Search results for: building materials industry
4781 Assessment of Wastewater Reuse Potential for an Enamel Coating Industry
Authors: Guclu Insel, Efe Gumuslu, Gulten Yuksek, Nilay Sayi Ucar, Emine Ubay Cokgor, Tugba Olmez Hanci, Didem Okutman Tas, Fatos Germirli Babuna, Derya Firat Ertem, Okmen Yildirim, Ozge Erturan, Betul Kirci
Abstract:
In order to eliminate water scarcity problems, effective precautions must be taken. Growing competition for water is increasingly forcing facilities to tackle their own water scarcity problems. At this point, application of wastewater reclamation and reuse results in considerable economic advantageous. In this study, an enamel coating facility, which is one of the high water consumed facilities, is evaluated in terms of its wastewater reuse potential. Wastewater reclamation and reuse can be defined as one of the best available techniques for this sector. Hence, process and pollution profiles together with detailed characterization of segregated wastewater sources are appraised in a way to find out the recoverable effluent streams arising from enamel coating operations. Daily, 170 m3 of process water is required and 160 m3 of wastewater is generated. The segregated streams generated by two enamel coating processes are characterized in terms of conventional parameters. Relatively clean segregated wastewater streams (reusable wastewaters) are separately collected and experimental treatability studies are conducted on it. The results reflected that the reusable wastewater fraction has an approximate amount of 110 m3/day that accounts for 68% of the total wastewaters. The need for treatment applicable on reusable wastewaters is determined by considering water quality requirements of various operations and characterization of reusable wastewater streams. Ultra-filtration (UF), Nano-filtration (NF) and Reverse Osmosis (RO) membranes are subsequently applied on reusable effluent fraction. Adequate organic matter removal is not obtained with the mentioned treatment sequence.Keywords: enamel coating, membrane, reuse, wastewater reclamation
Procedia PDF Downloads 3294780 Identifying Strategies and Techniques for the Egyptian Medium and Large Size Contractors to Respond to Economic Hardship
Authors: Michael Salib, Samer Ezeldin, Ahmed Waly
Abstract:
There are numerous challenges and problems facing the construction industry in several countries in the Middle East, as a result of numerous economic and political effects. As an example in Egypt, several construction companies have shut down and left the market since 2016. The closure of these companies occurred, as they did not respond with the suitable techniques and strategies that will enable them to survive during this economic turmoil period. A research is conducted in order to identify adequate strategies to be implemented by the Egyptian contractors that could allow them survive and keep competing during such economic hardship period. Two different techniques were used in order to identify these startegies. First, a deep research were conducted on the companies located in countries that suffered similar economic harship to identify the strategies they used in order to survive. Second, interviews were conducted with experts in the construction field in order to list the effective strategies they used that allowed them to survive. Moreover, at the end of each interview, the experts were asked to rate the applicability of the previously identified strategies used in the foreign countries, then the efficiency of each strategy if used in Egypt. A framework model is developed in order to assist the construction companies in choosing the suitable techniques to their company size, through identifying the top ranked strategies and techniques that should be adopted by the company based on the parameters given to the model. In order to verify this framework, the financial statements of two leading companies in the Egyptian construction market were studied. The first Contractor has applied nearly all the top ranked strategies identified in this paper, while the other contractor has applied only few of the identified top ranked strategies. Finally, another expert interviews were conducted in order to validate the framework. These experts were asked to test the model and rate through a questionnaire its applicability and effectiveness.Keywords: construction management, economic hardship, recession, survive
Procedia PDF Downloads 1294779 Consideration of Failed Fuel Detector Location through Computational Flow Dynamics Analysis on Primary Cooling System Flow with Two Outlets
Authors: Sanghoon Bae, Hanju Cha
Abstract:
Failed fuel detector (FFD) in research reactor is a very crucial instrument to detect the anomaly from failed fuels in the early stage around primary cooling system (PCS) outlet prior to the decay tank. FFD is considered as a mandatory sensor to ensure the integrity of fuel assemblies and mitigate the consequence from a failed fuel accident. For the effective function of FFD, the location of them should be determined by contemplating the effect from coolant flow around two outlets. For this, the analysis on computational flow dynamics (CFD) should be first performed how the coolant outlet flow including radioactive materials from failed fuels are mixed and discharged through the outlet plenum within certain seconds. The analysis result shows that the outlet flow is well mixed regardless of the position of failed fuel and ultimately illustrates the effect of detector location.Keywords: computational flow dynamics (CFD), failed fuel detector (FFD), fresh fuel assembly (FFA), spent fuel assembly (SFA)
Procedia PDF Downloads 2444778 Empowering Leadership and Constructive Voice: A Sequential Mediation Analysis
Authors: Umamaheswara Rao Jada, Susmita Mukhopadhyay
Abstract:
In the present highly complex, dynamic and interdependent organizational environment, employees' ideas, opinions and suggestions which is technically referred to as ‘constructive employee voice’ is increasingly being recognized and valued. Literature has consistently demonstrated the relevance of leadership in employee voicing behavior, however the new form of leadership, ‘empowering leadership’ has not been given much attention. The study, therefore, devotes itself to the effort to explore the impact of this new form of leadership on employee voice behavior and the interplay with leader member exchange (LMX) and psychological safety as mediators in the same. The study utilizes structural equation modeling for analyzing the data collected from 310 Indian service industry employees through the questionnaire developed for the study. The findings of the study demonstrate the significant impact of empowering form of leadership on employees’ constructive voice behavior. Additionally, supporting results were observed for the mediating impact of leader member exchange (LMX) and psychological safety between empowering leadership and employees’ constructive voice behavior. The results of this study provide insights into the intervening mechanisms by linking leaders’ empowering behavior with employees’ constructive voice, while also highlighting the potential importance of LMX relationship in organizations and psychological safety in the context of constructive voice behavior. The study brings forth the relevance of the new form of leadership, ‘empowering leadership’ for fostering the better exchange of ideas, opinions, and suggestions between leaders and followers which tend to benefit the organization, providing empirical evidence of the sequential mediation of LMX and psychological safety. The piece of work is assumed to benefit the leaders in organizations by providing them the basis for adopting empowering form of leadership in light of results displayed.Keywords: constructive voice, empowering leadership, leader member exchange (LMX), psychological safety, sequential mediation, structural equation modeling
Procedia PDF Downloads 3084777 Instruct Students Effective Ways to Reach an Advanced Level after Graduation
Authors: Huynh Tan Hoi
Abstract:
Considered as one of the hardest languages in the world, Japanese is still the language that many young people choose to learn. Today, with the development of technology, learning foreign languages in general and Japanese language, in particular, is not an impossible barrier. Learning materials are not only from paper books, songs but also through software programs of smartphones or computers. Especially, students who begin to explore effective skills to study this language need to access modern technologies to improve their learning much better. When using the software, some students may feel embarrassed and challenged, but everything would go smoothly after a few days. After completing the course, students will get more knowledge, achieve a higher knowledge such as N2 or N1 Japanese Language Proficiency Test Certificate. In this research paper, 35 students who are studying at Ho Chi Minh City FPT University were asked to complete the questionnaire at the beginning of July up to August of 2018. Through this research, we realize that with the guidance of lecturers, the necessity of using modern software and some effective methods are indispensable in term of improving quality of teaching and learning process.Keywords: higher knowledge, Japanese, methods, software, students
Procedia PDF Downloads 2314776 Assessing the Impact of Climate Change on Pulses Production in Khyber Pakhtunkhwa, Pakistan
Authors: Khuram Nawaz Sadozai, Rizwan Ahmad, Munawar Raza Kazmi, Awais Habib
Abstract:
Climate change and crop production are intrinsically associated with each other. Therefore, this research study is designed to assess the impact of climate change on pulses production in Southern districts of Khyber Pakhtunkhwa (KP) Province of Pakistan. Two pulses (i.e. chickpea and mung bean) were selected for this research study with respect to climate change. Climatic variables such as temperature, humidity and precipitation along with pulses production and area under cultivation of pulses were encompassed as the major variables of this study. Secondary data of climatic variables and crop variables for the period of thirty four years (1986-2020) were obtained from Pakistan Metrological Department and Agriculture Statistics of KP respectively. Panel data set of chickpea and mung bean crops was estimated separately. The analysis validate that both data sets were a balanced panel data. The Hausman specification test was run separately for both the panel data sets whose findings had suggested the fixed effect model can be deemed as an appropriate model for chickpea panel data, however random effect model was appropriate for estimation of the panel data of mung bean. Major findings confirm that maximum temperature is statistically significant for the chickpea yield. This implies if maximum temperature increases by 1 0C, it can enhance the chickpea yield by 0.0463 units. However, the impact of precipitation was reported insignificant. Furthermore, the humidity was statistically significant and has a positive association with chickpea yield. In case of mung bean the minimum temperature was significantly contributing in the yield of mung bean. This study concludes that temperature and humidity can significantly contribute to enhance the pulses yield. It is recommended that capacity building of pulses growers may be made to adapt the climate change strategies. Moreover, government may ensure the availability of climate change resistant varieties of pulses to encourage the pulses cultivation.Keywords: climate change, pulses productivity, agriculture, Pakistan
Procedia PDF Downloads 484775 Effect of Local Steel Slag as a Coarse Aggregate in the Properties of Fly Ash Based-Geopolymer Concrete
Authors: O. M. Omar, A. M. Heniegal, G. D. Abd Elhameed, H. A. Mohamadien
Abstract:
Local steel slag is produced as a by-product during the oxidation of steel pellets in an electric arc furnace. Using local steel slag waste as a hundred substitute of crushed stone in construction materials would resolve the environmental problems caused by the large-scale depletion of the natural sources of dolomite. This paper reports the experimental study to investigate the influence of a hundred replacement of dolomite as a coarse aggregate with local steel slag, on the fresh and hardened geopolymer concrete properties. The investigation includes traditional testing of hardening concrete, for selected mixes of cement and geopolymer concrete. It was found that local steel slag as a coarse aggregate enhanced the slump test of the fresh state of cement and geopolymer concretes. Nevertheless the unit weight of concretes was affected. Meanwhile, the good performance was observed when fly ash used as geopolymer concrete based.Keywords: geopolymer, molarity, steel slag, sodium hydroxide, sodium silicate
Procedia PDF Downloads 3064774 Concentrated Solar Energy Sintering of Multifunctional Metallic Alloys
Authors: Catalin Croitoru, Ionut Claudiu Roata
Abstract:
Employing concentrated solar energy (CSE) for sintering metallic parts offers distinct advantages, notably in the rapid thermal cycling that significantly influences their microstructure and phase transitions. This study uses the thermal control that CSE affords, enhancing the mechanical properties and tailoring the functionality of nickel-based alloys. We synthesized bulk alloys by sintering Ni-Cr-Al-Y powders in varied ratios using a vertical solar furnace at PROMES-CNRS, Font-Romeu Odeillo, France. The process achieved optimal fusion at 800°C for 10 minutes, resulting in materials with a notable hydrophilic surface due to oxide formation. The alloys’ performance was evaluated through corrosion resistance tests in a 3.5% wt. NaCl solution, utilizing potentiodynamic scanning and electrochemical impedance spectroscopy. Our findings demonstrate the potential of CSE in advancing the material properties of nickel-based alloys for diverse applications.Keywords: concentrated solar energy, sintering, corrosion resistance, surface properties
Procedia PDF Downloads 304773 Characterization of Chemically Deposited CdS Thin Films Annealed in Different Atmospheres
Authors: J. Pantoja Enríquez, G. P. Hernández, G. I. Duharte, X. Mathew, J. Moreira, P. J. Sebastian
Abstract:
Cadmium sulfide films were deposited onto glass substrates by chemical bath deposition (CBD) from a bath containing cadmium acetate, ammonium acetate, thiourea, and ammonium hydroxide. The CdS thin films were annealed in air, argon, hydrogen and nitrogen for 1 h at various temperatures (300, 350, 400, 450 and 500 °C). The changes in optical and electrical properties of annealed treated CdS thin films were analyzed. The results showed that, the band-gap and resistivity depend on the post-deposition annealing atmosphere and temperatures. Thus, it was found that these properties of the films, were found to be affected by various processes with opposite effects, some beneficial and others unfavorable. The energy gap and resistivity for different annealing atmospheres was seen to oscillate by thermal annealing. Recrystallization, oxidation, surface passivation, sublimation and materials evaporation were found the main factors of the heat-treatment process responsible for this oscillating behavior. Annealing over 400 °C was seen to degrade the optical and electrical properties of the film.Keywords: cds, thin films, annealing, optical, electrical properties
Procedia PDF Downloads 5134772 Using Short Learning Programmes to Develop Students’ Digital Literacies in Art and Design Education
Authors: B.J. Khoza, B. Kembo
Abstract:
Global socioeconomic developments and ever-growing technological advancements of the art and design industry indicate the pivotal importance of lifelong learning. There exists a discrepancy between competencies, personal ambition, and workplace requirements. There are few , if at all, institutions of higher learning in South Africa which offer Short Learning Programmes (SLP) in Art and Design Education. Traditionally, Art and Design education is delivered face to face via a hands-on approach. In this way the enduring perception among educators is that art and design education does not lend itself to online delivery. Short Learning programmes (SLP) are a concentrated approach to make revenue and lure potential prospective students to embark on further education study, this is often of weighted value to both students and employers. SLPs are used by Higher Education institutions to generate income in support of the core academic programmes. However, there is a gap in terms of the translation of art and design studio pedagogy into SLPs which provide quality education, are adaptable and delivered via a blended mode. In our paper, we propose a conceptual framework drawing on secondary research to analyse existing research to SLPs for arts and design education. We aim to indicate a new dimension to the process of using a design-based research approach for short learning programmes in art and design education. The study draws on a conceptual framework, a qualitative analysis through the lenses of Herrington, McKenney, Reeves and Oliver (2005) principles of the design-based research approach. The results of this study indicate that design-based research is not only an effective methodological approach for developing and deploying arts and design education curriculum for 1st years in Higher Education context but it also has the potential to guide future research. The findings of this study propose that the design-based research approach could bring theory and praxis together regarding a common purpose to design context-based solutions to educational problems.Keywords: design education, design-based research, digital literacies, multi-literacies, short learning programme
Procedia PDF Downloads 1684771 Model of Elastic Fracture Toughness for Ductile Metal Pipes with External Longitudinal Cracks
Authors: Guoyang Fu, Wei Yang, Chun-Qing Li
Abstract:
The most common type of cracks that appear on metal pipes is longitudinal cracks. For ductile metal pipes, the existence of plasticity eases the stress intensity at the crack front and consequently increases the fracture resistance. It should be noted that linear elastic fracture mechanics (LEFM) has been widely accepted by engineers. In order to make the LEFM applicable to ductile metal materials, the increase of fracture toughness due to plasticity should be excluded from the total fracture toughness of the ductile metal. This paper aims to develop a model of elastic fracture toughness for ductile metal pipes with external longitudinal cracks. The derived elastic fracture toughness is a function of crack geometry and material properties of the cracked pipe. The significance of the derived model is that the well-established LEFM can be used for ductile metal material in predicting the fracture failure.Keywords: Ductile metal pipes, elastic fracture toughness, longitudinal crack, plasticity
Procedia PDF Downloads 2524770 Natural Dyeing on Wool Fabrics Using Some Red Rose Petals
Authors: Emrah Çimen, Mustafa Demirelli, Burcu Yilmaz Şahinbaşkan, Mahmure Üstün Özgür
Abstract:
Natural colours are used on a large area such as textile, food and pharmaceutical industries by many researchers. When tannic acid is used together with metal salts for dyeing with natural dyes, antibacterial and fastness properties of textile materials are increased. In addition, the allegens are removed on wool fabrics. In this experimental work, some red rose petals were applied as a natural dye with three different dyeing methods and eight different mordant salts. The effect of tannic acid and different metal salts on dyeing of wool fabric was studied. Colour differences ΔECMC (2:1) and fastness properties of dyed fabrics were investigated and compared with each other. Finally, dark colours and adequate colour fastness results (4+) were obtained after dyeing of wool fabrics with FeSO4.7H2O, FeCl3.6H2O and CuCl2.2H2O in the presence of the tannic acid.Keywords: natural dye, red rose petals, tannic acid, mordant salts, wool fabric
Procedia PDF Downloads 6354769 Evaluate Effects of Different Curing Methods on Compressive Strength, Modulus of Elasticity and Durability of Concrete
Authors: Dhara Shah, Chandrakant Shah
Abstract:
Construction industry utilizes plenty of water in the name of curing. Looking at the present scenario, the days are not so far when all construction industries will have to switch over to an alternative-self curing system, not only to save water for sustainable development of the environment but also to promote indoor and outdoor construction activities even in water scarce areas. At the same time, curing is essential for the development of proper strength and durability. IS 456-2000 recommends a curing period of 7 days for ordinary Portland cement concrete, and 10 to 14 days for concrete prepared using mineral admixtures or blended cements. But, being the last act in the concreting operations, it is often neglected or not fully done. Consequently, the quality of hardened concrete suffers, more so, if the freshly laid concrete gets exposed to the environmental conditions of low humidity, high wind velocity and high ambient temperature. To avoid the adverse effects of neglected or insufficient curing, which is considered a universal phenomenon, concrete technologist and research scientists have come up with curing compounds. Concrete is said to be self-cured, if it is able to retain its water content to perform chemical reaction for the development of its strength. Curing compounds are liquids which are either incorporated in concrete or sprayed directly onto concrete surfaces and which then dry to form a relatively impermeable membrane that retards the loss of moisture from the concrete. They are an efficient and cost-effective means of curing concrete and may be applied to freshly placed concrete or that which has been partially cured by some other means. However, they may affect the bond between concrete and subsequent surface treatments. Special care in the choice of a suitable compound needs to be exercised in such circumstances. Curing compounds are generally formulated from wax emulsions, chlorinated rubbers, synthetic and natural resins, and from PVA emulsions. Their effectiveness varies quite widely, depending on the material and strength of the emulsion.Keywords: curing methods, self-curing compound, compressive strength, modulus of elasticity, durability
Procedia PDF Downloads 3314768 Thermal Securing of Electrical Contacts inside Oil Power Transformers
Authors: Ioan Rusu
Abstract:
In the operation of power transformers of 110 kV/MV from substations, these are traveled by fault current resulting from MV line damage. Defect electrical contacts are heated when they are travelled from fault currents. In the case of high temperatures when 135 °C is reached, the electrical insulating oil in the vicinity of the electrical faults comes into contact with these contacts releases gases, and activates the electrical protection. To avoid auto-flammability of electro-insulating oil, we designed a security system thermal of electrical contact defects by pouring fire-resistant polyurethane foam, mastic or mortar fire inside a cardboard electro-insulating cylinder. From practical experience, in the exploitation of power transformers of 110 kV/MT in oil electro-insulating were recorded some passing disconnecting commanded by the gas protection at internal defects. In normal operation and in the optimal load, nominal currents do not require thermal secure contacts inside electrical transformers, contacts are made at the fabrication according to the projects or to repair by solder. In the case of external short circuits close to the substation, the contacts inside electrical transformers, even if they are well made in sizes of Rcontact = 10‑6 Ω, are subjected to short-circuit currents of the order of 10 kA-20 kA which lead to the dissipation of some significant second-order electric powers, 100 W-400 W, on contact. At some internal or external factors which action on electrical contacts, including electrodynamic efforts at short-circuits, these factors could be degraded over time to values in the range of 10-4 Ω to 10-5 Ω and if the action time of protection is great, on the order of seconds, power dissipation on electrical contacts achieve high values of 1,0 kW to 40,0 kW. This power leads to strong local heating, hundreds of degrees Celsius and can initiate self-ignition and burning oil in the vicinity of electro-insulating contacts with action the gas relay. Degradation of electrical contacts inside power transformers may not be limited for the duration of their operation. In order to avoid oil burn with gas release near electrical contacts, at short-circuit currents 10 kA-20 kA, we have outlined the following solutions: covering electrical contacts in fireproof materials that would avoid direct burn oil at short circuit and transmission of heat from electrical contact along the conductors with heat dissipation gradually over time, in a large volume of cooling. Flame retardant materials are: polyurethane foam, mastic, cement (concrete). In the normal condition of operation of transformer, insulating of conductors coils is with paper and insulating oil. Ignition points of its two components respectively are approximated: 135 °C heat for oil and 200 0C for paper. In the case of a faulty electrical contact, about 10-3 Ω, at short-circuit; the temperature can reach for a short time, a value of 300 °C-400 °C, which ignite the paper and also the oil. By burning oil, there are local gases that disconnect the power transformer. Securing thermal electrical contacts inside the transformer, in cardboard tube with polyurethane foams, mastik or cement, ensures avoiding gas release and also gas protection working.Keywords: power transformer, oil insulatation, electric contacts, Bucholtz relay
Procedia PDF Downloads 1614767 An Entrepreneurial Culture Led by Creativity and Innovation: Challenges and Competencies for Sri Lanka as a Middle Income Country
Authors: Tissa Ravinda Perera
Abstract:
An open economic policy was introduced by Sri Lanka in 1977, before many other countries in Asia to align her economy to world economic trends and it was affected indigenous businesses since they had to compete with foreign products, processes, technology, innovations and businesses. The year 2010 was a milestone in Sri Lankan history to achieve the developmental goals when Foxbuisness rated Sri Lanka as the best performing global economy. However, Sri Lanka missed her chances of achieving development with the political and social chaos, consequent the regime change in 2015. This paper argues that to support the development of the country, Sri Lanka must develop an entrepreneurial culture. In this endeavor, creativity and innovation will play a pivotal role to achieve the desired level of development. In this study, it was used secondary data from various local and international sources to understand and explore the existing scenario of Sri Lankan economy, state of entrepreneurial culture and innovation, and challenges and competencies for the development of an entrepreneurial culture in Sri Lanka. The data was collected from secondary sources were depicted in tables in this paper in a meaningful manner. Based on the tables many findings were aroused and conclusions were made to support the argument in this paper. This paper revealed that the development of an entrepreneurial culture has to be associated with creativity and innovation to gain a competitive advantage over the development strategies of other countries. It is exposed that an entrepreneurial culture will help minorities, women and underprivileged societies to empower themselves. This product will help to confront and manage youth unrest which has created anarchy in the country from time to time. Throughout this paper, it was highlighted the past, present and future scenario of Sri Lankan economy along with modification to be done to it through the development of an entrepreneur culture in light of innovation and creativity to achieve the desired level of development.Keywords: economy, industry, creativity, innovation, entrepreneurship, entrepreneurial culture
Procedia PDF Downloads 1834766 Project Progress Prediction in Software Devlopment Integrating Time Prediction Algorithms and Large Language Modeling
Authors: Dong Wu, Michael Grenn
Abstract:
Managing software projects effectively is crucial for meeting deadlines, ensuring quality, and managing resources well. Traditional methods often struggle with predicting project timelines accurately due to uncertain schedules and complex data. This study addresses these challenges by combining time prediction algorithms with Large Language Models (LLMs). It makes use of real-world software project data to construct and validate a model. The model takes detailed project progress data such as task completion dynamic, team Interaction and development metrics as its input and outputs predictions of project timelines. To evaluate the effectiveness of this model, a comprehensive methodology is employed, involving simulations and practical applications in a variety of real-world software project scenarios. This multifaceted evaluation strategy is designed to validate the model's significant role in enhancing forecast accuracy and elevating overall management efficiency, particularly in complex software project environments. The results indicate that the integration of time prediction algorithms with LLMs has the potential to optimize software project progress management. These quantitative results suggest the effectiveness of the method in practical applications. In conclusion, this study demonstrates that integrating time prediction algorithms with LLMs can significantly improve the predictive accuracy and efficiency of software project management. This offers an advanced project management tool for the industry, with the potential to improve operational efficiency, optimize resource allocation, and ensure timely project completion.Keywords: software project management, time prediction algorithms, large language models (LLMS), forecast accuracy, project progress prediction
Procedia PDF Downloads 844765 Conceptualizing Psycho-Social Intervention with Juvenile Offenders as Attachment Therapy: A Practical Approach
Authors: Genziana Lay
Abstract:
A wide majority of older children and adolescents who enter the juvenile court system present with an array of problematic symptoms and behaviors including anxiety, depression, aggressive acting out, detachment, and substance abuse. Attachment theory offers a framework for understanding normative and pathological functioning, which during development is influenced by emotional, social and cognitive elements. There is clear evidence that children and adolescents with the highest risk of developing adaptation problems present an insecure attachment profile. Most offending minors have experienced dysfunctional family relationships as well as social and/or economic deprivation. Their maladaptive attachment develops not only through their relationship with caregivers but with the environment at large. Activation of their faulty attachment system leads them to feel emotionally overwhelmed and engage in destructive behaviors and decision-making. A psycho-social intervention with this population conceptualized as attachment therapy is a multi-faceted, practical approach that has shown excellent results in terms of increased psychological well-being and drastically reduced rates of re-offense/ destructive behavior. Through several; components including psychotherapy, monitoring, volunteering, meditation and socialization, the program focuses on seven dimensions: self-efficacy, responsibility, empathy/reparation, autonomy/security, containment/structure, insight building, and relational health. This paper presents the program and illustrates how the framework of attachment theory practically applied to psycho-social intervention has great therapeutic and social reparation potential. Preliminary evidence drawn from the Sassari Juvenile Court is very promising; this paper will illustrate these results and propose an even more comprehensive, applicable approach to psycho-social reparative intervention that leads to greater psychological health and reduced recidivism in the child and adolescent population.Keywords: attachment, child, adolescent, crime, juvenile, psychosocial
Procedia PDF Downloads 1744764 Thermal Regeneration of CO2 Spent Palm Shell-Polyetheretherketone Activated Carbon Sorbents
Authors: Usman D. Hamza, Noor S. Nasri, Mohammed Jibril, Husna M. Zain
Abstract:
Activated carbons (M4P0, M4P2, and M5P2) used in this research were produced from palm shell and polyetherether ketone (PEEK) via carbonization, impregnation, and microwave activation. The adsorption/desorption process was carried out using static volumetric adsorption. Regeneration is important in the overall economy of the process and waste minimization. This work focuses on the thermal regeneration of the CO2 exhausted microwave activated carbons. The regeneration strategy adopted was thermal with nitrogen purge desorption with N2 feed flow rate of 20 ml/min for 1 h at atmospheric pressure followed by drying at 1500C. Seven successive adsorption/regeneration processes were carried out on the material. It was found that after seven adsorption regeneration cycles; the regeneration efficiency (RE) for CO2 activated carbon from palm shell only (M4P0) was more than 90% while that of hybrid palm shell-PEEK (M4P2, M5P2) was above 95%. The cyclic adsorption and regeneration shows the stability of the adsorbent materials.Keywords: activated carbon, palm shell-PEEK, regeneration, thermal
Procedia PDF Downloads 4924763 Water Droplet Impact on Vibrating Rigid Superhydrophobic Surfaces
Authors: Jingcheng Ma, Patricia B. Weisensee, Young H. Shin, Yujin Chang, Junjiao Tian, William P. King, Nenad Miljkovic
Abstract:
Water droplet impact on surfaces is a ubiquitous phenomenon in both nature and industry. The transfer of mass, momentum and energy can be influenced by the time of contact between droplet and surface. In order to reduce the contact time, we study the influence of substrate motion prior to impact on the dynamics of droplet recoil. Using optical high speed imaging, we investigated the impact dynamics of macroscopic water droplets (~ 2mm) on rigid nanostructured superhydrophobic surfaces vibrating at 60 – 300 Hz and amplitudes of 0 – 3 mm. In addition, we studied the influence of the phase of the substrate at the moment of impact on total contact time. We demonstrate that substrate vibration can alter droplet dynamics, and decrease total contact time by as much as 50% compared to impact on stationary rigid superhydrophobic surfaces. Impact analysis revealed that the vibration frequency mainly affected the maximum contact time, while the amplitude of vibration had little direct effect on the contact time. Through mathematical modeling, we show that the oscillation amplitude influences the possibility density function of droplet impact at a given phase, and thus indirectly influences the average contact time. We also observed more vigorous droplet splashing and breakup during impact at larger amplitudes. Through semi-empirical mathematical modeling, we describe the relationship between contact time and vibration frequency, phase, and amplitude of the substrate. We also show that the maximum acceleration during the impact process is better suited as a threshold parameter for the onset of splashing than a Weber-number criterion. This study not only provides new insights into droplet impact physics on vibrating surfaces, but develops guidelines for the rational design of surfaces to achieve controllable droplet wetting in applications utilizing vibration.Keywords: contact time, impact dynamics, oscillation, pear-shape droplet
Procedia PDF Downloads 4554762 Value Chain Analysis and Enhancement Added Value in Palm Oil Supply Chain
Authors: Juliza Hidayati, Sawarni Hasibuan
Abstract:
PT. XYZ is a manufacturing company that produces Crude Palm Oil (CPO). The fierce competition in the global markets not only between companies but also a competition between supply chains. This research aims to analyze the supply chain and value chain of Crude Palm Oil (CPO) in the company. Data analysis method used is qualitative analysis and quantitative analysis. The qualitative analysis describes supply chain and value chain, while the quantitative analysis is used to find out value added and the establishment of the value chain. Based on the analysis, the value chain of crude palm oil (CPO) in the company consists of four main actors that are suppliers of raw materials, processing, distributor, and customer. The value chain analysis consists of two actors; those are palm oil plantation and palm oil processing plant. The palm oil plantation activities include nurseries, planting, plant maintenance, harvesting, and shipping. The palm oil processing plant activities include reception, sterilizing, thressing, pressing, and oil classification. The value added of palm oil plantations was 72.42% and the palm oil processing plant was 10.13%.Keywords: palm oil, value chain, value added, supply chain
Procedia PDF Downloads 3754761 Nitrogen-Doped Ultrananocrystalline Diamond/Hydrogenated Amorphous Carbon Composite Films Prepared by Coaxial Arc Plasma Deposition
Authors: Abdelrahman Zkria, Tsuyoshi Yoshitake
Abstract:
Diamond is one of the most interesting semiconducting carbon materials owing to its unique physical and chemical properties, yet its application in electronic devices is limited due to the difficulty of realizing n-type conduction by nitrogen doping. In contrast Ultrananocrystalline diamond with diamond grains of about 3–5 nm in diameter have attracted much attention for device-oriented applications because they may enable the realization of n-type doping with nitrogen. In this study, nitrogen-doped Ultra-Nanocrystalline diamond films were prepared by coaxial arc plasma deposition (CAPD) method, the nitrogen content was estimated by X-ray photoemission spectroscopy (XPS). The electrical conductivity increased with increasing nitrogen contents. Heterojunction diodes with p-type Si were fabricated and evaluated based on current–voltage (I–V) and capacitance–voltage (C–V) characteristics measured in dark at room temperature.Keywords: heterojunction diodes, hopping conduction mechanism, nitrogen-doping, ultra-nanocrystalline diamond
Procedia PDF Downloads 3064760 Kinetic Parameter Estimation from Thermogravimetry and Microscale Combustion Calorimetry
Authors: Rhoda Afriyie Mensah, Lin Jiang, Solomon Asante-Okyere, Xu Qiang, Cong Jin
Abstract:
Flammability analysis of extruded polystyrene (XPS) has become crucial due to its utilization as insulation material for energy efficient buildings. Using the Kissinger-Akahira-Sunose and Flynn-Wall-Ozawa methods, the degradation kinetics of two pure XPS from the local market, red and grey ones, were obtained from the results of thermogravity analysis (TG) and microscale combustion calorimetry (MCC) experiments performed under the same heating rates. From the experiments, it was discovered that red XPS released more heat than grey XPS and both materials showed two mass loss stages. Consequently, the kinetic parameters for red XPS were higher than grey XPS. A comparative evaluation of activation energies from MCC and TG showed an insignificant degree of deviation signifying an equivalent apparent activation energy from both methods. However, different activation energy profiles as a result of the different chemical pathways were presented when the dependencies of the activation energies on extent of conversion for TG and MCC were compared.Keywords: flammability, microscale combustion calorimetry, thermogravity analysis, thermal degradation, kinetic analysis
Procedia PDF Downloads 1834759 Sparse Unmixing of Hyperspectral Data by Exploiting Joint-Sparsity and Rank-Deficiency
Authors: Fanqiang Kong, Chending Bian
Abstract:
In this work, we exploit two assumed properties of the abundances of the observed signatures (endmembers) in order to reconstruct the abundances from hyperspectral data. Joint-sparsity is the first property of the abundances, which assumes the adjacent pixels can be expressed as different linear combinations of same materials. The second property is rank-deficiency where the number of endmembers participating in hyperspectral data is very small compared with the dimensionality of spectral library, which means that the abundances matrix of the endmembers is a low-rank matrix. These assumptions lead to an optimization problem for the sparse unmixing model that requires minimizing a combined l2,p-norm and nuclear norm. We propose a variable splitting and augmented Lagrangian algorithm to solve the optimization problem. Experimental evaluation carried out on synthetic and real hyperspectral data shows that the proposed method outperforms the state-of-the-art algorithms with a better spectral unmixing accuracy.Keywords: hyperspectral unmixing, joint-sparse, low-rank representation, abundance estimation
Procedia PDF Downloads 2664758 Galvinising Higher Education Institutions as Creative, Humanised and Innovative Environments
Authors: A. Martins, I. Martins, O. Pereira
Abstract:
The purpose of this research is to focus on the importance of distributed leadership in universities and Higher Education Institutions (HEIs). The research question is whether there a significant finding in self-reported ratings of leadership styles of those respondents that are studying management. The study aims to further discover whether students are encouraged to become responsible and proactive citizens, to develop their skills set, specifically shared leadership and higher-level skills to inspire creation knowledge, sharing and distribution thereof. Contemporary organizations need active and responsible individuals who are capable to make decisions swiftly and responsibly. Leadership influences innovative results and education play a dynamic role in preparing graduates. Critical reflection of extant literature indicates a need for a culture of leadership and innovation to promote organizational sustainability in the globalised world. This study debates the need for HEIs to prepare the graduate for both organizations and society as a whole. This active collaboration should be the very essence of both universities and the industry in order for these to achieve responsible sustainability. Learning and innovation further depend on leadership efficacy. This study follows the pragmatic paradigm methodology. Primary data collection is currently being gathered via the web-based questionnaire link which was made available on the UKZN notice system. The questionnaire has 35 items with a Likert scale of five response options. The purposeful sample method was used, and the population entails the undergraduate and postgraduate students in the College of Law and Business, University of KwaZulu-Natal, South Africa. Limitations include the design of the study and the reliance on the quantitative data as the only method of primary data collection. This study is of added value for scholars and organizations in the innovation economy.Keywords: knowledge creation, learning, performance, sustainability
Procedia PDF Downloads 2904757 The Relationship among EFL Learners’ Creativity, Emotional Intelligence and Self-Efficacy
Authors: Behdoukht Mall Amiri, Zohreh Gheydar
Abstract:
The thrust of the current study was to investigate the relationship among EFL learners' creativity (CR), emotional intelligence (EI), and self-efficacy (SE). To this end, a group of 120 male and female learners, between the ages of 19 and 35 studying BA in English Translation and MA in Teaching English at Islamic Azad University, Central Tehran were selected using convenient sampling and were given three questionnaires: Bar-On’s EQ-I questionnaire by Bar-On (1997), the General Self-Efficacy Scale questionnaire (SGSES) by Sherer et al. (1982), and a questionnaire of creativity (CR) by O'Neil, Abedi, and Spielberger (1992). Analysis of the results through Pearson Moment Correlation Coefficient showed that there was not a significant relationship between students’ CR and EI, and EI and SE. In addition, CR and SE were correlated significantly but negatively. Multiple regressions revealed that CR could significantly predict SE. Regarding the findings of the study, the obtained results may help EFL teachers, teacher trainers, materials developers, and educational policy makers to possess a broader perspective and heightened degree knowledge toward the TEFL practice and to take practical steps toward the attainments of the desired objectives of the profession.Keywords: creativity, emotional intelligence, self-efficacy, learning
Procedia PDF Downloads 4514756 Phase Diagrams and Liquid-Liquid Extraction in Aqueous Biphasic Systems Formed by Polyethylene Glycol and Potassium Sodium Tartrate at 303.15 K
Authors: Amanda Cristina de Oliveira, Elias de Souza Monteiro Filho, Roberta Ceriani
Abstract:
Liquid-liquid extraction in aqueous two-phase systems (ATPSs) constitutes a powerful tool for purifying bio-materials, such as cells, organelles, proteins, among others. In this work, the extraction of the bovine serum albumin (BSA) has been studied in systems formed by polyethylene glycol (PEG) (1500, 4000, and 6000 g.mol⁻¹) + potassium sodium tartrate + water at 303.15°K. Phase diagrams were obtained by turbidimetry and Merchuk’s method (1998). The experimental tie-lines were described using the Othmer-Tobias and Bancroft correlations. ATPSs were correlated with the nonrandom two-liquid (NRTL) model. The results were considered excellent according to global root-mean-square deviations found which were between 0,72 and 1,13%. The concentrations of the proteins in each phase were determined by spectrophotometry at 280 nm, finding partition efficiencies greater than 71%.Keywords: aqueous two phases systems, bovine serum albumin , liquid-liquid extraction, polyethylene glycol
Procedia PDF Downloads 1634755 A Brief Review of Urban Green Vegetation (Green Wall) in Reduction of Air Pollution
Authors: Masoumeh Pirhadi
Abstract:
Air pollution is becoming a major health problem affecting millions. In support of this observation, the world health organization estimates that many people feel unhealthy due to pollution. This is a coupled fact that one of the main global sources of air pollution in cities is greenhouse gas emissions due heavy traffic. Green walls are developed as a sustainable strategy to reduce pollution by increasing vegetation in developed areas without occupying space in the city. This concept an offer advantageous environmental benefits and they can also be proposed for aesthetic purposes, and today they are used to preserve the urban environment. Green walls can also create environments that can promote a healthy lifestyle. Findings of multiple studies also indicate that Green infrastructure in cities is a strategy for improving air quality and increasing the sustainability of cities. Since these green solutions (green walls) act as porous materials that affect the diffusion of air pollution they can also act as a removing air vents that clean the air. Therefore, implementation of this strategy can be considered as a prominent factor in achieving a cleaner environment.Keywords: green vegetation, air pollution, green wall, urban area
Procedia PDF Downloads 1594754 One-Dimensional Numerical Simulation of the Nonlinear Instability Behavior of an Electrified Viscoelastic Liquid Jet
Authors: Fang Li, Xie-Yuan Yin, Xie-Zhen Yin
Abstract:
Instability and breakup of electrified viscoelastic liquid jets are involved in various applications such as inkjet printing, fuel atomization, the pharmaceutical industry, electrospraying, and electrospinning. Studying on the instability of electrified viscoelastic liquid jets is of theoretical and practical significance. We built a one-dimensional electrified viscoelastic model to study the nonlinear instability behavior of a perfecting conducting, slightly viscoelastic liquid jet under a radial electric field. The model is solved numerically by using an implicit finite difference scheme together with a boundary element method. It is found that under a radial electric field a viscoelastic liquid jet still evolves into a beads-on-string structure with a thin filament connecting two adjacent droplets as in the absence of an electric field. A radial electric field exhibits limited influence on the decay of the filament thickness in the nonlinear evolution process of a viscoelastic jet, in contrast to its great enhancing effect on the linear instability of the jet. On the other hand, a radial electric field can induce axial non-uniformity of the first normal stress difference within the filament. Particularly, the magnitude of the first normal stress difference near the midpoint of the filament can be greatly decreased by a radial electric field. Decreasing the extensional stress by a radial electric field may found applications in spraying, spinning, liquid bridges and others. In addition, the effect of a radial electric field on the formation of satellite droplets is investigated on the parametric plane of the dimensionless wave number and the electrical Bond number. It is found that satellite droplets may be formed for a larger axial wave number at a larger radial electric field. The present study helps us gain insight into the nonlinear instability characteristics of electrified viscoelastic liquid jets.Keywords: non linear instability, one-dimensional models, radial electric fields, viscoelastic liquid jets
Procedia PDF Downloads 3944753 Icephobic and Hydrophobic Behaviour of Laser Patterned Transparent Coatings
Authors: Bartłomiej Przybyszewski, Rafał Kozera, Anna Boczkowska, Maciej Traczyk, Paulina Kozera, Malwina Liszewska, Daria Pakuła
Abstract:
The goal of the work was to reduce or completely eliminate the accumulation of dirt, snow and ice build-up on transparent coatings by achieving self-cleaning and icephobic properties. The research involved the use of laser surface texturing technology for chemically modified coatings of the epoxy materials group and their hybrids used to protect glass surfaces. For this purpose, two methods of surface structuring and the preceding volumetric modification of the chemical composition with proprietary organosilicon compounds and/or mineral additives were used. An attractive approach to the topic was the development of efficient and, most importantly, durable coatings with self-cleaning and ice-phobic properties that reduced or avoided dirt build-up and adhesion of water, snow and ice. With a view to the future industrial application of the developed technologies, all methods meet the requirements in terms of their practical use on a large scale.Keywords: icephobic coatings, hydrophobic coatings, transparent coatings, laser patterning
Procedia PDF Downloads 1124752 An Analysis of the Relations between Aggregates’ Shape and Mechanical Properties throughout the Railway Ballast Service Life
Authors: Daianne Fernandes Diogenes
Abstract:
Railway ballast aggregates’ shape properties and size distribution can be directly affected by several factors, such as traffic, fouling, and maintenance processes, which cause breakage and wearing, leading to the fine particles’ accumulation through the ballast layer. This research aims to analyze the influence of traffic, tamping process, and sleepers’ stiffness on aggregates' shape and mechanical properties, by using traditional and digital image processing (DIP) techniques and cyclic tests, like resilient modulus (RM) and permanent deformation (PD). Aggregates were collected in different phases of the railway service life: (i) right after the crushing process; (ii) after construction, for the aggregates positioned below the sleepers and (iii) after 5 years of operation. An increase in the percentage of cubic particles was observed for the materials (ii) and (iii), providing a better interlocking, increasing stiffness and reducing axial deformation after 5 years of service, when compared to the initial conditions.Keywords: digital image processing, mechanical behavior, railway ballast, shape properties
Procedia PDF Downloads 128