Search results for: window-based regression
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3235

Search results for: window-based regression

2275 Risks for Cyanobacteria Harmful Algal Blooms in Georgia Piedmont Waterbodies Due to Land Management and Climate Interactions

Authors: Sam Weber, Deepak Mishra, Susan Wilde, Elizabeth Kramer

Abstract:

The frequency and severity of cyanobacteria harmful blooms (CyanoHABs) have been increasing over time, with point and non-point source eutrophication and shifting climate paradigms being blamed as the primary culprits. Excessive nutrients, warm temperatures, quiescent water, and heavy and less regular rainfall create more conducive environments for CyanoHABs. CyanoHABs have the potential to produce a spectrum of toxins that cause gastrointestinal stress, organ failure, and even death in humans and animals. To promote enhanced, proactive CyanoHAB management, risk modeling using geospatial tools can act as predictive mechanisms to supplement current CyanoHAB monitoring, management and mitigation efforts. The risk maps would empower water managers to focus their efforts on high risk water bodies in an attempt to prevent CyanoHABs before they occur, and/or more diligently observe those waterbodies. For this research, exploratory spatial data analysis techniques were used to identify the strongest predicators for CyanoHAB blooms based on remote sensing-derived cyanobacteria cell density values for 771 waterbodies in the Georgia Piedmont and landscape characteristics of their watersheds. In-situ datasets for cyanobacteria cell density, nutrients, temperature, and rainfall patterns are not widely available, so free gridded geospatial datasets were used as proxy variables for assessing CyanoHAB risk. For example, the percent of a watershed that is agriculture was used as a proxy for nutrient loading, and the summer precipitation within a watershed was used as a proxy for water quiescence. Cyanobacteria cell density values were calculated using atmospherically corrected images from the European Space Agency’s Sentinel-2A satellite and multispectral instrument sensor at a 10-meter ground resolution. Seventeen explanatory variables were calculated for each watershed utilizing the multi-petabyte geospatial catalogs available within the Google Earth Engine cloud computing interface. The seventeen variables were then used in a multiple linear regression model, and the strongest predictors of cyanobacteria cell density were selected for the final regression model. The seventeen explanatory variables included land cover composition, winter and summer temperature and precipitation data, topographic derivatives, vegetation index anomalies, and soil characteristics. Watershed maximum summer temperature, percent agriculture, percent forest, percent impervious, and waterbody area emerged as the strongest predictors of cyanobacteria cell density with an adjusted R-squared value of 0.31 and a p-value ~ 0. The final regression equation was used to make a normalized cyanobacteria cell density index, and a Jenks Natural Break classification was used to assign waterbodies designations of low, medium, or high risk. Of the 771 waterbodies, 24.38% were low risk, 37.35% were medium risk, and 38.26% were high risk. This study showed that there are significant relationships between free geospatial datasets representing summer maximum temperatures, nutrient loading associated with land use and land cover, and the area of a waterbody with cyanobacteria cell density. This data analytics approach to CyanoHAB risk assessment corroborated the literature-established environmental triggers for CyanoHABs, and presents a novel approach for CyanoHAB risk mapping in waterbodies across the greater southeastern United States.

Keywords: cyanobacteria, land use/land cover, remote sensing, risk mapping

Procedia PDF Downloads 214
2274 The Role of Demographics and Service Quality in the Adoption and Diffusion of E-Government Services: A Study in India

Authors: Sayantan Khanra, Rojers P. Joseph

Abstract:

Background and Significance: This study is aimed at analyzing the role of demographic and service quality variables in the adoption and diffusion of e-government services among the users in India. The study proposes to examine the users' perception about e-Government services and investigate the key variables that are most salient to the Indian populace. Description of the Basic Methodologies: The methodology to be adopted in this study is Hierarchical Regression Analysis, which will help in exploring the impact of the demographic variables and the quality dimensions on the willingness to use e-government services in two steps. First, the impact of demographic variables on the willingness to use e-government services is to be examined. In the second step, quality dimensions would be used as inputs to the model for explaining variance in excess of prior contribution by the demographic variables. Present Status: Our study is in the data collection stage in collaboration with a highly reliable, authentic and adequate source of user data. Assuming that the population of the study comprises all the Internet users in India, a massive sample size of more than 10,000 random respondents is being approached. Data is being collected using an online survey questionnaire. A pilot survey has already been carried out to refine the questionnaire with inputs from an expert in management information systems and a small group of users of e-government services in India. The first three questions in the survey pertain to the Internet usage pattern of a respondent and probe whether the person has used e-government services. If the respondent confirms that he/she has used e-government services, then an aggregate of 15 indicators are used to measure the quality dimensions under consideration and the willingness of the respondent to use e-government services, on a five-point Likert scale. If the respondent reports that he/she has not used e-government services, then a few optional questions are asked to understand the reason(s) behind the same. Last four questions in the survey are dedicated to collect data related to the demographic variables. An indication of the Major Findings: Based on the extensive literature review carried out to develop several propositions; a research model is prescribed to start with. A major outcome expected at the completion of the study is the development of a research model that would help to understand the relationship involving the demographic variables and service quality dimensions, and the willingness to adopt e-government services, particularly in an emerging economy like India. Concluding Statement: Governments of emerging economies and other relevant agencies can use the findings from the study in designing, updating, and promoting e-government services to enhance public participation, which in turn, would help to improve efficiency, convenience, engagement, and transparency in implementing these services.

Keywords: adoption and diffusion of e-government services, demographic variables, hierarchical regression analysis, service quality dimensions

Procedia PDF Downloads 269
2273 Value Relevance of Accounting Information: A Study of Steel Sector in India

Authors: Pradyumna Mohanty

Abstract:

The paper aims to explore whether accounting information of Indian companies in the Steel sector are value relevant or not. Ohlson’s model which usually takes into consideration book value per share (BV) and earnings per share (EARN) has been used and the same has been expanded to include two more variables such as cash flow from operations (CFO) and return on equity (ROE). The data were collected from CMIE-Prowess data base in respect of BSE-listed steel companies and the time frame spans from 2010 to 2014. OLS regression has been used to test the value relevance of these accounting numbers. Results indicate that both CFO and BV are having significant influence on the stock price in two out of five years of study. But, BV is emerging as the most significant and highly value relevant of all the four variables during the entire period of study.

Keywords: value relevance, accounting information, book value per share, earnings per share

Procedia PDF Downloads 161
2272 A Dynamic Spatial Panel Data Analysis on Renter-Occupied Multifamily Housing DC

Authors: Jose Funes, Jeff Sauer, Laixiang Sun

Abstract:

This research examines determinants of multifamily housing development and spillovers in the District of Columbia. A range of socioeconomic factors related to income distribution, productivity, and land use policies are thought to influence the development in contemporary U.S. multifamily housing markets. The analysis leverages data from the American Community Survey to construct panel datasets spanning from 2010 to 2019. Using spatial regression, we identify several socioeconomic measures and land use policies both positively and negatively associated with new housing supply. We contextualize housing estimates related to race in relation to uneven development in the contemporary D.C. housing supply.

Keywords: neighborhood effect, sorting, spatial spillovers, multifamily housing

Procedia PDF Downloads 104
2271 Predicting the Impact of Scope Changes on Project Cost and Schedule Using Machine Learning Techniques

Authors: Soheila Sadeghi

Abstract:

In the dynamic landscape of project management, scope changes are an inevitable reality that can significantly impact project performance. These changes, whether initiated by stakeholders, external factors, or internal project dynamics, can lead to cost overruns and schedule delays. Accurately predicting the consequences of these changes is crucial for effective project control and informed decision-making. This study aims to develop predictive models to estimate the impact of scope changes on project cost and schedule using machine learning techniques. The research utilizes a comprehensive dataset containing detailed information on project tasks, including the Work Breakdown Structure (WBS), task type, productivity rate, estimated cost, actual cost, duration, task dependencies, scope change magnitude, and scope change timing. Multiple machine learning models are developed and evaluated to predict the impact of scope changes on project cost and schedule. These models include Linear Regression, Decision Tree, Ridge Regression, Random Forest, Gradient Boosting, and XGBoost. The dataset is split into training and testing sets, and the models are trained using the preprocessed data. Cross-validation techniques are employed to assess the robustness and generalization ability of the models. The performance of the models is evaluated using metrics such as Mean Squared Error (MSE) and R-squared. Residual plots are generated to assess the goodness of fit and identify any patterns or outliers. Hyperparameter tuning is performed to optimize the XGBoost model and improve its predictive accuracy. The feature importance analysis reveals the relative significance of different project attributes in predicting the impact on cost and schedule. Key factors such as productivity rate, scope change magnitude, task dependencies, estimated cost, actual cost, duration, and specific WBS elements are identified as influential predictors. The study highlights the importance of considering both cost and schedule implications when managing scope changes. The developed predictive models provide project managers with a data-driven tool to proactively assess the potential impact of scope changes on project cost and schedule. By leveraging these insights, project managers can make informed decisions, optimize resource allocation, and develop effective mitigation strategies. The findings of this research contribute to improved project planning, risk management, and overall project success.

Keywords: cost impact, machine learning, predictive modeling, schedule impact, scope changes

Procedia PDF Downloads 44
2270 Thermoregulatory Responses of Holstein Cows Exposed to Intense Heat Stress

Authors: Rodrigo De A. Ferrazza, Henry D. M. Garcia, Viviana H. V. Aristizabal, Camilla De S. Nogueira, Cecilia J. Verissimo, Jose Roberto Sartori, Roberto Sartori, Joao Carlos P. Ferreira

Abstract:

Environmental factors adversely influence sustainability in livestock production system. Dairy herds are the most affected by heat stress among livestock industries. This clearly implies in development of new strategies for mitigating heat, which should be based on physiological and metabolic adaptations of the animal. In this study, we incorporated the effect of climate variables and heat exposure time on the thermoregulatory responses in order to clarify the adaptive mechanisms for bovine heat dissipation under intense thermal stress induced experimentally in climate chamber. Non-lactating Holstein cows were contemporaneously and randomly assigned to thermoneutral (TN; n=12) or heat stress (HS; n=12) treatments during 16 days. Vaginal temperature (VT) was measured every 15 min with a microprocessor-controlled data logger (HOBO®, Onset Computer Corporation, Bourne, MA, USA) attached to a modified vaginal controlled internal drug release insert (Sincrogest®, Ourofino, Brazil). Rectal temperature (RT), respiratory rate (RR) and heart rate (HR) were measured twice a day (0700 and 1500h) and dry matter intake (DMI) was estimated daily. The ambient temperature and air relative humidity were 25.9±0.2°C and 73.0±0.8%, respectively for TN, and 36.3± 0.3°C and 60.9±0.9%, respectively for HS. Respiratory rate of HS cows increased immediately after exposure to heat and was higher (76.02±1.70bpm; P<0.001) than TN (39.70±0.71bpm), followed by rising of RT (39.87°C±0.07 for HS versus 38.56±0.03°C for TN; P<0.001) and VT (39.82±0.10°C for HS versus 38.26±0.03°C for TN; P<0.001). A diurnal pattern was detected, with higher (P<0.01) afternoon temperatures than morning and this effect was aggravated for HS cows. There was decrease (P<0.05) of HR for HS cows (62.13±0.99bpm) compared to TN (66.23±0.79bpm), but the magnitude of the differences was not the same over time. From the third day, there was a decrease of DMI for HS in attempt to maintain homeothermy, while TN cows increased DMI (8.27kg±0.33kg d-1 for HS versus 14.03±0.29kg d-1 for TN; P<0.001). By regression analysis, RT and RR better reflected the response of cows to changes in the Temperature Humidity Index and the effect of climate variables from the previous day to influence the physiological parameters and DMI was more important than the current day, with ambient temperature the most important factor. Comparison between acute (0 to 3 days) and chronic (13 to 16 days) exposure to heat stress showed decreasing of the slope of the regression equations for RR and DMI, suggesting an adaptive adjustment, however with no change for RT. In conclusion, intense heat stress exerted strong influence on the thermoregulatory mechanisms, but the acclimation process was only partial.

Keywords: acclimation, bovine, climate chamber, hyperthermia, thermoregulation

Procedia PDF Downloads 219
2269 Multilayer Perceptron Neural Network for Rainfall-Water Level Modeling

Authors: Thohidul Islam, Md. Hamidul Haque, Robin Kumar Biswas

Abstract:

Floods are one of the deadliest natural disasters which are very complex to model; however, machine learning is opening the door for more reliable and accurate flood prediction. In this research, a multilayer perceptron neural network (MLP) is developed to model the rainfall-water level relation, in a subtropical monsoon climatic region of the Bangladesh-India border. Our experiments show promising empirical results to forecast the water level for 1 day lead time. Our best performing MLP model achieves 98.7% coefficient of determination with lower model complexity which surpasses previously reported results on similar forecasting problems.

Keywords: flood forecasting, machine learning, multilayer perceptron network, regression

Procedia PDF Downloads 175
2268 Real Activities Manipulation vs. Accrual Earnings Management: The Effect of Political Risk

Authors: Heba Abdelmotaal, Magdy Abdel-Kader

Abstract:

Purpose: This study explores whether a firm’s effective political risk management is preventing real and accrual earnings management . Design/methodology/approach: Based on a sample of 130 firms operating in Egypt during the period 2008-2013, two hypotheses are tested using the panel data regression models. Findings: The empirical findings indicate a significant relation between real and accrual earnings management and political risk. Originality/value: This paper provides a statistically evidence on the effects of the political risk management failure on the mangers’ engagement in the real and accrual earnings management practices, and its impact on the firm’s performance.

Keywords: political risk, risk management failure, real activities manipulation, accrual earnings management

Procedia PDF Downloads 441
2267 A Multilevel Analysis of Predictors of Early Antenatal Care Visits among Women of Reproductive Age in Benin: 2017/2018 Benin Demographic and Health Survey

Authors: Ebenezer Kwesi Armah-Ansah, Kenneth Fosu Oteng, Esther Selasi Avinu, Eugene Budu, Edward Kwabena Ameyaw

Abstract:

Background: Maternal mortality, particularly in Benin, is a major public health concern in Sub-Saharan Africa. To provide a positive pregnancy experience and reduce maternal morbidities, all pregnant women must get appropriate and timely prenatal support. However, many pregnant women in developing countries, including Benin, begin antenatal care late. There is a paucity of empirical literature on the prevalence and predictors of early antenatal care visits in Benin. As a result, the purpose of this study is to investigate the prevalence and predictors of early antenatal care visits among women of productive age in Benin. Methods: This is a secondary analysis of the 2017/2018 Benin Demographic and Health Survey (BDHS) data. The study involved 6,919 eligible women. Data analysis was conducted using Stata version 14.2 for Mac OS. We adopted a multilevel logistic regression to examine the predictors of early ANC visits in Benin. The results were presented as odds ratios (ORs) associated with 95% confidence intervals (CIs) and p-value <0.05 to determine the significant associations. Results: The prevalence of early ANC visits among pregnant women in Benin was 57.03% [95% CI: 55.41-58.64]. In the final multilevel logistic regression, early ANC visit was higher among women aged 30-34 [aOR=1.60, 95% CI=1.17-2.18] compared to those aged 15-19, women with primary education [aOR=1.22, 95% CI=1.06-142] compared to the non-educated women, women who were covered by health insurance [aOR=3.03, 95% CI=1.35-6.76], women without a big problem in getting the money needed for treatment [aOR=1.31, 95% CI=1.16-1.49], distance to the health facility, not a big problem [aOR=1.23, 95% CI=1.08-1.41], and women whose partners had secondary/higher education [aOR=1.35, 95% CI=1.15-1.57] compared with those who were not covered by health insurance, had big problem in getting money needed for treatment, distance to health facility is a big problem and whose partners had no education respectively. However, women who had four or more births [aOR=0.60, 95% CI=0.48-0.74] and those in Atacora Region [aOR=0.50, 95% CI=0.37-0.68] had lower odds of early ANC visit. Conclusion: This study revealed a relatively high prevalence of early ANC visits among women of reproductive age in Benin. Women's age, educational status of women and their partners, parity, health insurance coverage, distance to health facilities, and region were all associated with early ANC visits among women of reproductive in Benin. These factors ought to be taken into account when developing ANC policies and strategies in order to boost early ANC visits among women in Benin. This will significantly reduce maternal and newborn mortality and help achieve the World Health Organization’s recommendation that all pregnant women should initiate early ANC visits within the first three months of pregnancy.

Keywords: antenatal care, Benin, maternal health, pregnancy, DHS, public health

Procedia PDF Downloads 67
2266 A Study of the Influence of College Students’ Exercise and Leisure Motivations on the Leisure Benefits: Using Leisure Involvement as a Moderator

Authors: Chiung-En Huang, Cheng-Yu Tsai, Shane-Chung Lee

Abstract:

This study aim at the influence of college students’ exercise and leisure motivations on the leisure benefits while using the leisure involvement as a moderator. Whereby, the research tools used in this study included the application of leisure motivation scale, leisure involvement scale and leisure benefits scale, and a hierarchical regression analysis was performed by using a questionnaire-based survey, in which, a total of 1,500 copies of questionnaires were administered and 917 valid questionnaires were obtained, achieving a response rate of 61.13%. Research findings explore that leisure involvement has a moderating effect on the relationship between the leisure motivation and leisure benefits.

Keywords: leisure motivation, leisure involvement, leisure benefits, moderator

Procedia PDF Downloads 370
2265 Refractory Visceral Leishmaniasis Responding to Second-Line Therapy

Authors: Preet Shah, Om Shrivastav

Abstract:

Introduction : In India, Leishmania donovani is the only parasite causing Leishmaniasis. The parasite infects the reticuloendothelial system and is found in the bone marrow, spleen and liver. Treatment of choice is amphotericin-B with sodium stibogluconate being an alternative. Miltefosine is useful in refractory cases. In our case, Leishmaniasis occurred in a person residing in western India (which is quite rare) and it failed to respond to two different drugs (again an uncommon feature) before it finally responded to a third one. Description: A 50 year old lady, a resident of western India, with no history of recent travel, presented with an ulcer on the left side of the nose since 8 months. She was apparently alright 8 months back, when she noticed a small ulcerated lesion on the left ala of the nose which was immediately biopsied. The biopsy revealed amastigotes of Leishmania for which she was administered intra-lesional sodium stibogluconate for 1 month (4 doses every 8 days).Despite this, there was no regression of the ulcer and hence she presented to us for further management. On examination, her vital parameters were normal. Barring an ulcer on the left side of the nose, rest of the examination findings were unremarkable. Complete blood count was normal. Ultrasound abdomen showed hepatomegaly. PET-CT scan showed increased metabolic activity in left ala of nose, hepatosplenomegaly and increased metabolic activity in spleen and bone marrow. Bone marrow biopsy was done which showed hypercellular marrow with erythroid preponderance. Considering a diagnosis of leishmaniasis which had so far been unresponsive to sodium stibogluconate, she was started on liposomal amphotericin-B. At the time of admission, her creatinine level was normal, but it started rising with the administration of liposomal amphotericin-B, hence the dose was reduced. Despite this, creatinine levels did not improve, and she started developing hypokalemia and hypomagnesemia as side effects of the drug, hence further reductions in the dosage were made. Despite a total of 3 weeks of liposomal amphotericin-B, there was no improvement in the ulcer. As had so far failed to respond to sodium stibogluconate and liposomal amphotericin-B, it was decided to start her on miltefosine. She received the miltefosine for a total of 12 weeks. At the end of this duration, there was a marked regression of the cutaneous lesion. Conclusion: Refractoriness to amphotericin-B in leishmaniasis may be seen in up to 5 % cases. Here, an alternative drug such as miltefosine is useful and hence we decided to use it, to which she responded adequately. Furthermore, although leishmaniasis is common in the eastern part of India, it is a relatively unknown entity in the western part of the country with the occurrence being very rare. Because of these 2 reasons, we consider our case to be a unique one.

Keywords: amphotericin-b, leishmaniasis, miltefosine, tropical diseases

Procedia PDF Downloads 140
2264 Novel GPU Approach in Predicting the Directional Trend of the S&P500

Authors: A. J. Regan, F. J. Lidgey, M. Betteridge, P. Georgiou, C. Toumazou, K. Hayatleh, J. R. Dibble

Abstract:

Our goal is development of an algorithm capable of predicting the directional trend of the Standard and Poor’s 500 index (S&P 500). Extensive research has been published attempting to predict different financial markets using historical data testing on an in-sample and trend basis, with many authors employing excessively complex mathematical techniques. In reviewing and evaluating these in-sample methodologies, it became evident that this approach was unable to achieve sufficiently reliable prediction performance for commercial exploitation. For these reasons, we moved to an out-of-sample strategy based on linear regression analysis of an extensive set of financial data correlated with historical closing prices of the S&P 500. We are pleased to report a directional trend accuracy of greater than 55% for tomorrow (t+1) in predicting the S&P 500.

Keywords: financial algorithm, GPU, S&P 500, stock market prediction

Procedia PDF Downloads 351
2263 Modeling of Anode Catalyst against CO in Fuel Cell Using Material Informatics

Authors: M. Khorshed Alam, H. Takaba

Abstract:

The catalytic properties of metal usually change by intermixturing with another metal in polymer electrolyte fuel cells. Pt-Ru alloy is one of the much-talked used alloy to enhance the CO oxidation. In this work, we have investigated the CO coverage on the Pt2Ru3 nanoparticle with different atomic conformation of Pt and Ru using a combination of material informatics with computational chemistry. Density functional theory (DFT) calculations used to describe the adsorption strength of CO and H with different conformation of Pt Ru ratio in the Pt2Ru3 slab surface. Then through the Monte Carlo (MC) simulations we examined the segregation behaviour of Pt as a function of surface atom ratio, subsurface atom ratio, particle size of the Pt2Ru3 nanoparticle. We have constructed a regression equation so as to reproduce the results of DFT only from the structural descriptors. Descriptors were selected for the regression equation; xa-b indicates the number of bonds between targeted atom a and neighboring atom b in the same layer (a,b = Pt or Ru). Terms of xa-H2 and xa-CO represent the number of atoms a binding H2 and CO molecules, respectively. xa-S is the number of atom a on the surface. xa-b- is the number of bonds between atom a and neighboring atom b located outside the layer. The surface segregation in the alloying nanoparticles is influenced by their component elements, composition, crystal lattice, shape, size, nature of the adsorbents and its pressure, temperature etc. Simulations were performed on different size (2.0 nm, 3.0 nm) of nanoparticle that were mixing of Pt and Ru atoms in different conformation considering of temperature range 333K. In addition to the Pt2Ru3 alloy we also considered pure Pt and Ru nanoparticle to make comparison of surface coverage by adsorbates (H2, CO). Hence, we assumed the pure and Pt-Ru alloy nanoparticles have an fcc crystal structures as well as a cubo-octahedron shape, which is bounded by (111) and (100) facets. Simulations were performed up to 50 million MC steps. From the results of MC, in the presence of gases (H2, CO), the surfaces are occupied by the gas molecules. In the equilibrium structure the coverage of H and CO as a function of the nature of surface atoms. In the initial structure, the Pt/Ru ratios on the surfaces for different cluster sizes were in range of 0.50 - 0.95. MC simulation was employed when the partial pressure of H2 (PH2) and CO (PCO) were 70 kPa and 100-500 ppm, respectively. The Pt/Ru ratios decrease as the increase in the CO concentration, without little exception only for small nanoparticle. The adsorption strength of CO on the Ru site is higher than the Pt site that would be one of the reason for decreasing the Pt/Ru ratio on the surface. Therefore, our study identifies that controlling the nanoparticle size, composition, conformation of alloying atoms, concentration and chemical potential of adsorbates have impact on the steadiness of nanoparticle alloys which ultimately and also overall catalytic performance during the operations.

Keywords: anode catalysts, fuel cells, material informatics, Monte Carlo

Procedia PDF Downloads 193
2262 Optimization of Electric Vehicle (EV) Charging Station Allocation Based on Multiple Data - Taking Nanjing (China) as an Example

Authors: Yue Huang, Yiheng Feng

Abstract:

Due to the global pressure on climate and energy, many countries are vigorously promoting electric vehicles and building charging (public) charging facilities. Faced with the supply-demand gap of existing electric vehicle charging stations and unreasonable space usage in China, this paper takes the central city of Nanjing as an example, establishes a site selection model through multivariate data integration, conducts multiple linear regression SPSS analysis, gives quantitative site selection results, and provides optimization models and suggestions for charging station layout planning.

Keywords: electric vehicle, charging station, allocation optimization, urban mobility, urban infrastructure, nanjing

Procedia PDF Downloads 93
2261 Low SPOP Expression and High MDM2 expression Are Associated with Tumor Progression and Predict Poor Prognosis in Hepatocellular Carcinoma

Authors: Chang Liang, Weizhi Gong, Yan Zhang

Abstract:

Purpose: Hepatocellular carcinoma (HCC) is a malignant tumor with a high mortality rate and poor prognosis worldwide. Murine double minute 2 (MDM2) regulates the tumor suppressor p53, increasing cancer risk and accelerating tumor progression. Speckle-type POX virus and zinc finger protein (SPOP), a key of subunit of Cullin-Ring E3 ligase, inhibits tumor genesis and progression by the ubiquitination of its downstream substrates. This study aimed to clarify whether SPOP and MDM2 are mutually regulated in HCC and the correlation between SPOP and MDM2 and the prognosis of HCC patients. Methods: First, the expression of SPOP and MDM2 in HCC tissues were detected by TCGA database. Then, 53 paired samples of HCC tumor and adjacent tissues were collected to evaluate the expression of SPOP and MDM2 using immunohistochemistry. Chi-square test or Fisher’s exact test were used to analyze the relationship between clinicopathological features and the expression levels of SPOP and MDM2. In addition, Kaplan‒Meier curve analysis and log-rank test were used to investigate the effects of SPOP and MDM2 on the survival of HCC patients. Last, the Multivariate Cox proportional risk regression model analyzed whether the different expression levels of SPOP and MDM2 were independent risk factors for the prognosis of HCC patients. Results: Bioinformatics analysis revealed the low expression of SPOP and high expression of MDM2 were related to worse prognosis of HCC patients. The relationship between the expression of SPOP and MDM2 and tumor stem-like features showed an opposite trend. The immunohistochemistry showed the expression of SPOP protein was significantly downregulated while MDM2 protein significantly upregulated in HCC tissue compared to that in para-cancerous tissue. Tumors with low SPOP expression were related to worse T stage and Barcelona Clinic Liver Cancer (BCLC) stage, but tumors with high MDM2 expression were related to worse T stage, M stage, and BCLC stage. Kaplan–Meier curves showed HCC patients with high SPOP expression and low MDM2 expression had better survival than those with low SPOP expression and high MDM2 expression (P < 0.05). A multivariate Cox proportional risk regression model confirmed that a high MDM2 expression level was an independent risk factor for poor prognosis in HCC patients (P <0.05). Conclusion: The expression of SPOP protein was significantly downregulated, while the expression of MDM2 significantly upregulated in HCC. The low expression of SPOP and high expression. of MDM2 were associated with malignant progression and poor prognosis of HCC patients, indicating a potential therapeutic target for HCC patients.

Keywords: hepatocellular carcinoma, murine double minute 2, speckle-type POX virus and zinc finger protein, ubiquitination

Procedia PDF Downloads 146
2260 Optimization of Heat Source Assisted Combustion on Solid Rocket Motors

Authors: Minal Jain, Vinayak Malhotra

Abstract:

Solid Propellant ignition consists of rapid and complex events comprising of heat generation and transfer of heat with spreading of flames over the entire burning surface area. Proper combustion and thus propulsion depends heavily on the modes of heat transfer characteristics and cavity volume. Fire safety is an integral component of a successful rocket flight failing to which may lead to overall failure of the rocket. This leads to enormous forfeiture in resources viz., money, time, and labor involved. When the propellant is ignited, thrust is generated and the casing gets heated up. This heat adds on to the propellant heat and the casing, if not at proper orientation starts burning as well, leading to the whole rocket being completely destroyed. This has necessitated active research efforts emphasizing a comprehensive study on the inter-energy relations involved for effective utilization of the solid rocket motors for better space missions. Present work is focused on one of the major influential aspects of this detrimental burning which is the presence of an external heat source, in addition to a potential heat source which is already ignited. The study is motivated by the need to ensure better combustion and fire safety presented experimentally as a simplified small-scale mode of a rocket carrying a solid propellant inside a cavity. The experimental setup comprises of a paraffin wax candle as the pilot fuel and incense stick as the external heat source. The candle is fixed and the incense stick position and location is varied to investigate the find the influence of the pilot heat source. Different configurations of the external heat source presence with separation distance are tested upon. Regression rates of the pilot thin solid fuel are noted to fundamentally understand the non-linear heat and mass transfer which is the governing phenomenon. An attempt is made to understand the phenomenon fundamentally and the mechanism governing it. Results till now indicate non-linear heat transfer assisted with the occurrence of flaming transition at selected critical distances. With an increase in separation distance, the effect is noted to drop in a non-monotonic trend. The parametric study results are likely to provide useful physical insight about the governing physics and utilization in proper testing, validation, material selection, and designing of solid rocket motors with enhanced safety.

Keywords: combustion, propellant, regression, safety

Procedia PDF Downloads 162
2259 Currency Exchange Rate Forecasts Using Quantile Regression

Authors: Yuzhi Cai

Abstract:

In this paper, we discuss a Bayesian approach to quantile autoregressive (QAR) time series model estimation and forecasting. Together with a combining forecasts technique, we then predict USD to GBP currency exchange rates. Combined forecasts contain all the information captured by the fitted QAR models at different quantile levels and are therefore better than those obtained from individual models. Our results show that an unequally weighted combining method performs better than other forecasting methodology. We found that a median AR model can perform well in point forecasting when the predictive density functions are symmetric. However, in practice, using the median AR model alone may involve the loss of information about the data captured by other QAR models. We recommend that combined forecasts should be used whenever possible.

Keywords: combining forecasts, MCMC, predictive density functions, quantile forecasting, quantile modelling

Procedia PDF Downloads 258
2258 Cognitive Performance and Everyday Functionality in Healthy Greek Seniors

Authors: George Pavlidis, Ana Vivas

Abstract:

The demographic change into an aging population has stimulated the examination of seniors’ mental health and ability to live independently. The corresponding literature depicts the relation between cognitive decline and everyday functionality with aging, focusing largely in individuals that are reaching or have bridged the threshold of various forms of neuropathology and disability. In this context, recent meta-analysis depicts a moderate relation between cognitive performance and everyday functionality in AD sufferers. However, there has not been an analogous effort for the examination of this relation in the healthy spectrum of aging (i.e, in samples that are not challenged from a neurodegenerative disease). There is a consensus that the assessment tools designed to detect neuropathology with those that assess cognitive performance in healthy adults are distinct, thus their universal use in cognitively challenged and in healthy adults is not always valid. The same accounts for the assessment of everyday functionality. In addition, it is argued that everyday functionality should be examined with cultural adjusted assessment tools, since many vital everyday tasks are heterotypical among distinct cultures. Therefore, this study was set out to examine the relation between cognitive performance and everyday functionality a) in the healthy spectrum of aging and b) by adjusting the everyday functionality tools EPT and OTDL-R in the Greek cultural context. In Greece, 107 cognitively healthy seniors ( Mage = 62.24) completed a battery of neuropsychological tests and everyday functionality tests. Both were carefully chosen to be sensitive in fluctuations of performance in the healthy spectrum of cognitive performance and everyday functionality. The everyday functionality assessment tools were modified to reflect the local cultural context (i.e., EPT-G and OTDL-G). The results depicted that performance in all everyday functionality measures decline with age (.197 < r > .509). Statistically significant correlations emerged between cognitive performance and everyday functionality assessments that range from r =0.202 to r=0.510. A series of independent regression analysis including the scores of cognitive assessments has yield statistical significant models that explained 20.9 < AR2 > 32.4 of the variance in everyday functionality scored indexes. All everyday functionality measures were independently predicted by the TMT B-A index, and indicator of executive function. Stepwise regression analyses depicted that TMT B-A and age were statistically significant independent predictors of EPT-G and OTDL-G. It was concluded that everyday functionality is declining with age and that cognitive performance and everyday functional may be related in the healthy spectrum of aging. Age seems not to be the sole contributing factor in everyday functionality decline, rather executive control as well. Moreover, it was concluded that the EPT-G and OTDL-G are valuable tools to assess everyday functionality in Greek seniors that are not cognitively challenged, especially for research purposes. Future research should examine the contributing factors of a better cognitive vitality especially in executive control, as vital for the maintenance of independent living capacity with aging.

Keywords: cognition, everyday functionality, aging, cognitive decline, healthy aging, Greece

Procedia PDF Downloads 526
2257 The Impact of Sports Employees' of Perceptions of Organizational Climate and Organizational Trust on Work Motivation

Authors: Bilal Okudan, Omur F. Karakullukcu, Yusuf Can

Abstract:

Work motivation is one of the fundamental elements that determine the attitudes and performance of employees towards work. In this sense, work motivation depends not only on individual and occupational factors but also on employees' perception of organizational climate and organizational trust. Organizations that are aware of this have begun to do more research on work motivation in recent years to ensure that employees have the highest possible performance. In this framework of the purpose of this study is to examine the effect of sports employees' perceptions of organizational climate and organizational trust on work motivation. In the study, it has also been analyzed if there is any significant difference in the department of sports services’ employees’ organizational climate and organizational trust perception, and work motivation levels in terms of gender, age, duty status, year of service and level of education. 278 sports managers, who work in the department of sports service’s central and field organization at least as a chief in the manager position, have been chosen with random sampling method and they have voluntarily participated in the study. In the study, the organizational climate scale which was developed by Bilir (2005), organizational trusts scale developed by koksal (2012) and work motivation scale developed by Mottaz J. Clifford (1985) have been used as a data collection tool. The questionnaire form used as a data collection tool in the study includes a personal information form consisting of 5 questions; questioning gender, age, duty status, years of service and level of education. In the study, Pearson Correlation Analysis has been used for defining the correlation among organizational climate, organizational trust perceptions and work motivation levels in sports managers and regression analysis has been used to identify the effect of organizational climate and organizational trust on work motivation. T-test for binary grouping and ANOVA analysis have been used for more than binary groups in order to determine if there is any significant difference in the level of organizational climate, organizational trust perceptions and work motivations in terms of the participants’ duty status, year of service and level of education. According to the research results, it has been found that there is a positive correlation between the department of sports services’ employees’ organizational climate, organizational trust perceptions and work motivation levels. According to the results of the regression analysis; it is understood that the sports employees’ perception of organizational climate and organizational trust are two main factors which affects the perception of work motivation. Also, the results show that there is a significant difference in the level of organizational climate and organizational trust perceptions and work motivations of the department of sports services’ employees in terms of duty status, year of service, and level of education; however, the results reveal that there is no significant difference in terms of age groups and gender.

Keywords: sports manager, organizational climate, organizational trust, work motivation

Procedia PDF Downloads 244
2256 Application of Neuro-Fuzzy Technique for Optimizing the PVC Membrane Sensor

Authors: Majid Rezayi, Sh. Shahaboddin, HNM E. Mahmud, A. Yadollah, A. Saeid, A. Yatimah

Abstract:

In this study, the adaptive neuro-fuzzy inference system (ANFIS) was applied to obtain the membrane composition model affecting the potential response of our reported polymeric PVC sensor for determining the titanium (III) ions. The performance statistics of the artificial neural network (ANN) and linear regression models for potential slope prediction of membrane composition of titanium (III) ion selective electrode were compared with ANFIS technique. The results show that the ANFIS model can be used as a practical tool for obtaining the Nerntian slope of the proposed sensor in this study.

Keywords: adaptive neuro fuzzy inference, PVC sensor, titanium (III) ions, Nerntian slope

Procedia PDF Downloads 290
2255 The Effective Operations Competitive Advantages of Mobile Phone Service Providers across Countries: The Case of Middle East Region

Authors: Yazan Khalid Abed-Allah Migdadi

Abstract:

The aim of this study is identifying the effective operations competitive advantages of mobile phone service providers across countries. All Arab countries in the Middle East region were surveyed except Syria, and 27 out of 31 service providers were surveyed. Data collected from corporations’ annual reports, websites and other professional institutions published sources. Multiple linear regression analysis test was used to identify the relationship between operations competitive advantages and market share. The effective operations competitive advantages were; diversity of offers and service accessibility

Keywords: competitive advantage, mobile telecommunication operations, Middle East, service provider

Procedia PDF Downloads 398
2254 Prediction of Bariatric Surgery Publications by Using Different Machine Learning Algorithms

Authors: Senol Dogan, Gunay Karli

Abstract:

Identification of relevant publications based on a Medline query is time-consuming and error-prone. An all based process has the potential to solve this problem without any manual work. To the best of our knowledge, our study is the first to investigate the ability of machine learning to identify relevant articles accurately. 5 different machine learning algorithms were tested using 23 predictors based on several metadata fields attached to publications. We find that the Boosted model is the best-performing algorithm and its overall accuracy is 96%. In addition, specificity and sensitivity of the algorithm is 97 and 93%, respectively. As a result of the work, we understood that we can apply the same procedure to understand cancer gene expression big data.

Keywords: prediction of publications, machine learning, algorithms, bariatric surgery, comparison of algorithms, boosted, tree, logistic regression, ANN model

Procedia PDF Downloads 210
2253 Exploring the Relationship among Job Stress, Travel Constraints, and Job Satisfaction of the Employees in Casino Hotels: The Case of Macau

Authors: Tao Zhang

Abstract:

Job stress appears nearly everywhere especially in the hospitality industry because employees in this industry usually have to work long time and try to meet conflicting demands of their customers, managers, and company. To reduce job stress, employees of casino hotels try to perform leisure activities or tourism. However, casino employees often meet many obstacles or constraints when they plan to travel. Until now, there is little understanding as to why casino hotel employees often face many travel constraints or leisure barriers. What is more, few studies explore the relationship between travel constraints and job stress of casino employees. Therefore, this study is to explore the construct of casino hotel employees' travel constraints and the relationship among job stress, travel constraints, and job satisfaction. Using convenient sampling method, this study planned to investigate 500 front line employees and managers of ten casino hotels in Macau. A total of 500 questionnaires were distributed, and 414 valid questionnaires were received. The return rate of valid questionnaires is 82.8%. Several statistical techniques such as factor analysis, t-test, one-way ANOVA, and regression analysis were applied to analyze the collected data. The findings of this study are as follows. Firstly, by using factor analysis, this study found the travel constraints of casino employees include intrapersonal constraints, interpersonal constraints, and structural constraints. Secondly, by using regression analysis, the study found travel constraints are positively related with job stress while negatively related with job satisfaction. This means reducing travel constraints may create a chance for casino employees to travel so that they could reduce job stress, therefore raise their job satisfaction. Thirdly, this research divided the research samples into three groups by the degree of job stress. The three groups are low satisfaction group, medium satisfaction group, and high satisfaction group. The means values of these groups were compared by t-test. Results showed that there are significant differences of the means values of interpersonal constraints between low satisfaction group and high satisfaction group. This suggests positive interpersonal relationship especially good family member relationship reduce not only job stress but also travel constraints of casino employees. Interestingly, results of t-test showed there is not a significant difference of the means values of structural constraints between low satisfaction group and high satisfaction group. This suggests structural constraints are outside variables which may be related with tourism destination marketing. Destination marketing organizations (DMO) need use all kinds of tools and techniques to promote their tourism destinations so as to reduce structural constraints of casino employees. This research is significant for both theoretical and practical fields. From the theoretical perspective, the study found the internal relationship between travel constraints, job stress, and job satisfaction and the different roles of three dimensions of travel constraints. From the practical perspective, the study provides useful methods to reduce travel constraints and job stress, therefore, raise job satisfaction of casino employees.

Keywords: hotel, job satisfaction, job stress, travel constraints

Procedia PDF Downloads 253
2252 Evaluation of Prehabilitation Prior to Surgery for an Orthopaedic Pathway

Authors: Stephen McCarthy, Joanne Gray, Esther Carr, Gerard Danjoux, Paul Baker, Rhiannon Hackett

Abstract:

Background: The Go Well Health (GWH) platform is a web-based programme that allows patients to access personalised care plans and resources, aimed at prehabilitation prior to surgery. The online digital platform delivers essential patient education and support for patients prior to undergoing total hip replacements (THR) and total knee replacements (TKR). This study evaluated the impact of an online digital platform (ODP) in terms of functional health outcomes, health related quality of life and hospital length of stay following surgery. Methods: A retrospective cohort study comparing a cohort of patients who used the online digital platform (ODP) to deliver patient education and support (PES) prior to undergoing THR and TKR surgery relative to a cohort of patients who did not access the ODP and received usual care. Routinely collected Patient Reported Outcome Measures (PROMs) data was obtained on 2,406 patients who underwent a knee replacement (n=1,160) or a hip replacement (n=1,246) between 2018 and 2019 in a single surgical centre in the United Kingdom. The Oxford Hip and Knee Score and the European Quality of Life Five-Dimensional tool (EQ5D-5L) was obtained both pre-and post-surgery (at 6 months) along with hospital LOS. Linear regression was used to compare the estimate the impact of GWH on both health outcomes and negative binomial regressions were used to impact on LOS. All analyses adjusted for age, sex, Charlson Comorbidity Score and either pre-operative Oxford Hip/Knee scores or pre-operative EQ-5D scores. Fractional polynomials were used to represent potential non-linear relationships between the factors included in the regression model. Findings: For patients who underwent a knee replacement, GWH had a statistically significant impact on Oxford Knee Scores and EQ5D-5L utility post-surgery (p=0.039 and p=0.002 respectively). GWH did not have a statistically significant impact on the hospital length of stay. For those patients who underwent a hip replacement, GWH had a statistically significant impact on Oxford Hip Scores and EQ5D-5L utility post (p=0.000 and p=0.009 respectively). GWH also had a statistically significant reduction in the hospital length of stay (p=0.000). Conclusion: Health Outcomes were higher for patients who used the GWH platform and underwent THR and TKR relative to those who received usual care prior to surgery. Patients who underwent a hip replacement and used GWH also had a reduced hospital LOS. These findings are important for health policy and or decision makers as they suggest that prehabilitation via an ODP can maximise health outcomes for patients following surgery whilst potentially making efficiency savings with reductions in LOS.

Keywords: digital prehabilitation, online digital platform, orthopaedics, surgery

Procedia PDF Downloads 191
2251 The Lopsided Burden of Non-Communicable Diseases in India: Evidences from the Decade 2004-2014

Authors: Kajori Banerjee, Laxmi Kant Dwivedi

Abstract:

India is a part of the ongoing globalization, contemporary convergence, industrialization and technical advancement that is taking place world-wide. Some of the manifestations of this evolution is rapid demographic, socio-economic, epidemiological and health transition. There has been a considerable increase in non-communicable diseases due to change in lifestyle. This study aims to assess the direction of burden of disease and compare the pressure of infectious diseases against cardio-vascular, endocrine, metabolic and nutritional diseases. The change in prevalence in a ten-year period (2004-2014) is further decomposed to determine the net contribution of various socio-economic and demographic covariates. The present study uses the recent 71st (2014) and 60th (2004) rounds of National Sample Survey. The pressure of infectious diseases against cardio-vascular (CVD), endocrine, metabolic and nutritional (EMN) diseases during 2004-2014 is calculated by Prevalence Rates (PR), Hospitalization Rates (HR) and Case Fatality Rates (CFR). The prevalence of non-communicable diseases are further used as a dependent variable in a logit regression to find the effect of various social, economic and demographic factors on the chances of suffering from the particular disease. Multivariate decomposition technique further assists in determining the net contribution of socio-economic and demographic covariates. This paper upholds evidences of stagnation of the burden of communicable diseases (CD) and rapid increase in the burden of non-communicable diseases (NCD) uniformly for all population sub-groups in India. CFR for CVD has increased drastically in 2004-2014. Logit regression indicates the chances of suffering from CVD and EMN is significantly higher among the urban residents, older ages, females, widowed/ divorced and separated individuals. Decomposition displays ample proof that improvement in quality of life markers like education, urbanization, longevity of life has positively contributed in increasing the NCD prevalence rate. In India’s current epidemiological phase, compression theory of morbidity is in action as a significant rise in the probability of contracting the NCDs over the time period among older ages is observed. Age is found to play a vital contributor in increasing the probability of having CVD and EMN over the study decade 2004-2014 in the nationally representative sample of National Sample Survey.

Keywords: cardio-vascular disease, case-fatality rate, communicable diseases, hospitalization rate, multivariate decomposition, non-communicable diseases, prevalence rate

Procedia PDF Downloads 314
2250 An Application of the Single Equation Regression Model

Authors: S. K. Ashiquer Rahman

Abstract:

Recently, oil has become more influential in almost every economic sector as a key material. As can be seen from the news, when there are some changes in an oil price or OPEC announces a new strategy, its effect spreads to every part of the economy directly and indirectly. That’s a reason why people always observe the oil price and try to forecast the changes of it. The most important factor affecting the price is its supply which is determined by the number of wildcats drilled. Therefore, a study about the number of wellheads and other economic variables may give us some understanding of the mechanism indicated by the amount of oil supplies. In this paper, we will consider a relationship between the number of wellheads and three key factors: the price of the wellhead, domestic output, and GNP constant dollars. We also add trend variables in the models because the consumption of oil varies from time to time. Moreover, this paper will use an econometrics method to estimate parameters in the model, apply some tests to verify the result we acquire, and then conclude the model.

Keywords: price, domestic output, GNP, trend variable, wildcat activity

Procedia PDF Downloads 64
2249 Effect of Packaging Material and Water-Based Solutions on Performance of Radio Frequency Identification for Food Packaging Applications

Authors: Amelia Frickey, Timothy (TJ) Sheridan, Angelica Rossi, Bahar Aliakbarian

Abstract:

The growth of large food supply chains demanded improved end-to-end traceability of food products, which has led to companies being increasingly interested in using smart technologies such as Radio Frequency Identification (RFID)-enabled packaging to track items. As technology is being widely used, there are several technological or economic issues that should be overcome to facilitate the adoption of this track-and-trace technology. One of the technological challenges of RFID technology is its sensitivity to different environmental form factors, including packaging materials and the content of the packaging. Although researchers have assessed the performance loss due to the proximity of water and aqueous solutions, there is still the need to further investigate the impacts of food products on the reading range of RFID tags. However, to the best of our knowledge, there are not enough studies to determine the correlation between RFID tag performance and food beverages properties. The goal of this project was to investigate the effect of the solution properties (pH and conductivity) and different packaging materials filled with food-like water-based solutions on the performance of an RFID tag. Three commercially available ultra high-frequency RFID tags were placed on three different bottles and filled with different concentrations of water-based solutions, including sodium chloride, citric acid, sucrose, and ethanol. Transparent glass, Polyethylneterephtalate (PET), and Tetrapak® were used as the packaging materials commonly used in the beverage industries. Tag readability (Theoretical Read Range, TRR) and sensitivity (Power on Tag Forward, PoF) were determined using an anechoic chamber. First, the best place to attach the tag for each packaging material was investigated using empty and water-filled bottles. Then, the bottles were filled with the food-like solutions and tested with the three different tags and the PoF and TRR at the fixed frequency of 915MHz. In parallel, the pH and conductivity of solutions were measured. The best-performing tag was then selected to test the bottles filled with wine, orange, and apple juice. Despite various solutions altering the performance of each tag, the change in tag performance had no correlation with the pH or conductivity of the solution. Additionally, packaging material played a significant role in tag performance. Each tag tested performed optimally under different conditions. This study is the first part of comprehensive research to determine the regression model for the prediction of tag performance behavior based on the packaging material and the content. More investigations, including more tags and food products, are needed to be able to develop a robust regression model. The results of this study can be used by RFID tag manufacturers to design suitable tags for specific products with similar properties.

Keywords: smart food packaging, supply chain management, food waste, radio frequency identification

Procedia PDF Downloads 117
2248 Relationship between Depression, Stress, and Life Satisfaction among Students

Authors: Rexa Pasha

Abstract:

The aim of this study was to examine the relationship between depression, stress and life satisfaction with sleep disturbance among Islamic Azad University Ahvaz Branch students. Samples in the study included 230 students who were selected by stratified random sampling. For data collection, the Beck Depression Inventory, stress, life satisfaction and quality of sleep (PSQI) was used. Which all have acceptable reliability and validity. This study was correlation and Data analysis using Pearson correlation and multivariate regression significance level (pKeywords: depression, life satisfaction, sleep disorder, sleep disturbane

Procedia PDF Downloads 429
2247 The Communication of Audit Report: Key Audit Matters in United Kingdom

Authors: L. Sierra, N. Gambetta, M. A. Garcia-Benau, M. Orta

Abstract:

Financial scandals and financial crisis have led to an international debate on the value of auditing. In recent years there have been significant legislative reforms aiming to increase markets’ confidence in audit services. In particular, there has been a significant debate on the need to improve the communication of auditors with audit reports users as a way to improve its informative value and thus, to improve audit quality. The International Auditing and Assurance Standards Board (IAASB) has proposed changes to the audit report standards. The International Standard on Auditing 701, Communicating Key Audit Matters (KAM) in the Independent Auditor's Report, has introduced new concepts that go beyond the auditor's opinion and requires to disclose the risks that, from the auditor's point of view, are more significant in the audited company information. Focusing on the companies included in the Financial Times Stock Exchange 100 index, this study aims to focus on the analysis of the determinants of the number of KAM disclosed by the auditor in the audit report and moreover, the analysis of the determinants of the different type of KAM reported during the period 2013-2015. To test the hypotheses in the empirical research, two different models have been used. The first one is a linear regression model to identify the client’s characteristics, industry sector and auditor’s characteristics that are related to the number of KAM disclosed in the audit report. Secondly, a logistic regression model is used to identify the determinants of the number of each KAM type disclosed in the audit report; in line with the risk-based approach to auditing financial statements, we categorized the KAM in 2 groups: Entity-level KAM and Accounting-level KAM. Regarding the auditor’s characteristics impact on the KAM disclosure, the results show that PwC tends to report a larger number of KAM while KPMG tends to report less KAM in the audit report. Further, PwC reports a larger number of entity-level risk KAM while KPMG reports less account-level risk KAM. The results also show that companies paying higher fees tend to have more entity-level risk KAM and less account-level risk KAM. The materiality level is positively related to the number of account-level risk KAM. Additionally, these study results show that the relationship between client’s characteristics and number of KAM is more evident in account-level risk KAM than in entity-level risk KAM. A highly leveraged company carries a great deal of risk, but due to this, they are usually subject to strong capital providers monitoring resulting in less account-level risk KAM. The results reveal that the number of account-level risk KAM is strongly related to the industry sector in which the company operates assets. This study helps to understand the UK audit market, provides information to auditors and finally, it opens new research avenues in the academia.

Keywords: FTSE 100, IAS 701, key audit matters, auditor’s characteristics, client’s characteristics

Procedia PDF Downloads 233
2246 Tests for Zero Inflation in Count Data with Measurement Error in Covariates

Authors: Man-Yu Wong, Siyu Zhou, Zhiqiang Cao

Abstract:

In quality of life, health service utilization is an important determinant of medical resource expenditures on Colorectal cancer (CRC) care, a better understanding of the increased utilization of health services is essential for optimizing the allocation of healthcare resources to services and thus for enhancing the service quality, especially for high expenditure on CRC care like Hong Kong region. In assessing the association between the health-related quality of life (HRQOL) and health service utilization in patients with colorectal neoplasm, count data models can be used, which account for over dispersion or extra zero counts. In our data, the HRQOL evaluation is a self-reported measure obtained from a questionnaire completed by the patients, misreports and variations in the data are inevitable. Besides, there are more zero counts from the observed number of clinical consultations (observed frequency of zero counts = 206) than those from a Poisson distribution with mean equal to 1.33 (expected frequency of zero counts = 156). This suggests that excess of zero counts may exist. Therefore, we study tests for detecting zero-inflation in models with measurement error in covariates. Method: Under classical measurement error model, the approximate likelihood function for zero-inflation Poisson regression model can be obtained, then Approximate Maximum Likelihood Estimation(AMLE) can be derived accordingly, which is consistent and asymptotically normally distributed. By calculating score function and Fisher information based on AMLE, a score test is proposed to detect zero-inflation effect in ZIP model with measurement error. The proposed test follows asymptotically standard normal distribution under H0, and it is consistent with the test proposed for zero-inflation effect when there is no measurement error. Results: Simulation results show that empirical power of our proposed test is the highest among existing tests for zero-inflation in ZIP model with measurement error. In real data analysis, with or without considering measurement error in covariates, existing tests, and our proposed test all imply H0 should be rejected with P-value less than 0.001, i.e., zero-inflation effect is very significant, ZIP model is superior to Poisson model for analyzing this data. However, if measurement error in covariates is not considered, only one covariate is significant; if measurement error in covariates is considered, only another covariate is significant. Moreover, the direction of coefficient estimations for these two covariates is different in ZIP regression model with or without considering measurement error. Conclusion: In our study, compared to Poisson model, ZIP model should be chosen when assessing the association between condition-specific HRQOL and health service utilization in patients with colorectal neoplasm. and models taking measurement error into account will result in statistically more reliable and precise information.

Keywords: count data, measurement error, score test, zero inflation

Procedia PDF Downloads 289