for an increase in chitosan concentration from 2-7 mass %. Chitosan concentrations below 2 and above 7.5 mass % produced membranes that lack good mechanical properties. The optimum manufacturing conditions including chitosan concentration, acetic acid concentration, sodium hydroxide concentration and crosslinking for chitosan membranes within the workable range were defined by the criteria of adsorption capacity and flux. The adsorption increases (50-120 mg.g-1) as the acetic acid concentration increases (1-7 mass %). The sodium hydroxide concentration seems not to have a large effect on the adsorption characteristics of the membrane however, a maximum was reached at a concentration of 5 mass %. The adsorption capacity per gram of wet membrane strongly increases with the chitosan concentration in the acetic acid solution but remains constant per gram of dry chitosan. The optimum solution for membrane production consists of 7 mass % chitosan and 4 mass % acetic acid in de-ionised water. The sodium hydroxide concentration for phase inversion is at optimum at 5 mass %. The optimum cross-linking time was determined to be 6 hours (Percentage crosslinking of 18%). As the cross-linking time increases the adsorption of the zinc decreases (150-50 mg.g-1) in the time range of 0 to 12 hours. After a crosslinking time of 12 hours, the adsorption capacity remains constant. This trend is comparable to the effect on flux through the membrane. The flux decreases (10-3 L.m-2.hr-1) with an increase in crosslinking time range of 0 to 12 hours and reaches a constant minimum after 12 hours.Keywords: chitosan, membrane, waste water, heavy metal ions, adsorption
Procedia PDF Downloads 388772 The High Precision of Magnetic Detection with Microwave Modulation in Solid Spin Assembly of NV Centres in Diamond
Authors: Zongmin Ma, Shaowen Zhang, Yueping Fu, Jun Tang, Yunbo Shi, Jun Liu
Abstract:
Solid-state quantum sensors are attracting wide interest because of their high sensitivity at room temperature. In particular, spin properties of nitrogen–vacancy (NV) color centres in diamond make them outstanding sensors of magnetic fields, electric fields and temperature under ambient conditions. Much of the work on NV magnetic sensing has been done so as to achieve the smallest volume, high sensitivity of NV ensemble-based magnetometry using micro-cavity, light-trapping diamond waveguide (LTDW), nano-cantilevers combined with MEMS (Micro-Electronic-Mechanical System) techniques. Recently, frequency-modulated microwaves with continuous optical excitation method have been proposed to achieve high sensitivity of 6 μT/√Hz using individual NV centres at nanoscale. In this research, we built-up an experiment to measure static magnetic field through continuous wave optical excitation with frequency-modulated microwaves method under continuous illumination with green pump light at 532 nm, and bulk diamond sample with a high density of NV centers (1 ppm). The output of the confocal microscopy was collected by an objective (NA = 0.7) and detected by a high sensitivity photodetector. We design uniform and efficient excitation of the micro strip antenna, which is coupled well with the spin ensembles at 2.87 GHz for zero-field splitting of the NV centers. Output of the PD signal was sent to an LIA (Lock-In Amplifier) modulated signal, generated by the microwave source by IQ mixer. The detected signal is received by the photodetector, and the reference signal enters the lock-in amplifier to realize the open-loop detection of the NV atomic magnetometer. We can plot ODMR spectra under continuous-wave (CW) microwave. Due to the high sensitivity of the lock-in amplifier, the minimum detectable value of the voltage can be measured, and the minimum detectable frequency can be made by the minimum and slope of the voltage. The magnetic field sensitivity can be derived from η = δB√T corresponds to a 10 nT minimum detectable shift in the magnetic field. Further, frequency analysis of the noise in the system indicates that at 10Hz the sensitivity less than 10 nT/√Hz.Keywords: nitrogen-vacancy (NV) centers, frequency-modulated microwaves, magnetic field sensitivity, noise density
Procedia PDF Downloads 440771 Quantum Chemical Investigation of Hydrogen Isotopes Adsorption on Metal Ion Functionalized Linde Type A and Faujasite Type Zeolites
Authors: Gayathri Devi V, Aravamudan Kannan, Amit Sircar
Abstract:
In the inner fuel cycle system of a nuclear fusion reactor, the Hydrogen Isotopes Removal System (HIRS) plays a pivoted role. It enables the effective extraction of the hydrogen isotopes from the breeder purge gas which helps to maintain the tritium breeding ratio and sustain the fusion reaction. One of the components of HIRS, Cryogenic Molecular Sieve Bed (CMSB) columns with zeolites adsorbents are considered for the physisorption of hydrogen isotopes at 1 bar and 77 K. Even though zeolites have good thermal stability and reduced activation properties making them ideal for use in nuclear reactor applications, their modest capacity for hydrogen isotopes adsorption is a cause of concern. In order to enhance the adsorbent capacity in an informed manner, it is helpful to understand the adsorption phenomena at the quantum electronic structure level. Physicochemical modifications of the adsorbent material enhances the adsorption capacity through the incorporation of active sites. This may be accomplished through the incorporation of suitable metal ions in the zeolite framework. In this work, molecular hydrogen isotopes adsorption on the active sites of functionalized zeolites are investigated in detail using Density Functional Theory (DFT) study. This involves the utilization of hybrid Generalized Gradient Approximation (GGA) with dispersion correction to account for the exchange and correlation functional of DFT. The electronic energies, adsorption enthalpy, adsorption free energy, Highest Occupied Molecular Orbital (HOMO), Lowest Unoccupied Molecular Orbital (LUMO) energies are computed on the stable 8T zeolite clusters as well as the periodic structure functionalized with different active sites. The characteristics of the dihydrogen bond with the active metal sites and the isotopic effects are also studied in detail. Validation studies with DFT will also be presented for adsorption of hydrogen on metal ion functionalized zeolites. The ab-inito screening analysis gave insights regarding the mechanism of hydrogen interaction with the zeolites under study and also the effect of the metal ion on adsorption. This detailed study provides guidelines for selection of the appropriate metal ions that may be incorporated in the zeolites framework for effective adsorption of hydrogen isotopes in the HIRS.Keywords: adsorption enthalpy, functionalized zeolites, hydrogen isotopes, nuclear fusion, physisorption
Procedia PDF Downloads 181770 Eco-Friendly Silicone/Graphene-Based Nanocomposites as Superhydrophobic Antifouling Coatings
Authors: Mohamed S. Selim, Nesreen A. Fatthallah, Shimaa A. Higazy, Hekmat R. Madian, Sherif A. El-Safty, Mohamed A. Shenashen
Abstract:
After the 2003 prohibition on employing TBT-based antifouling coatings, polysiloxane antifouling nano-coatings have gained in popularity as environmentally friendly and cost-effective replacements. A series of non-toxic polydimethylsiloxane nanocomposites filled with nanosheets of graphene oxide (GO) decorated with magnetite nanospheres (GO-Fe₃O₄ nanospheres) were developed and cured via a catalytic hydrosilation method. Various GO-Fe₃O₄ hybrid concentrations were mixed with the silicone resin via solution casting technique to evaluate the structure–property connection. To generate GO nanosheets, a modified Hummers method was applied. A simple co-precipitation method was used to make spherical magnetite particles under inert nitrogen. Hybrid GO-Fe₃O₄ composite fillers were developed by a simple ultrasonication method. Superhydrophobic PDMS/GO-Fe₃O₄ nanocomposite surface with a micro/nano-roughness, reduced surface-free energy (SFE), high fouling release (FR) efficiency was achieved. The physical, mechanical, and anticorrosive features of the virgin and GO-Fe₃O₄ filled nanocomposites were investigated. The synergistic effects of GO-Fe₃O4 hybrid's well-dispersion on the water-repellency and surface topological roughness of the PDMS/GO-Fe₃O₄ nanopaints were extensively studied. The addition of the GO-Fe₃O₄ hybrid fillers till 1 wt.% could increase the coating's water contact angle (158°±2°), minimize its SFE to 12.06 mN/m, develop outstanding micro/nano-roughness, and improve its bulk mechanical and anticorrosion properties. Several microorganisms were employed for examining the fouling-resistance of the coated specimens for 1 month. Silicone coatings filled with 1 wt.% GO-Fe₃O₄ nanofiller showed the least biodegradability% among all the tested microorganisms. Whereas GO-Fe₃O4 with 5 wt.% nanofiller possessed the highest biodegradability% potency by all the microorganisms. We successfully developed non-toxic and low cost nanostructured FR composite coating with high antifouling-resistance, reproducible superhydrophobic character, and enhanced service-time for maritime navigation.Keywords: silicone antifouling, environmentally friendly, nanocomposites, nanofillers, fouling repellency, hydrophobicity
Procedia PDF Downloads 115769 Experimental Analysis of the Influence of Water Mass Flow Rate on the Performance of a CO2 Direct-Expansion Solar Assisted Heat Pump
Authors: Sabrina N. Rabelo, Tiago de F. Paulino, Willian M. Duarte, Samer Sawalha, Luiz Machado
Abstract:
Energy use is one of the main indicators for the economic and social development of a country, reflecting directly in the quality of life of the population. The expansion of energy use together with the depletion of fossil resources and the poor efficiency of energy systems have led many countries in recent years to invest in renewable energy sources. In this context, solar-assisted heat pump has become very important in energy industry, since it can transfer heat energy from the sun to water or another absorbing source. The direct-expansion solar assisted heat pump (DX-SAHP) water heater system operates by receiving solar energy incident in a solar collector, which serves as an evaporator in a refrigeration cycle, and the energy reject by the condenser is used for water heating. In this paper, a DX-SAHP using carbon dioxide as refrigerant (R744) was assembled, and the influence of the variation of the water mass flow rate in the system was analyzed. The parameters such as high pressure, water outlet temperature, gas cooler outlet temperature, evaporator temperature, and the coefficient of performance were studied. The mainly components used to assemble the heat pump were a reciprocating compressor, a gas cooler which is a countercurrent concentric tube heat exchanger, a needle-valve, and an evaporator that is a copper bare flat plate solar collector designed to capture direct and diffuse radiation. Routines were developed in the LabVIEW and CoolProp through MATLAB software’s, respectively, to collect data and calculate the thermodynamics properties. The range of coefficient of performance measured was from 3.2 to 5.34. It was noticed that, with the higher water mass flow rate, the water outlet temperature decreased, and consequently, the coefficient of performance of the system increases since the heat transfer in the gas cooler is higher. In addition, the high pressure of the system and the CO2 gas cooler outlet temperature decreased. The heat pump using carbon dioxide as a refrigerant, especially operating with solar radiation has been proven to be a renewable source in an efficient system for heating residential water compared to electrical heaters reaching temperatures between 40 °C and 80 °C.Keywords: water mass flow rate, R-744, heat pump, solar evaporator, water heater
Procedia PDF Downloads 176768 Synthesis and Characterization of AFe₂O₄ (A=CA, Co, CU) Nano-Spinels: Application to Hydrogen Photochemical Production under Visible Light Irradiation
Authors: H. Medjadji, A. Boulahouache, N. Salhi, A. Boudjemaa, M. Trari
Abstract:
Hydrogen from renewable sources, such as solar, is referred to as green hydrogen. The splitting water process using semiconductors, such as photocatalysts, has attracted significant attention due to its potential application for solving the energy crisis and environmental pollution. Spinel ferrites of the MF₂O₄ type have shown broad interest in diverse energy conversion processes, including fuel cells and photo electrocatalytic water splitting. This work focuses on preparing nano-spinels based on iron AFe₂O₄ (A= Ca, Co, and Cu) as photocatalysts using the nitrate method. These materials were characterized both physically and optically and subsequently tested for hydrogen generation under visible light irradiation. Various techniques were used to investigate the properties of the materials, including TGA-DT, X-ray diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), UV-visible spectroscopy, Scanning Electron Microscopy with Energy Dispersive X-ray Spectroscopy (SEM-EDX) and X-ray Photoelectron Spectroscopy (XPS) was also undertaken. XRD analysis confirmed the formation of pure phases at 850°C, with crystalline sizes of 31 nm for CaFe₂O₄, 27 nm for CoFe₂O₄, and 40 nm for CuFe₂O₄. The energy gaps, calculated from recorded diffuse reflection data, are 1.85 eV for CaFe₂O₄, 1.27 eV for CoFe₂O₄, and 1.64 eV for CuFe₂O₄. SEM micrographs showed homogeneous grains with uniform shapes and medium porosity in all samples. EDX elemental analysis determined the absence of any contaminating elements, highlighting the high purity of the prepared materials via the nitrate route. XPS spectra revealed the presence of Fe3+ and O in all samples. Additionally, XPS analysis revealed the presence of Ca²⁺, Co²⁺, and Cu²⁺ on the surface of CaFe₂O₄ and CoFe₂O₄ spinels, respectively. The photocatalytic activity was successfully evaluated by measuring H₂ evolution through the water-splitting process. The best performance was achieved with CaFe₂O₄ in a neutral medium (pH ~ 7), yielding 189 µmol at an optimal temperature of ~50°C. The highest hydrogen production rates for CoFe₂O₄ and CuFe₂O₄ were obtained at pH ~ 12 with release rates of 65 and 85 µmol, respectively, under visible light irradiation at the same optimal temperature. Various conditions were investigated including the pH of the solution, the hole sensors utilization and recyclability.Keywords: hydrogen, MFe₂O₄, nitrate route, spinel ferrite
Procedia PDF Downloads 40767 Evaluation of Mito-Uncoupler Induced Hyper Metabolic and Aggressive Phenotype in Glioma Cells
Authors: Yogesh Rai, Saurabh Singh, Sanjay Pandey, Dhananjay K. Sah, B. G. Roy, B. S. Dwarakanath, Anant N. Bhatt
Abstract:
One of the most common signatures of highly malignant gliomas is their capacity to metabolize more glucose to lactic acid than normal brain tissues, even under normoxic conditions (Warburg effect), indicating that aerobic glycolysis is constitutively upregulated through stable genetic or epigenetic changes. However, oxidative phosphorylation (OxPhos) is also required to maintain the mitochondrial membrane potential for tumor cell survival. In the process of tumorigenesis, tumor cells during fastest growth rate exhibit both high glycolytic and high OxPhos. Therefore, metabolically reprogrammed cancer cells with combination of both aerobic glycolysis and altered OxPhos develop a robust metabolic phenotype, which confers a selective growth advantage. In our study, we grew the high glycolytic BMG-1 (glioma) cells with continuous exposure of mitochondrial uncoupler 2, 4, dinitro phenol (DNP) for 10 passages to obtain a phenotype of high glycolysis with enhanced altered OxPhos. We found that OxPhos modified BMG (OPMBMG) cells has similar growth rate and cell cycle distribution but high mitochondrial mass and functional enzymatic activity than parental cells. In in-vitro studies, OPMBMG cells showed enhanced invasion, proliferation and migration properties. Moreover, it also showed enhanced angiogenesis in matrigel plug assay. Xenografted tumors from OPMBMG cells showed reduced latent period, faster growth rate and nearly five folds reduction in the tumor take in nude mice compared to BMG-1 cells, suggesting that robust metabolic phenotype facilitates tumor formation and growth. OPMBMG cells which were found radio-resistant, showed enhanced radio-sensitization by 2-DG as compared to the parental BMG-1 cells. This study suggests that metabolic reprogramming in cancer cells enhances the potential of migration, invasion and proliferation. It also strengthens the cancer cells to escape the death processes, conferring resistance to therapeutic modalities. Our data also suggest that combining metabolic inhibitors like 2-DG with conventional therapeutic modalities can sensitize such metabolically aggressive cancer cells more than the therapies alone.Keywords: 2-DG, BMG, DNP, OPM-BMG
Procedia PDF Downloads 226766 Synthesis and Characterization of LiCoO2 Cathode Material by Sol-Gel Method
Authors: Nur Azilina Abdul Aziz, Tuti Katrina Abdullah, Ahmad Azmin Mohamad
Abstract:
Lithium-transition metals and some of their oxides, such as LiCoO2, LiMn2O2, LiFePO4, and LiNiO2 have been used as cathode materials in high performance lithium-ion rechargeable batteries. Among the cathode materials, LiCoO2 has potential to been widely used as a lithium-ion battery because of its layered crystalline structure, good capacity, high cell voltage, high specific energy density, high power rate, low self-discharge, and excellent cycle life. This cathode material has been widely used in commercial lithium-ion batteries due to its low irreversible capacity loss and good cycling performance. However, there are several problems that interfere with the production of material that has good electrochemical properties, including the crystallinity, the average particle size and particle size distribution. In recent years, synthesis of nanoparticles has been intensively investigated. Powders prepared by the traditional solid-state reaction have a large particle size and broad size distribution. On the other hand, solution method can reduce the particle size to nanometer range and control the particle size distribution. In this study, LiCoO2 was synthesized using the sol–gel preparation method, which Lithium acetate and Cobalt acetate were used as reactants. The stoichiometric amounts of the reactants were dissolved in deionized water. The solutions were stirred for 30 hours using magnetic stirrer, followed by heating at 80°C under vigorous stirring until a viscous gel was formed. The as-formed gel was calcined at 700°C for 7 h under a room atmosphere. The structural and morphological analysis of LiCoO2 was characterized using X-ray diffraction and Scanning electron microscopy. The diffraction pattern of material can be indexed based on the α-NaFeO2 structure. The clear splitting of the hexagonal doublet of (006)/(102) and (108)/(110) in this patterns indicates materials are formed in a well-ordered hexagonal structure. No impurity phase can be seen in this range probably due to the homogeneous mixing of the cations in the precursor. Furthermore, SEM micrograph of the LiCoO2 shows the particle size distribution is almost uniform while particle size is between 0.3-0.5 microns. In conclusion, LiCoO2 powder was successfully synthesized using the sol–gel method. LiCoO2 showed a hexagonal crystal structure. The sample has been prepared clearly indicate the pure phase of LiCoO2. Meanwhile, the morphology of the sample showed that the particle size and size distribution of particles is almost uniform.Keywords: cathode material, LiCoO2, lithium-ion rechargeable batteries, Sol-Gel method
Procedia PDF Downloads 373765 Formulation of Value Added Beff Meatballs with the Addition of Pomegranate (Punica granatum) Extract as a Source of Natural Antioxident
Authors: M. A. Hashem, I. Jahan
Abstract:
The experiment was conducted to find out the effect of different levels of Pomegranate (Punica granatum) extract and synthetic antioxidant BHA (Beta Hydroxyl Anisole) on fresh and preserved beef meatballs in order to make functional food. For this purpose, ground beef samples were divided into five treatment groups. They were treated as control group, 0.1% synthetic antioxidant group, 0.1%, 0.2% and 0.3% pomegranate extract group as T1, T2, T3, T4 and T5 respectively. Proximate analysis, sensory tests (color, flavor, tenderness, juiciness, overall acceptability), cooking loss, pH value, free fatty acids (FFA), thiobarbituric acid values (TBARS), peroxide value (POV) and microbiological examination were determined in order to evaluate the effect of pomegranate extract as natural antioxidant and antimicrobial activities compared to BHA (Beta Hydroxyl Anisole) at first day before freezing and for maintaining meatballs qualities on the shelf life of beef meat balls stored for 60 days under frozen condition. Freezing temperature was -20˚C. Days of intervals of experiment were on 0, 15th, 30th and 60th days. Dry matter content of all the treatment groups differ significantly (p<0.05). On the contrary, DM content increased significantly (p<0.05) with the advancement of different days of intervals. CP content of all the treatments were increased significantly (p<0.05) among the different treatment groups. EE and Ash content were decreased significantly (p<0.05) at different treatment levels. FFA values, TBARS, POV were decreased significantly (p<0.05) at different treatment levels. Color, odor, tenderness, juiciness, overall acceptability decreased significantly (p<0.05) at different days of intervals. Raw PH, cooked pH were increased at different treatment levels significantly (p<0.05). The cooking loss (%) at different treatment levels were differ significantly (p<0.05). TVC (logCFU/g), TCC (logCFU/g) and TYMC (logCFU/g) was decreased significantly (p<0.05) at different treatment levels and at different days of intervals comparison to control. Considering CP, tenderness, juiciness, overall acceptability, cooking loss, FFA, POV, TBARS value and microbial analysis it can be concluded that pomegranate extract at 0.1%, 0.2% and 0.3% can be used instead of synthetic antioxidant BHA in beef meatballs. On the basis of sensory evaluation, nutrient quality, physicochemical properties, biochemical analysis and microbial analysis 0.3% Pomegranate extract can be recommended for formulation of value added beef meatball enriched with natural antioxidant.Keywords: antioxidant, pomegranate, BHA, value added meat products
Procedia PDF Downloads 246764 An Experimental Study of Scalar Implicature Processing in Chinese
Authors: Liu Si, Wang Chunmei, Liu Huangmei
Abstract:
A prominent component of the semantic versus pragmatic debate, scalar implicature (SI) has been gaining great attention ever since it was proposed by Horn. The constant debate is between the structural and pragmatic approach. The former claims that generation of SI is costless, automatic, and dependent mostly on the structural properties of sentences, whereas the latter advocates both that such generation is largely dependent upon context, and that the process is costly. Many experiments, among which Katsos’s text comprehension experiments are influential, have been designed and conducted in order to verify their views, but the results are not conclusive. Besides, most of the experiments were conducted in English language materials. Katsos conducted one off-line and three on-line text comprehension experiments, in which the previous shortcomings were addressed on a certain extent and the conclusion was in favor of the pragmatic approach. We intend to test the results of Katsos’s experiment in Chinese scalar implicature. Four experiments in both off-line and on-line conditions to examine the generation and response time of SI in Chinese "yixie" (some) and "quanbu (dou)" (all) will be conducted in order to find out whether the structural or the pragmatic approach could be sustained. The study mainly aims to answer the following questions: (1) Can SI be generated in the upper- and lower-bound contexts as Katsos confirmed when Chinese language materials are used in the experiment? (2) Can SI be first generated, then cancelled as default view claimed or can it not be generated in a neutral context when Chinese language materials are used in the experiment? (3) Is SI generation costless or costly in terms of processing resources? (4) In line with the SI generation process, what conclusion can be made about the cognitive processing model of language meaning? Is it a parallel model or a linear model? Or is it a dynamic and hierarchical model? According to previous theoretical debates and experimental conflicts, presumptions could be made that SI, in Chinese language, might be generated in the upper-bound contexts. Besides, the response time might be faster in upper-bound than that found in lower-bound context. SI generation in neutral context might be the slowest. At last, a conclusion would be made that the processing model of SI could not be verified by either absolute structural or pragmatic approaches. It is, rather, a dynamic and complex processing mechanism, in which the interaction of language forms, ad hoc context, mental context, background knowledge, speakers’ interaction, etc. are involved.Keywords: cognitive linguistics, pragmatics, scalar implicture, experimental study, Chinese language
Procedia PDF Downloads 363763 NFTs, between Opportunities and Absence of Legislation: A Study on the Effect of the Rulings of the OpenSea Case
Authors: Andrea Ando
Abstract:
The development of the blockchain has been a major innovation in the technology field. It opened the door to the creation of novel cyberassets and currencies. In more recent times, the non-fungible tokens have started to be at the centre of media attention. Their popularity has been increasing since 2021, and they represent the latest in the world of distributed ledger technologies and cryptocurrencies. It seems more and more likely that NFTs will play a more important role in our online interactions. They are indeed increasingly taking part in the arts and technology sectors. Their impact on society and the market is still very difficult to define, but it is very likely that there will be a turning point in the world of digital assets. There are some examples of their peculiar behaviour and effect in our contemporary tech-market: the former CEO of the famous social media site Twitter sold an NFT of his first tweet for around £2,1 million ($2,5 million), or the National Basketball Association has created a platform to sale unique moment and memorabilia from the history of basketball through the non-fungible token technology. Their growth, as imaginable, paved the way for civil disputes, mostly regarding their position under the current intellectual property law in each jurisdiction. In April 2022, the High Court of England and Wales ruled in the OpenSea case that non-fungible tokens can be considered properties. The judge, indeed, concluded that the cryptoasset had all the indicia of property under common law (National Provincial Bank v. Ainsworth). The research has demonstrated that the ruling of the High Court is not providing enough answers to the dilemma of whether minting an NFT is a violation or not of intellectual property and/or property rights. Indeed, if, on the one hand, the technology follows the framework set by the case law (e.g., the 4 criteria of Ainsworth), on the other hand, the question that arises is what is effectively protected and owned by both the creator and the purchaser. Then the question that arises is whether a person has ownership of the cryptographed code, that it is indeed definable, identifiable, intangible, distinct, and has a degree of permanence, or what is attached to this block-chain, hence even a physical object or piece of art. Indeed, a simple code would not have any financial importance if it were not attached to something that is widely recognised as valuable. This was demonstrated first through the analysis of the expectations of intellectual property law. Then, after having laid the foundation, the paper examined the OpenSea case, and finally, it analysed whether the expectations were met or not.Keywords: technology, technology law, digital law, cryptoassets, NFTs, NFT, property law, intellectual property law, copyright law
Procedia PDF Downloads 90762 Syngas From Polypropylene Gasification in a Fluidized Bed
Authors: Sergio Rapagnà, Alessandro Antonio Papa, Armando Vitale, Andre Di Carlo
Abstract:
In recent years the world population has enormously increased the use of plastic products for their living needs, in particular for transporting and storing consumer goods such as food and beverage. Plastics are widely used in the automotive industry, in construction of electronic equipment, clothing and home furnishings. Over the last 70 years, the annual production of plastic products has increased from 2 million tons to 460 million tons. About 20% of the last quantity is mismanaged as waste. The consequence of this mismanagement is the release of plastic waste into the terrestrial and marine environments which represents a danger to human health and the ecosystem. Recycling all plastics is difficult because they are often made with mixtures of polymers that are incompatible with each other and contain different additives. The products obtained are always of lower quality and after two/three recycling cycles they must be eliminated either by thermal treatment to produce heat or disposed of in landfill. An alternative to these current solutions is to obtain a mixture of gases rich in H₂, CO and CO₂ suitable for being profitably used for the production of chemicals with consequent savings fossil sources. Obtaining a hydrogen-rich syngas can be achieved by gasification process using the fluidized bed reactor, in presence of steam as the fluidization medium. The fluidized bed reactor allows the gasification process of plastics to be carried out at a constant temperature and allows the use of different plastics with different compositions and different grain sizes. Furthermore, during the gasification process the use of steam increase the gasification of char produced by the first pyrolysis/devolatilization process of the plastic particles. The bed inventory can be made with particles having catalytic properties such as olivine, capable to catalyse the steam reforming reactions of heavy hydrocarbons normally called tars, with a consequent increase in the quantity of gases produced. The plant is composed of a fluidized bed reactor made of AISI 310 steel, having an internal diameter of 0.1 m, containing 3 kg of olivine particles as a bed inventory. The reactor is externally heated by an oven up to 1000 °C. The hot producer gases that exit the reactor, after being cooled, are quantified using a mass flow meter. Gas analyzers are present to measure instantly the volumetric composition of H₂, CO, CO₂, CH₄ and NH₃. At the conference, the results obtained from the continuous gasification of polypropylene (PP) particles in a steam atmosphere at temperatures of 840-860 °C will be presented.Keywords: gasification, fluidized bed, hydrogen, olivine, polypropyle
Procedia PDF Downloads 30761 Resonant Fluorescence in a Two-Level Atom and the Terahertz Gap
Authors: Nikolai N. Bogolubov, Andrey V. Soldatov
Abstract:
Terahertz radiation occupies a range of frequencies somewhere from 100 GHz to approximately 10 THz, just between microwaves and infrared waves. This range of frequencies holds promise for many useful applications in experimental applied physics and technology. At the same time, reliable, simple techniques for generation, amplification, and modulation of electromagnetic radiation in this range are far from been developed enough to meet the requirements of its practical usage, especially in comparison to the level of technological abilities already achieved for other domains of the electromagnetic spectrum. This situation of relative underdevelopment of this potentially very important range of electromagnetic spectrum is known under the name of the 'terahertz gap.' Among other things, technological progress in the terahertz area has been impeded by the lack of compact, low energy consumption, easily controlled and continuously radiating terahertz radiation sources. Therefore, development of new techniques serving this purpose as well as various devices based on them is of obvious necessity. No doubt, it would be highly advantageous to employ the simplest of suitable physical systems as major critical components in these techniques and devices. The purpose of the present research was to show by means of conventional methods of non-equilibrium statistical mechanics and the theory of open quantum systems, that a thoroughly studied two-level quantum system, also known as an one-electron two-level 'atom', being driven by external classical monochromatic high-frequency (e.g. laser) field, can radiate continuously at much lower (e.g. terahertz) frequency in the fluorescent regime if the transition dipole moment operator of this 'atom' possesses permanent non-equal diagonal matrix elements. This assumption contradicts conventional assumption routinely made in quantum optics that only the non-diagonal matrix elements persist. The conventional assumption is pertinent to natural atoms and molecules and stems from the property of spatial inversion symmetry of their eigenstates. At the same time, such an assumption is justified no more in regard to artificially manufactured quantum systems of reduced dimensionality, such as, for example, quantum dots, which are often nicknamed 'artificial atoms' due to striking similarity of their optical properties to those ones of the real atoms. Possible ways to experimental observation and practical implementation of the predicted effect are discussed too.Keywords: terahertz gap, two-level atom, resonant fluorescence, quantum dot, resonant fluorescence, two-level atom
Procedia PDF Downloads 272760 Optimal Pricing Based on Real Estate Demand Data
Authors: Vanessa Kummer, Maik Meusel
Abstract:
Real estate demand estimates are typically derived from transaction data. However, in regions with excess demand, transactions are driven by supply and therefore do not indicate what people are actually looking for. To estimate the demand for housing in Switzerland, search subscriptions from all important Swiss real estate platforms are used. These data do, however, suffer from missing information—for example, many users do not specify how many rooms they would like or what price they would be willing to pay. In economic analyses, it is often the case that only complete data is used. Usually, however, the proportion of complete data is rather small which leads to most information being neglected. Also, the data might have a strong distortion if it is complete. In addition, the reason that data is missing might itself also contain information, which is however ignored with that approach. An interesting issue is, therefore, if for economic analyses such as the one at hand, there is an added value by using the whole data set with the imputed missing values compared to using the usually small percentage of complete data (baseline). Also, it is interesting to see how different algorithms affect that result. The imputation of the missing data is done using unsupervised learning. Out of the numerous unsupervised learning approaches, the most common ones, such as clustering, principal component analysis, or neural networks techniques are applied. By training the model iteratively on the imputed data and, thereby, including the information of all data into the model, the distortion of the first training set—the complete data—vanishes. In a next step, the performances of the algorithms are measured. This is done by randomly creating missing values in subsets of the data, estimating those values with the relevant algorithms and several parameter combinations, and comparing the estimates to the actual data. After having found the optimal parameter set for each algorithm, the missing values are being imputed. Using the resulting data sets, the next step is to estimate the willingness to pay for real estate. This is done by fitting price distributions for real estate properties with certain characteristics, such as the region or the number of rooms. Based on these distributions, survival functions are computed to obtain the functional relationship between characteristics and selling probabilities. Comparing the survival functions shows that estimates which are based on imputed data sets do not differ significantly from each other; however, the demand estimate that is derived from the baseline data does. This indicates that the baseline data set does not include all available information and is therefore not representative for the entire sample. Also, demand estimates derived from the whole data set are much more accurate than the baseline estimation. Thus, in order to obtain optimal results, it is important to make use of all available data, even though it involves additional procedures such as data imputation.Keywords: demand estimate, missing-data imputation, real estate, unsupervised learning
Procedia PDF Downloads 290759 Modeling and Simulation of Primary Atomization and Its Effects on Internal Flow Dynamics in a High Torque Low Speed Diesel Engine
Authors: Muteeb Ulhaq, Rizwan Latif, Sayed Adnan Qasim, Imran Shafi
Abstract:
Diesel engines are most efficient and reliable in terms of efficiency, reliability and adaptability. Most of the research and development up till now have been directed towards High-Speed Diesel Engine, for Commercial use. In these engines objective is to optimize maximum acceleration by reducing exhaust emission to meet international standards. In high torque low-speed engines the requirement is altogether different. These types of Engines are mostly used in Maritime Industry, Agriculture industry, Static Engines Compressors Engines etc. Unfortunately due to lack of research and development, these engines have low efficiency and high soot emissions and one of the most effective way to overcome these issues is by efficient combustion in an engine cylinder, the fuel spray atomization process plays a vital role in defining mixture formation, fuel consumption, combustion efficiency and soot emissions. Therefore, a comprehensive understanding of the fuel spray characteristics and atomization process is of a great importance. In this research, we will examine the effects of primary breakup modeling on the spray characteristics under diesel engine conditions. KH-ACT model is applied to cater the effect of aerodynamics in an engine cylinder and also cavitations and turbulence generated inside the injector. It is a modified form of most commonly used KH model, which considers only the aerodynamically induced breakup based on the Kelvin–Helmholtz instability. Our model is extensively evaluated by performing 3-D time-dependent simulations on Open FOAM, which is an open source flow solver. Spray characteristics like Spray Penetration, Liquid length, Spray cone angle and Souter mean diameter (SMD) were validated by comparing the results of Open Foam and Matlab. Including the effects of cavitation and turbulence enhances primary breakup, leading to smaller droplet sizes, decrease in liquid penetration, and increase in the radial dispersion of spray. All these properties favor early evaporation of fuel which enhances Engine efficiency.Keywords: Kelvin–Helmholtz instability, open foam, primary breakup, souter mean diameter, turbulence
Procedia PDF Downloads 212758 Determining the Effective Substance of Cottonseed Extract on the Treatment of Leishmaniasis
Authors: Mehrosadat Mirmohammadi, Sara Taghdisi, Ali Padash, Mohammad Hossein Pazandeh
Abstract:
Gossypol, a yellowish anti-nutritional compound found in cotton plants, exists in various plant parts, including seeds, husks, leaves, and stems. Chemically, gossypol is a potent polyphenolic aldehyde with antioxidant and therapeutic properties. However, its free form can be toxic, posing risks to both humans and animals. Initially, we extracted gossypol from cotton seeds using n-hexane as a solvent (yield: 84.0 ± 4.0%). We also obtained cotton seed and cotton boll extracts via Soxhlet extraction (25:75 hydroalcoholic ratio). These extracts, combined with cornstarch, formed four herbal medicinal formulations. Ethical approval allowed us to investigate their effects on Leishmania-caused skin wounds, comparing them to glucantime (local ampoule). Herbal formulas outperformed the control group (ethanol only) in wound treatment (p-value 0.05). The average wound diameter after two months did not significantly differ between plant extract ointments and topical glucantime. Notably, cotton boll extract with 1% extra gossypol crystal showed the best therapeutic effect. We extracted gossypol from cotton seeds using n-hexane via Soxhlet extraction. Saponification, acidification, and recrystallization steps followed. FTIR, UV-Vis, and HPLC analyses confirmed the product’s identity. Herbal medicines from cotton seeds effectively treated chronic wounds compared to the ethanol-only control group. Wound diameter differed significantly between extract ointments and glucantime injections. It seems that due to the presence of large amounts of fat in the oil, the extraction of gossypol from it faces many obstacles. The extraction of this compound with our technique showed that extraction from oil has a higher efficiency, perhaps because of the preparation of oil by cold pressing method, the possibility of losing this compound is much less than when extraction is done with Soxhlet. On the other hand, the gossypol in the oil is mostly bound to the protein, which somehow protects the gossypol until the last stage of the extraction process. Since this compound is very sensitive to light and heat, it was extracted as a derivative with acetic acid. Also, in the treatment section, it was found that the ointment prepared with the extract is more effective and Gossypol is one of the effective ingredients in the treatment. Therefore, gossypol can be extracted from the oil and added to the extract from which gossypol has been extracted to make an effective medicine with a certain dose.Keywords: cottonseed, glucantime, gossypol, leishmaniasis
Procedia PDF Downloads 62757 Entropy in a Field of Emergence in an Aspect of Linguo-Culture
Authors: Nurvadi Albekov
Abstract:
Communicative situation is a basis, which designates potential models of ‘constructed forms’, a motivated basis of a text, for a text can be assumed as a product of the communicative situation. It is within the field of emergence the models of text, that can be potentially prognosticated in a certain communicative situation, are designated. Every text can be assumed as conceptual system structured on the base of certain communicative situation. However in the process of ‘structuring’ of a certain model of ‘conceptual system’ consciousness of a recipient is able act only within the border of the field of emergence for going out of this border indicates misunderstanding of the communicative situation. On the base of communicative situation we can witness the increment of meaning where the synergizing of the informative model of communication, formed by using of the invariant units of a language system, is a result of verbalization of the communicative situation. The potential of the models of a text, prognosticated within the field of emergence, also depends on the communicative situation. The conception ‘the field of emergence’ is interpreted as a unit of the language system, having poly-directed universal structure, implying the presence of the core, the center and the periphery, including different levels of means of a functioning system of language, both in terms of linguistic resources, and in terms of extra linguistic factors interaction of which results increment of a text. The conception ‘field of emergence’ is considered as the most promising in the analysis of texts: oral, written, printed and electronic. As a unit of the language system field of emergence has several properties that predict its use during the study of a text in different levels. This work is an attempt analysis of entropy in a text in the aspect of lingua-cultural code, prognosticated within the model of the field of emergence. The article describes the problem of entropy in the field of emergence, caused by influence of the extra-linguistic factors. The increasing of entropy is caused not only by the fact of intrusion of the language resources but by influence of the alien culture in a whole, and by appearance of non-typical for this very culture symbols in the field of emergence. The borrowing of alien lingua-cultural symbols into the lingua-culture of the author is a reason of increasing the entropy when constructing a text both in meaning and in structuring level. It is nothing but artificial formatting of lexical units that violate stylistic unity of a phrase. It is marked that one of the important characteristics descending the entropy in the field of emergence is a typical similarity of lexical and semantic resources of the different lingua-cultures in aspects of extra linguistic factors.Keywords: communicative situation, field of emergence, lingua-culture, entropy
Procedia PDF Downloads 363756 Urban Livelihoods and Climate Change: Adaptation Strategies for Urban Poor in Douala, Cameroon
Authors: Agbortoko Manyigbe Ayuk Nkem, Eno Cynthia Osuh
Abstract:
This paper sets to examine the relationship between climate change and urban livelihood through a vulnerability assessment of the urban poor in Douala. Urban development in Douala places priority towards industrial and city-centre development with little focus on the urban poor in terms of housing units and areas of sustenance. With the high rate of urbanisation and increased land prices, the urban poor are forced to occupy marginal lands which are mainly wetlands, wastelands and along abandoned neighbourhoods prone to natural hazards. Due to climate change and its effects, these wetlands are constantly flooded thereby destroying homes, properties, and crops. Also, most of these urban dwellers have found solace in urban agriculture as a means for survival. However, since agriculture in tropical regions like Cameroon depends largely on seasonal rainfall, the changes in rainfall pattern has led to misplaced periods for crop planting and a huge wastage of resources as rainfall becomes very unreliable with increased temperature levels. Data for the study was obtained from both primary and secondary sources. Secondary sources included published materials related to climate change and vulnerability. Primary data was obtained through focus-group discussions with some urban farmers while a stratified sampling of residents within marginal lands was done. Each stratum was randomly sampled to obtain information on different stressors related to climate change and their effect on livelihood. Findings proved that the high rate of rural-urban migration into Douala has led to increased prevalence of the urban poor and their vulnerability to climate change as evident in their constant fight against flood from unexpected sea level rise and irregular rainfall pattern for urban agriculture. The study also proved that women were most vulnerable as they depended solely on urban agriculture and its related activities like retailing agricultural products in different urban markets which to them serves as a main source of income in the attainment of basic needs for the family. Adaptation measures include the constant use of sand bags, raised makeshifts as well as cultivation along streams, planting after evidence of constant rainfall has become paramount for sustainability.Keywords: adaptation, Douala, Cameroon, climate change, development, livelihood, vulnerability
Procedia PDF Downloads 294755 Characterization and Modelling of Groundwater Flow towards a Public Drinking Water Well Field: A Case Study of Ter Kamerenbos Well Field
Authors: Buruk Kitachew Wossenyeleh
Abstract:
Groundwater is the largest freshwater reservoir in the world. Like the other reservoirs of the hydrologic cycle, it is a finite resource. This study focused on the groundwater modeling of the Ter Kamerenbos well field to understand the groundwater flow system and the impact of different scenarios. The study area covers 68.9Km2 in the Brussels Capital Region and is situated in two river catchments, i.e., Zenne River and Woluwe Stream. The aquifer system has three layers, but in the modeling, they are considered as one layer due to their hydrogeological properties. The catchment aquifer system is replenished by direct recharge from rainfall. The groundwater recharge of the catchment is determined using the spatially distributed water balance model called WetSpass, and it varies annually from zero to 340mm. This groundwater recharge is used as the top boundary condition for the groundwater modeling of the study area. During the groundwater modeling using Processing MODFLOW, constant head boundary conditions are used in the north and south boundaries of the study area. For the east and west boundaries of the study area, head-dependent flow boundary conditions are used. The groundwater model is calibrated manually and automatically using observed hydraulic heads in 12 observation wells. The model performance evaluation showed that the root means the square error is 1.89m and that the NSE is 0.98. The head contour map of the simulated hydraulic heads indicates the flow direction in the catchment, mainly from the Woluwe to Zenne catchment. The simulated head in the study area varies from 13m to 78m. The higher hydraulic heads are found in the southwest of the study area, which has the forest as a land-use type. This calibrated model was run for the climate change scenario and well operation scenario. Climate change may cause the groundwater recharge to increase by 43% and decrease by 30% in 2100 from current conditions for the high and low climate change scenario, respectively. The groundwater head varies for a high climate change scenario from 13m to 82m, whereas for a low climate change scenario, it varies from 13m to 76m. If doubling of the pumping discharge assumed, the groundwater head varies from 13m to 76.5m. However, if the shutdown of the pumps is assumed, the head varies in the range of 13m to 79m. It is concluded that the groundwater model is done in a satisfactory way with some limitations, and the model output can be used to understand the aquifer system under steady-state conditions. Finally, some recommendations are made for the future use and improvement of the model.Keywords: Ter Kamerenbos, groundwater modelling, WetSpass, climate change, well operation
Procedia PDF Downloads 153754 Understanding the Effect of Material and Deformation Conditions on the “Wear Mode Diagram”: A Numerical Study
Authors: A. Mostaani, M. P. Pereira, B. F. Rolfe
Abstract:
The increasing application of Advanced High Strength Steel (AHSS) in the automotive industry to fulfill crash requirements has introduced higher levels of wear in stamping dies and parts. Therefore, understanding wear behaviour in sheet metal forming is of great importance as it can help to reduce the high costs currently associated with tool wear. At the contact between the die and the sheet, the tips of hard tool asperities interact with the softer sheet material. Understanding the deformation that occurs during this interaction is important for our overall understanding of the wear mechanisms. For these reasons, the scratching of a perfectly plastic material by a rigid indenter has been widely examined in the literature; with finite element modelling (FEM) used in recent years to further understand the behaviour. The ‘wear mode diagram’ has been commonly used to classify the deformation regime of the soft work-piece during scratching, into three modes: ploughing, wedge formation, and cutting. This diagram, which is based on 2D slip line theory and upper bound method for perfectly plastic work-piece and rigid indenter, relates different wear modes to attack angle and interfacial strength. This diagram has been the basis for many wear studies and wear models to date. Additionally, it has been concluded that galling is most likely to occur during the wedge formation mode. However, there has been little analysis in the literature of how the material behaviour and deformation conditions associated with metal forming processes influence the wear behaviour. Therefore, the first aim of this work is first to use a commercial FEM package (Abaqus/Explicit) to build a 3D model to capture wear modes during scratching with indenters with different attack angles and different interfacial strengths. The second goal is to utilise the developed model to understand how wear modes might change in the presence of bulk deformation of the work-piece material as a result of the metal forming operation. Finally, the effect of the work-piece material properties, including strain hardening, will be examined to understand how these influence the wear modes and wear behaviour. The results show that both strain hardening and substrate deformation can change the critical attack angle at which the wedge formation regime is activated.Keywords: finite element, pile-up, scratch test, wear mode
Procedia PDF Downloads 329753 Deformation Characteristics of Fire Damaged and Rehabilitated Normal Strength Concrete Beams
Authors: Yeo Kyeong Lee, Hae Won Min, Ji Yeon Kang, Hee Sun Kim, Yeong Soo Shin
Abstract:
Fire incidents have been steadily increased over the last year according to national emergency management agency of South Korea. Even though most of the fire incidents with property damage have been occurred in building, rehabilitation has not been properly done with consideration of structure safety. Therefore, this study aims at evaluating rehabilitation effects on fire damaged normal strength concrete beams through experiments and finite element analyses. For the experiments, reinforced concrete beams were fabricated having designed concrete strength of 21 MPa. Two different cover thicknesses were used as 40 mm and 50 mm. After cured, the fabricated beams were heated for 1hour or 2hours according to ISO-834 standard time-temperature curve. Rehabilitation was done by removing the damaged part of cover thickness and filling polymeric mortar into the removed part. Both fire damaged beams and rehabilitated beams were tested with four point loading system to observe structural behaviors and the rehabilitation effect. To verify the experiment, finite element (FE) models for structural analysis were generated using commercial software ABAQUS 6.10-3. For the rehabilitated beam models, integrated temperature-structural analyses were performed in advance to obtain geometries of the fire damaged beams. In addition to the fire damaged beam models, rehabilitated part was added with material properties of polymeric mortar. Three dimensional continuum brick elements were used for both temperature and structural analyses. The same loading and boundary conditions as experiments were implemented to the rehabilitated beam models and non-linear geometrical analyses were performed. Test results showed that maximum loads of the rehabilitated beams were 8~10% higher than those of the non-rehabilitated beams and even 1~6 % higher than those of the non-fire damaged beam. Stiffness of the rehabilitated beams were also larger than that of non-rehabilitated beams but smaller than that of the non-fire damaged beams. In addition, predicted structural behaviors from the analyses also showed good rehabilitation effect and the predicted load-deflection curves were similar to the experimental results. From this study, both experiments and analytical results demonstrated good rehabilitation effect on the fire damaged normal strength concrete beams. For the further, the proposed analytical method can be used to predict structural behaviors of rehabilitated and fire damaged concrete beams accurately without suffering from time and cost consuming experimental process.Keywords: fire, normal strength concrete, rehabilitation, reinforced concrete beam
Procedia PDF Downloads 508752 Empirical Superpave Mix-Design of Rubber-Modified Hot-Mix Asphalt in Railway Sub-Ballast
Authors: Fernando M. Soto, Gaetano Di Mino
Abstract:
The design of an unmodified bituminous mixture and three rubber-aggregate mixtures containing rubber-aggregate by a dry process (RUMAC) was evaluated, using an empirical-analytical approach based on experimental findings obtained in the laboratory with the volumetric mix design by gyratory compaction. A reference dense-graded bituminous sub-ballast mixture (3% of air voids and a bitumen 4% over the total weight of the mix), and three rubberized mixtures by dry process (1,5 to 3% of rubber by total weight and 5-7% of binder) were used applying the Superpave mix-design for a level 3 (high-traffic) design rail lines. The railway trackbed section analyzed was a granular layer of 19 cm compacted, while for the sub-ballast a thickness of 12 cm has been used. In order to evaluate the effect of increasing the specimen density (as a percent of its theoretical maximum specific gravity), in this article, are illustrated the results obtained after different comparative analysis into the influence of varying the binder-rubber percentages under the sub-ballast layer mix-design. This work demonstrates that rubberized blends containing crumb and ground rubber in bituminous asphalt mixtures behave at least similar or better than conventional asphalt materials. By using the same methodology of volumetric compaction, the densification curves resulting from each mixture have been studied. The purpose is to obtain an optimum empirical parameter multiplier of the number of gyrations necessary to reach the same compaction energy as in conventional mixtures. It has provided some experimental parameters adopting an empirical-analytical method, evaluating the results obtained from the gyratory-compaction of bituminous mixtures with an HMA and rubber-aggregate blends. An extensive integrated research has been carried out to assess the suitability of rubber-modified hot mix asphalt mixtures as a sub-ballast layer in railway underlayment trackbed. Design optimization of the mixture was conducted for each mixture and the volumetric properties analyzed. Also, an improved and complete manufacturing process, compaction and curing of these blends are provided. By adopting this increase-parameters of compaction, called 'beta' factor, mixtures modified with rubber with uniform densification and workability are obtained that in the conventional mixtures. It is found that considering the usual bearing capacity requirements in rail track, the optimal rubber content is 2% (by weight) or 3.95% (by volumetric substitution) and a binder content of 6%.Keywords: empirical approach, rubber-asphalt, sub-ballast, superpave mix-design
Procedia PDF Downloads 369751 Biflavonoids from Selaginellaceae as Epidermal Growth Factor Receptor Inhibitors and Their Anticancer Properties
Authors: Adebisi Adunola Demehin, Wanlaya Thamnarak, Jaruwan Chatwichien, Chatchakorn Eurtivong, Kiattawee Choowongkomon, Somsak Ruchirawat, Nopporn Thasana
Abstract:
The epidermal growth factor receptor (EGFR) is a transmembrane glycoprotein involved in cellular signalling processes and, its aberrant activity is crucial in the development of many cancers such as lung cancer. Selaginellaceae are fern allies that have long been used in Chinese traditional medicine to treat various cancer types, especially lung cancer. Biflavonoids, the major secondary metabolites in Selaginellaceae, have numerous pharmacological activities, including anti-cancer and anti-inflammatory. For instance, amentoflavone induces a cytotoxic effect in the human NSCLC cell line via the inhibition of PARP-1. However, to the best of our knowledge, there are no studies on biflavonoids as EGFR inhibitors. Thus, this study aims to investigate the EGFR inhibitory activities of biflavonoids isolated from Selaginella siamensis and Selaginella bryopteris. Amentoflavone, tetrahydroamentoflavone, sciadopitysin, robustaflavone, robustaflavone-4-methylether, delicaflavone, and chrysocauloflavone were isolated from the ethyl-acetate extract of the whole plants. The structures were determined using NMR spectroscopy and mass spectrometry. In vitro study was conducted to evaluate their cytotoxicity against A549, HEPG2, and T47D human cancer cell lines using the MTT assay. In addition, a target-based assay was performed to investigate their EGFR inhibitory activity using the kinase inhibition assay. Finally, a molecular docking study was conducted to predict the binding modes of the compounds. Robustaflavone-4-methylether and delicaflavone showed the best cytotoxic activity on all the cell lines with IC50 (µM) values of 18.9 ± 2.1 and 22.7 ± 3.3 on A549, respectively. Of these biflavonoids, delicaflavone showed the most potent EGFR inhibitory activity with an 84% relative inhibition at 0.02 nM using erlotinib as a positive control. Robustaflavone-4-methylether showed a 78% inhibition at 0.15 nM. The docking scores obtained from the molecular docking study correlated with the kinase inhibition assay. Robustaflavone-4-methylether and delicaflavone had a docking score of 72.0 and 86.5, respectively. The inhibitory activity of delicaflavone seemed to be linked with the C2”=C3” and 3-O-4”’ linkage pattern. Thus, this study suggests that the structural features of these compounds could serve as a basis for developing new EGFR-TK inhibitors.Keywords: anticancer, biflavonoids, EGFR, molecular docking, Selaginellaceae
Procedia PDF Downloads 198750 Handling, Exporting and Archiving Automated Mineralogy Data Using TESCAN TIMA
Authors: Marek Dosbaba
Abstract:
Within the mining sector, SEM-based Automated Mineralogy (AM) has been the standard application for quickly and efficiently handling mineral processing tasks. Over the last decade, the trend has been to analyze larger numbers of samples, often with a higher level of detail. This has necessitated a shift from interactive sample analysis performed by an operator using a SEM, to an increased reliance on offline processing to analyze and report the data. In response to this trend, TESCAN TIMA Mineral Analyzer is designed to quickly create a virtual copy of the studied samples, thereby preserving all the necessary information. Depending on the selected data acquisition mode, TESCAN TIMA can perform hyperspectral mapping and save an X-ray spectrum for each pixel or segment, respectively. This approach allows the user to browse through elemental distribution maps of all elements detectable by means of energy dispersive spectroscopy. Re-evaluation of the existing data for the presence of previously unconsidered elements is possible without the need to repeat the analysis. Additional tiers of data such as a secondary electron or cathodoluminescence images can also be recorded. To take full advantage of these information-rich datasets, TIMA utilizes a new archiving tool introduced by TESCAN. The dataset size can be reduced for long-term storage and all information can be recovered on-demand in case of renewed interest. TESCAN TIMA is optimized for network storage of its datasets because of the larger data storage capacity of servers compared to local drives, which also allows multiple users to access the data remotely. This goes hand in hand with the support of remote control for the entire data acquisition process. TESCAN also brings a newly extended open-source data format that allows other applications to extract, process and report AM data. This offers the ability to link TIMA data to large databases feeding plant performance dashboards or geometallurgical models. The traditional tabular particle-by-particle or grain-by-grain export process is preserved and can be customized with scripts to include user-defined particle/grain properties.Keywords: Tescan, electron microscopy, mineralogy, SEM, automated mineralogy, database, TESCAN TIMA, open format, archiving, big data
Procedia PDF Downloads 111