Search results for: sustainable plastic waste management
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 14888

Search results for: sustainable plastic waste management

13928 Characterization of Fish Bone Catalyst for Biodiesel Production

Authors: Sarina Sulaiman, N.Khairudin , P.Jamal, M.Z. Alam, Zaki Zainudin, S. Azmi

Abstract:

In this study, fish bone waste was used as a new catalyst for biodiesel production. Instead of discarding the fish bone waste, it will be utilized as a source for catalyst that can provide significant benefit to the environment. Also, it can be substitute as a calcium oxide source instead of using eggshell, crab shell and snail shell. The XRD and SEM analysis proved that calcined fish bone contains calcium oxide, calcium phosphate and hydroxyapatite. The catalyst was characterized using Scanning Electron Microscope (SEM) and X-ray Diffraction (XRD).

Keywords: calcinations, fish bone, transesterification, waste catalyst

Procedia PDF Downloads 279
13927 Ecosystem Services Assessment for Urban Nature-Based Solutions Implemented in the Public Space: Case Study of Alhambra Square in Bogotá, Colombia

Authors: Diego Sánchez, Sandra M. Aguilar, José F. Gómez, Gustavo Montaño, Laura P. Otero, Carlos V. Rey, José A. Martínez, Juliana Robles, Jorge E. Burgos, Juan S. López

Abstract:

Bogota is making efforts towards urban resilience through Nature-based Solutions (NbS) incorporation in public projects as a climate change resilience strategy. The urban renovation project on the Alhambra square includes Green Infrastructure (GI), like Sustainable Urban Drainage Systems (SUDS) and Urban Trees (UT), as ecosystem services (ES) boosters. This study analyzes 3 scenarios: (1) the initial situation without NbS, (2) the expected situation including NbS in the design and (3) the projection of the second one after 30 years, calculating the ecosystem services, the stormwater management benefits provided by SUDS and the cultural services. The obtained results contribute to the understanding of the urban NbS benefits in public spaces, providing valuable information to foster investment in sustainable projects and encouraging policy makers to integrate NbS in urban planning.

Keywords: ecosystem services, nature-based solutions, stormwater management, sustainable urban drainage systems

Procedia PDF Downloads 126
13926 Sustainable Urban Waterfronts Using Sustainability Assessment Rating System

Authors: R. M. R. Hussein

Abstract:

Sustainable urban waterfront development is one of the most interesting phenomena of urban renewal in the last decades. However, there are still many cities whose visual image is compromised due to the lack of a sustainable urban waterfront development, which consequently affects the place of those cities globally. This paper aims to reimagine the role of waterfront areas in city design, with a particular focus on Egypt, so that they provide attractive, sustainable urban environments while promoting the continued aesthetic development of the city overall. This aim will be achieved by determining the main principles of a sustainable urban waterfront and its applications. This paper concentrates on sustainability assessment rating systems. A number of international case-studies, wherein a city has applied the basic principles for a sustainable urban waterfront and have made use of sustainability assessment rating systems, have been selected as examples which can be applied to the urban waterfronts in Egypt. This paper establishes the importance of developing the design of urban environments in Egypt, as well as identifying the methods of sustainability application for urban waterfronts.

Keywords: sustainable urban waterfront, green infrastructure, energy efficient, Cairo

Procedia PDF Downloads 450
13925 Reasons for Food Losses and Waste in Basic Production of Meat Sector in Poland

Authors: Sylwia Laba, Robert Laba, Krystian Szczepanski, Mikolaj Niedek, Anna Kaminska-Dworznicka

Abstract:

Meat and its products are considered food products, having the most unfavorable effect on the environment that requires rational management of these products and waste, originating throughout the whole chain of manufacture, processing, transport, and trade of meat. From the economic and environmental viewpoints, it is important to limit the losses and food wastage and the food waste in the whole meat sector. The link to basic production includes obtaining raw meat, i.e., animal breeding, management, and transport of animals to the slaughterhouse. Food is any substance or product, intended to be consumed by humans. It was determined (for the needs of the present studies) when the raw material is considered as a food. It is the moment when the animals are prepared to loading with the aim to be transported to a slaughterhouse and utilized for food purposes. The aim of the studies was to determine the reasons for loss generation in the basic production of the meat sector in Poland during the years 2017 – 2018. The studies on food losses and waste in the meat sector in basic production were carried out in two areas: red meat i.e., pork and beef and poultry meat. The studies of basic production were conducted in the period of March-May 2019 at the territory of the whole country on a representative trial of 278 farms, including 102 pork production, 55–beef production, and 121 poultry meat production. The surveys were carried out with the utilization of questionnaires by the PAPI (Paper & Pen Personal Interview) method; the pollsters conducted direct questionnaire interviews. Research results indicate that it is followed that any losses were not recorded during the preparation, loading, and transport of the animals to the slaughterhouse in 33% of the visited farms. In the farms where the losses were indicated, the crushing and suffocations, occurring during the production of pigs, beef cattle and poultry, were the main reasons for these losses. They constituted ca. 40% of the reported reasons. The stress generated by loading and transport caused 16 – 17% (depending on the season of the year) of the loss reasons. In the case of poultry production, in 2017, additionally, 10.7% of losses were caused by inappropriate conditions of loading and transportation, while in 2018 – 11.8%. The diseases were one of the reasons for the losses in pork and beef production (7% of the losses). The losses and waste, generated during livestock production and in meat processing and trade cannot be managed or recovered. They have to be disposed of. It is, therefore, important to prevent and minimize the losses throughout the whole production chain. It is possible to introduce the appropriate measures, connected mainly with the appropriate conditions and methods of animal loading and transport.

Keywords: food losses, food waste, livestock production, meat sector

Procedia PDF Downloads 125
13924 Implementing Biogas Technology in Rural Areas of Limpopo: Analysis of Gawula, Mopani District in South Africa

Authors: Thilivhali E. Rasimphi, David Tinarwo

Abstract:

Access to energy is crucial in poverty alleviation, economic growth, education, and agricultural improvement. The best renewable energy source is one which is locally available, affordable, and can easily be used and managed by local communities. The usage of renewable energy technology has the potential to alleviate many of the current problems facing rural areas. To address energy poverty, biogas technology has become an important part of resolving such. This study, therefore, examines the performance of digesters in Gawula village; it also identifies the contributing factors to the adoption and use of the technology. Data was collected using an open-ended questionnaire from biogas users. To evaluate the performance of the digesters, a data envelopment analysis (DEA) non-parametric technique was used, and to identify key factors affecting adoption, a logit model was applied. The reviewed critical barriers to biogas development in the area seem to be a poor institutional framework, poor infrastructure, a lack of technical support, user training on maintenance and operation, and as such, the implemented plants have failed to make the desired impact. Thus most digesters were abandoned. To create awareness amongst rural communities, government involvement is key, and there is a need for national programs. Biogas technology does what few other renewable energy technologies do, which is to integrate waste management and energy. This creates a substantial opportunity for biogas generation and penetration. That is, a promising pathway towards achieving sustainable development through biogas technology.

Keywords: domestic biogas technology, economic, sustainable, social, rural development

Procedia PDF Downloads 126
13923 Leveraging Laser Cladding Technology for Eco-Friendly Solutions and Sustainability in Equipment Refurbishment

Authors: Rakan A. Ahmed, Raja S. Khan, Mohammed M. Qahtani

Abstract:

This paper explores the transformative impact of laser cladding technology on the circular economy, emphasizing its role in reducing environmental impact compared to traditional welding methods. Laser cladding, an innovative manufacturing process, optimizes resource efficiency and sustainability by significantly decreasing power consumption and minimizing material waste. The study explores how laser cladding operates within the framework of the circular economy, promoting energy efficiency, waste reduction, and emissions control. Through a comparative analysis of energy and material consumption between laser cladding and conventional welding methods, the paper highlights the significant strides in environmental conservation and resource optimization made possible by laser cladding. The findings highlight the potential for this technology to revolutionize industrial practices and propel a more sustainable and eco-friendly manufacturing landscape.

Keywords: laser cladding, circular economy, carbon emission, energy

Procedia PDF Downloads 60
13922 Ageing Population and Generational Turn-Over in the Italian Labour Market: Towards a Sustainable Solidarity

Authors: Marianna Russo

Abstract:

Ageing population and youth unemployment are the major challenges that Western Countries – and Italy in particular – are facing in recent years. These phenomena have a significant impact not only on the labour market and the welfare system, but also on the organisational models of work. Therefore, in Italy, in the past few years, there have been some attempts to regulate the management of generational turn-over: intergenerational pacts, early retirement incentives, solidarity contracts, etc. In particular, this paper aims to focus on the expansive solidarity contracts, that were introduced in the Italian legal system for the first time in 1984. Indeed, they have been little used during the thirty years of their lives, so the Legislative Decree no. 148/2015, implementing the so-called Jobs Act, has given them another opportunity. The paper tries to analyse the rules and the empirical data, looking for a sustainable model of generational turn-over management.

Keywords: ageing population, generational turn-over, Italian jobs' act, solidarity contracts

Procedia PDF Downloads 239
13921 Modelling of Recovery and Application of Low-Grade Thermal Resources in the Mining and Mineral Processing Industry

Authors: S. McLean, J. A. Scott

Abstract:

The research topic is focusing on improving sustainable operation through recovery and reuse of waste heat in process water streams, an area in the mining industry that is often overlooked. There are significant advantages to the application of this topic, including economic and environmental benefits. The smelting process in the mining industry presents an opportunity to recover waste heat and apply it to alternative uses, thereby enhancing the overall process. This applied research has been conducted at the Sudbury Integrated Nickel Operations smelter site, in particular on the water cooling towers. The aim was to determine and optimize methods for appropriate recovery and subsequent upgrading of thermally low-grade heat lost from the water cooling towers in a manner that makes it useful for repurposing in applications, such as within an acid plant. This would be valuable to mining companies as it would be an opportunity to reduce the cost of the process, as well as decrease environmental impact and primary fuel usage. The waste heat from the cooling towers needs to be upgraded before it can be beneficially applied, as lower temperatures result in a decrease of the number of potential applications. Temperature and flow rate data were collected from the water cooling towers at an acid plant over two years. The research includes process control strategies and the development of a model capable of determining if the proposed heat recovery technique is economically viable, as well as assessing any environmental impact with the reduction in net energy consumption by the process. Therefore, comprehensive cost and impact analyses are carried out to determine the best area of application for the recovered waste heat. This method will allow engineers to easily identify the value of thermal resources available to them and determine if a full feasibility study should be carried out. The rapid scoping model developed will be applicable to any site that generates large amounts of waste heat. Results show that heat pumps are an economically viable solution for this application, allowing for reduced cost and CO₂ emissions.

Keywords: environment, heat recovery, mining engineering, sustainability

Procedia PDF Downloads 96
13920 A Reference Framework Integrating Lean and Green Principles within Supply Chain Management

Authors: M. Bortolini, E. Ferrari, F. G. Galizia, C. Mora

Abstract:

In the last decades, an increasing set of companies adopted lean philosophy to improve their productivity and efficiency promoting the so-called continuous improvement concept, reducing waste of time and cutting off no-value added activities. In parallel, increasing attention rises toward green practice and management through the spread of the green supply chain pattern, to minimise landfilled waste, drained wastewater and pollutant emissions. Starting from a review on contributions deepening lean and green principles applied to supply chain management, the most relevant drivers to measure the performance of industrial processes are pointed out. Specific attention is paid on the role of cost because it is of key importance and it crosses both lean and green principles. This analysis leads to figure out an original reference framework for integrating lean and green principles in designing and managing supply chains. The proposed framework supports the application, to the whole value chain or to parts of it, e.g. distribution network, assembly system, job-shop, storage system etc., of the lean-green integrated perspective. Evidences show that the combination of the lean and green practices lead to great results, higher than the sum of the performances from their separate application. Lean thinking has beneficial effects on green practices and, at the same time, methods allowing environmental savings generate positive effects on time reduction and process quality increase.

Keywords: environmental sustainability, green supply chain, integrated framework, lean thinking, supply chain management

Procedia PDF Downloads 376
13919 Environmental Governance and Opportunities for Disaster Risk Reduction in Nigeria

Authors: Willie Eselebor

Abstract:

Environmental governance is not new, but may consist of a series of actions taken to establish sanity and ensure sustainable environment. While there is a growing accord linking disaster risk reduction with the management of environment and natural resources, little is known about failure to act which constitute vulnerability and how improved governance reduces risk globally. The paper reviews emerging trends in the field of application of governance tools and approaches for reducing disaster risk. The Hyogo Framework for Action (HFA) enjoin all stakeholders to stimulate the sustainable use and management of ecosystems, which promote the implementation of integrated environmental and natural resource planning that incorporate disaster risk reduction, including structural and non-structural measures, such as integrated management of fragile ecosystems. The methodology adopted is a case study of disaster-prone sites, prompting guided analysis on which hazards are traceable to environmental degradation, why a degraded environment reduces community resilience; how healthy ecosystems provide natural defense, and which opportunities exist to address gaps in reduction of disasters in Nigeria. The paper further analyses the interaction between disaster risk and environmental change. It is established that environmental governance remains a challenge; which implies that there is the need for a shift in traditional approaches to disaster risk management; exploring new initiatives and allowing environmental managers to be docketed as disaster risk managers in context, potentially opening up a window of dialogue on disaster risk management.

Keywords: disaster, ecosystem, environment, risk

Procedia PDF Downloads 329
13918 The Role of Zakat on Sustainable Economic Development by Rumah Zakat

Authors: Selamat Muliadi

Abstract:

This study aimed to explain conceptual the role of Zakat on sustainable economic development by Rumah Zakat. Rumah Zakat is a philanthropic institution that manages zakat and other social funds through community empowerment programs. In running the program, including economic empowerment and socio health services are designed for these recipients. Rumah Zakat's connection with the establisment of Sustainable Development Goals (SDGs) which is to help impoverished recipients economically and socially. It’s an important agenda that the government input into national development, even the region. The primary goal of Zakat on sustainable economic development, not only limited to economic variables but based on Islamic principles, has comprehensive characteristics. The characteristics include moral, material, spiritual, and social aspects. In other words, sustainable economic development is closely related to improving people’s living standard (Mustahiq). The findings provide empiricial evidence regarding the positive contribution and effectiveness of zakat targeting in reducing poverty and improve the welfare of people related with the management of zakat. The purpose of this study was to identify the role of Zakat on sustainable economic development, which was applied by Rumah Zakat. This study used descriptive method and qualitative analysis. The data source was secondary data collected from documents and texts related to the research topic, be it books, articles, newspapers, journals, or others. The results showed that the role of zakat on sustainable economic development by Rumah Zakat has been quite good and in accordance with the principle of Islamic economics. Rumah Zakat programs are adapted to support intended development. The contribution of the productive program implementation has been aligned with four goals in the Sustainable Development Goals, i.e., Senyum Juara (Quality Education), Senyum Lestari (Clean Water and Sanitation), Senyum Mandiri (Entrepreneur Program) and Senyum Sehat (Free Maternity Clinic). The performance of zakat in the sustainable economic empowerment community at Rumah Zakat is taking into account dimensions such as input, process, output, and outcome.

Keywords: Zakat, social welfare, sustainable economic development, charity

Procedia PDF Downloads 120
13917 Liquid Fuel Production via Catalytic Pyrolysis of Waste Oil

Authors: Malee Santikunaporn, Neera Wongtyanuwat, Channarong Asavatesanupap

Abstract:

Pyrolysis of waste oil is an effective process to produce high quality liquid fuels. In this work, pyrolysis experiments of waste oil over Y zeolite were carried out in a semi-batch reactor under a flow of nitrogen at atmospheric pressure and at different reaction temperatures (350-450 oC). The products were gas, liquid fuel, and residue. Only liquid fuel was further characterized for its composition and properties by using gas chromatography, thermogravimetric analyzer, and bomb calorimeter. Experimental results indicated that the pyrolysis reaction temperature significantly affected both yield and composition distribution of pyrolysis oil. An increase in reaction temperature resulted in increased fuel yield, especially gasoline fraction. To obtain high amount of fuel, the optimal reaction temperature should be higher than 350 oC. A presence of Y zeolite in the system enhanced the cracking activity. In addition, the pyrolysis oil yield is proportional to the catalyst quantity.

Keywords: gasoline, diesel, pyrolysis, waste oil, Y zeolite

Procedia PDF Downloads 180
13916 Model of Community Management for Sustainable Utilization

Authors: Luedech Girdwichai, Withaya Mekhum

Abstract:

This research intended to develop the model of community management for sustainable utilization by investigating on 2 groups of population, the family heads and the community management team. The population of the former group consisted of family heads from 511 families in 12 areas to complete the questionnaires which were returned at 479 sets. The latter group consisted of the community management team of 12 areas with 1 representative from each area to give the interview. The questionnaires for the family heads consisted of 2 main parts; general information such as occupations, etc. in the form of checklist. The second part dealt with the data on self reliance community development based on 4P Framework, i.e., People (human resource) development, Place (area) development, Product (economic and income source) development, and Plan (community plan) development in the form of rating scales. Data in the 1st part were calculated to find frequency and percentage while those in the 2nd part were analyzed to find arithmetic mean and SD. Data from the 2nd group of population or the community management team were derived from focus group to find factors influencing successful management together with the in depth interview which were analyzed by descriptive statistics. The results showed that 479 family heads reported that the aspect on the implementation of community plan to self reliance community activities based on Sufficient Economy Philosophy and the 4P was at the average of 3.28 or moderate level. When considering in details, it was found that the 1st aspect was on the area development with the mean of 3.71 or high level followed by human resource development with the mean of 3.44 or moderate level, then, economic and source of income development with the mean of 3.09 or moderate level. The last aspect was community plan development with the mean of 2.89. The results from the small group discussion revealed some factors and guidelines for successful community management as follows: 1) on the People (human resource) development aspect, there was a project to support and develop community leaders. 2) On the aspect of Place (area) development, there was a development on conservative tourism areas. 3) On the aspect of Product (economic and source of income) development, the community leaders promoted the setting of occupational group, saving group, and product processing group. 4) On the aspect of Plan (community plan) development, there was a prioritization through public hearing.

Keywords: model of community management, sustainable utilization, family heads, community management team

Procedia PDF Downloads 323
13915 Applications Using Geographic Information System for Planning and Development of Energy Efficient and Sustainable Living for Smart-Cities

Authors: Javed Mohammed

Abstract:

As urbanization process has been and will be happening in an unprecedented scale worldwide, strong requirements from academic research and practical fields for smart management and intelligent planning of cities are pressing to handle increasing demands of infrastructure and potential risks of inhabitants agglomeration in disaster management. Geo-spatial data and Geographic Information System (GIS) are essential components for building smart cities in a basic way that maps the physical world into virtual environment as a referencing framework. On higher level, GIS has been becoming very important in smart cities on different sectors. In the digital city era, digital maps and geospatial databases have long been integrated in workflows in land management, urban planning and transportation in government. People have anticipated GIS to be more powerful not only as an archival and data management tool but also as spatial models for supporting decision-making in intelligent cities. The purpose of this project is to offer observations and analysis based on a detailed discussion of Geographic Information Systems( GIS) driven Framework towards the development of Smart and Sustainable Cities through high penetration of Renewable Energy Technologies.

Keywords: digital maps, geo-spatial, geographic information system, smart cities, renewable energy, urban planning

Procedia PDF Downloads 512
13914 Development of an Automatic Sequential Extraction Device for Pu and Am Isotopes in Radioactive Waste Samples

Authors: Myung Ho Lee, Hee Seung Lim, Young Jae Maeng, Chang Hoon Lee

Abstract:

This study presents an automatic sequential extraction device for Pu and Am isotopes in radioactive waste samples from the nuclear power plant with anion exchange resin and TRU resin. After radionuclides were leached from the radioactive waste samples with concentrated HCl and HNO₃, the sample was allowed to evaporate to dryness after filtering the leaching solution with 0.45 micron filter. The Pu isotopes were separated in HNO₃ medium with anion exchange resin. For leaching solution passed through the anion exchange column, the Am isotopes were sequentially separated with TRU resin. Automatic sequential extraction device built-in software information of separation for Pu and Am isotopes was developed. The purified Pu and Am isotopes were measured by alpha spectrometer, respectively, after the micro-precipitation of neodymium. The data of Pu and Am isotopes in radioactive waste with an automatic sequential extraction device developed in this study were validated with the ICP-MS system.

Keywords: automatic sequential extraction device, Pu isotopes, Am isotopes, alpha spectrometer, radioactive waste samples, ICP-MS system

Procedia PDF Downloads 46
13913 Tourism as Economic Resource for Protecting the Landscape: Introducing Touristic Initiatives in Coastal Protected Areas of Albania

Authors: Enrico Porfido

Abstract:

The paper aims to investigate the relation between landscape and tourism, with a special focus on coastal protected areas of Albania. The relationship between tourism and landscape is bijective: There is no tourism without landscape attractive features and on the other side landscape needs economic resources to be conserved and protected. The survival of each component is strictly related to the other one. Today, the Albanian protected areas appear as isolated islands, too far away from each other to build an efficient network and to avoid waste in terms of energy, economy and working force. This study wants to stress out the importance of cooperation in terms of common strategies and the necessity of introducing a touristic sustainable model in Albania. Comparing the protection system laws of the neighbor countries of the Adriatic-Ionian region and through a desk review on the best practices of protected areas that benefit from touristic activities, the study proposes the creation of the Albanian Riviera Landscape Park. This action will impact positively the whole southern Albania territory, introducing a sustainable tourism network that aims to valorize the local heritage and to stop the coastal exploitation processes. The main output is the definition of future development scenarios in Albania with the establishment of new protected areas and the introduction of touristic initiatives.

Keywords: Adriatic-Ionian region, protected areas, tourism for landscape, sustainable tourism

Procedia PDF Downloads 262
13912 Ecotourism Adaptation Practices to Climate Change in the Context of Sustainable Management in Dana Biosphere Reserve, Jordan

Authors: Malek Jamaliah, Robert Powell

Abstract:

In spite of the influence of climate change on tourism destinations, particularly those rely heavily on natural resources, little attention paid to study the appropriate adaptation efforts to cope with, moderate and benefit from the impacts of climate change. The existing literature indicated that the research of climate change adaptation in the tourism and outdoor recreation field is at least 5-7 years behind other sectors such as water resources and agriculture. In Jordan, there are many observed changes in climate patterns such as higher temperatures, decreased precipitation and increased severity and frequency of drought. Dana Biosphere Reserve (DBR), the largest protected area and the major eco-tourism destination in Jordan, is facing climate change, which gradually degrading environment, shifting tourism seasons and changing livelihood and lifestyle of local communities. This study aims to assess climate change adaptation practices and policies used in DBR to cope with climate change related-risks. We conducted qualitative semi-structured interviews with key informants in DBR to assess climate change adaptation practices. Direct content analysis (or a priori content analysis) was used to determine the components and indicators of climate change adaptation. The results found that DBR has implemented a wide range of adaptation practices, including infrastructure development, diversification of tourism products, environmentally-friendly practices, visitor management, land use management, rainwater collection, environmental monitoring and research, environmental education and collaboration with stakeholders. These diverse practices implicitly and explicitly play an important role in coping with the social, economic and environmental impacts caused by climate change. Finally, this study demonstrated that climate change adaptation is closely related to sustainable management of eco-tourism.

Keywords: climate change adaptation, dana biosphere reserve, ecotourism, sustainable management

Procedia PDF Downloads 489
13911 A Strategy of Green Sukuk to Promote Sustainable Development Goals (SDGs) in Indonesia

Authors: Amrial, Yuri Oktaviani, Ziyan Muhammad Farhan

Abstract:

On the phase of shifting paradigm into sustainability, Indonesia is involved in Sustainable Development Goals (SDGs) project. That act is revealed by creating Medium and Long Term Roadmap for Sustainable Finance in Indonesia which collaborated design by Indonesia Financial Service Board (OJK) and Ministry of Environment and Forestry. One of alternative for that infrastructure financing is sharia-based financing, Green Sukuk (Sukuk specified on sustainable infrastructure project). Green Sukuk for infrastructure financing in Indonesia can be issued by the government in the form of Sukuk Project Financing. Moreover, banks in Indonesia can also participate for the issuance of Green Sukuk. So that the banks can create a financing for people who are concerned about environmental issues. By using qualitative methods and literature review, this paper aims to discuss potential, strategy and planning of Green Sukuk for financing sustainable infrastructure in the purpose of SDGs. This paper will benefit for government to give scientific discussion on the strategy of Green Sukuk in promoting sustainable goals infrastructure project in Indonesia.

Keywords: green sukuk, infrastructure, SDGs, sustainable

Procedia PDF Downloads 345
13910 Co-Gasification Process for Green and Blue Hydrogen Production: Innovative Process Development, Economic Analysis, and Exergy Assessment

Authors: Yousaf Ayub

Abstract:

A co-gasification process, which involves the utilization of both biomass and plastic waste, has been developed to enable the production of blue and green hydrogen. To support this endeavor, an Aspen Plus simulation model has been meticulously created, and sustainability analysis is being conducted, focusing on economic viability, energy efficiency, advanced exergy considerations, and exergoeconomics evaluations. In terms of economic analysis, the process has demonstrated strong economic sustainability, as evidenced by an internal rate of return (IRR) of 8% at a process efficiency level of 70%. At present, the process has the potential to generate approximately 1100 kWh of electric power, with any excess electricity, beyond meeting the process requirements, capable of being harnessed for green hydrogen production via an alkaline electrolysis cell (AEC). This surplus electricity translates to a potential daily hydrogen production of around 200 kg. The exergy analysis of the model highlights that the gasifier component exhibits the lowest exergy efficiency, resulting in the highest energy losses, amounting to approximately 40%. Additionally, advanced exergy analysis findings pinpoint the gasifier as the primary source of exergy destruction, totaling around 9000 kW, with associated exergoeconomics costs amounting to 6500 $/h. Consequently, improving the gasifier's performance is a critical focal point for enhancing the overall sustainability of the process, encompassing energy, exergy, and economic considerations.

Keywords: blue hydrogen, green hydrogen, co-gasification, waste valorization, exergy analysis

Procedia PDF Downloads 42
13909 Characterization of the Corn Cob to Know Its Potential as a Source of Biosilica to Be Used in Sustainable Cementitious Mixtures

Authors: Sandra C. L. Dorea, Joann K. Whalen, Yixin Shao, Oumarou Savadogo

Abstract:

The major challenge for industries that rely on fossil fuels in manufacturing processes or to provide goods and services is to lower their CO2 emissions, as the case for the manufacture of Portland cement. Feasible materials for this purpose can include agro-industrial or agricultural wastes, which are termed 'biosilica' since the silica was contained in a biological matrix (biomass). Corn cob (CC) has some characteristics that make it a good candidate as biosilica source: 1) it is an abundant grain crop produced around the world; 2) more production means more available residues is left in the field to be used. This work aims to evaluate the CC collected from different farms in Canada during the corn harvest in order to see if they can be used together as a biosilica source. The characterization of the raw CC was made in the physical, chemical, and thermal way. The moisture content, the granulometry, and the morphology were also analyzed. The ash content measured was 2,1%. The Thermogravimetric Analysis (TGA) and its Derivative (DTG) evaluated of CC as a function of weight loss with temperature variation ranging between 30°C and 800°C in an atmosphere of N2. The chemical composition and the presence of silica revealed that the different sources of the CC do not interfere in its basic chemical composition, which means that this kind of waste can be used together as a source of biosilica no matter where they come from. Then, this biosilica can partially replace the cement Portland making sustainable cementitious mixtures and contributing to reduce the CO2 emissions.

Keywords: biosilica, characterization, corn cob, sustainable cementitious materials

Procedia PDF Downloads 243
13908 A Review on Application of Waste Tire in Concrete

Authors: M. A. Yazdi, J. Yang, L. Yihui, H. Su

Abstract:

The application of recycle waste tires into civil engineering practices, namely asphalt paving mixtures and cementbased materials has been gaining ground across the world. This review summarizes and compares the recent achievements in the area of plain rubberized concrete (PRC), in details. Different treatment methods have been discussed to improve the performance of rubberized Portland cement concrete. The review also includes the effects of size and amount of tire rubbers on mechanical and durability properties of PRC. The microstructure behaviour of the rubberized concrete was detailed.

Keywords: waste rubber aggregates, microstructure, treatment methods, size and content effects

Procedia PDF Downloads 307
13907 Seismic Evaluation of Multi-Plastic Hinge Design Approach on RC Shear Wall-Moment Frame Systems against Near-Field Earthquakes

Authors: Mohsen Tehranizadeh, Mahboobe Forghani

Abstract:

The impact of higher modes on the seismic response of dual structural system consist of concrete moment-resisting frame and with RC shear walls is investigated against near-field earthquakes in this paper. a 20 stories reinforced concrete shear wall-special moment frame structure is designed in accordance with ASCE7 requirements and The nonlinear model of the structure was performed on OpenSees platform. Nonlinear time history dynamic analysis with 3 near-field records are performed on them. In order to further understand the structural collapse behavior in the near field, the response of the structure at the moment of collapse especially the formation of plastic hinges is explored. The results revealed that the amplification of moment at top of the wall due to higher modes, the plastic hinge can form in the upper part of wall, even when designed and detailed for plastic hinging at the base only (according to ACI code).on the other hand, shear forces in excess of capacity design values can develop due to the contribution of the higher modes of vibration to dynamic response due to the near field can cause brittle shear or sliding failure modes. The past investigation on shear walls clearly shows the dual-hinge design concept is effective at reducing the effects of the second mode of response. An advantage of the concept is that, when combined with capacity design, it can result in relaxation of special reinforcing detailing in large portions of the wall. In this study, to investigate the implications of multi-design approach, 4 models with varies arrangement of hinge plastics at the base and height of the shear wall are considered. results base on time history analysis showed that the dual or multi plastic hinges approach can be useful in order to control the high moment and shear demand of higher mode effect.

Keywords: higher mode effect, Near-field earthquake, nonlinear time history analysis, multi plastic hinge design

Procedia PDF Downloads 411
13906 Anaerobic Fermentation Process for Production of Biohydrogen from Pretreated Fruit Wastes

Authors: A. K. R. Gobinath, He Jianzhong, Kun-Lin Yang

Abstract:

Fruit waste was used as a feedstock to produce biohydrogen in this study. Fruit waste used in this study was collected from several fruit juice stalls in Singapore. Based on our observation, the fruit waste contained 35-40% orange, 10-20% watermelon, 10-15% apple, 10-15% pineapple, 1-5% mango. They were mixed with water (1:1 ratio based on wet biomass) and blended to attain homogenous mixtures. Later, fruit waste was subjected to one of the following pretreatments: autoclave (121 °C for 20min), microwave (20min) or both. After pretreatment, the total sugar concentration in the hydrolysate was high (>12g/l) when both autoclave and microwave were applied. In contrast, samples without pretreatment measured only less than 2g/l of sugar. While using these hydrolysates as carbon sources, Clostridium strain BOH3 produces 2526-3126 ml/l of hydrogen after 72h of anaerobic fermentation. The hydrogen yield was 295-300 ml/g of sugar which is close to the hydrogen yields from glucose (338 ml/gm) and xylose (330 ml/gm). Our HPLC analysis showed that fruit waste hydrolysate contained oligosugars (25-27%), sucrose (18-23%), fructose (25-30%), glucose (10-15%) and mannose (2-5%). Additionally, pretreatment led to the release of free amino acids (160-512 mg/l), calcium (7.8-12.9 ppm), magnesium (4.32-6.55 ppm), potassium (5.4-65.1 ppm) and sodium (0.4-0.5 ppm) into the hydrolysate. These nutrients were able to support strain-BOH3 to grow and produce high level of hydrogen. Notably, unlike other pretreatment methods (with strong acids and bases), these pretreatment techniques did not generate any inhibitors (e.g. furfural and phenolic acids) to suppress the hydrogen production. Interestingly, strain BOH3 can also ferment pretreated fruit waste slurry and produce hydrogen with a high yield (156-343 ml/gm fruit waste). While fermenting pretreated fruit waste slurry, strain-BOH3 excreted several saccharolytic enzymes majorly xylanase (1.84U/ml), amylase (1.10U/ml), pectinase (0.36U/ml) and cellulase (0.43U/ml). Due to expressions of these enzymes, strain BOH3 was able to directly utilize pretreated fruit waste hydrolysate and produces high-level of hydrogen.

Keywords: autoclave pretreatment, biohydrogen production, clostridial fermentation, fruit waste, and microwave pretreatment

Procedia PDF Downloads 520
13905 Sustainable Traditional Architecture and Urban Planning in Hot–Humid Climate of Iran

Authors: Farnaz Nazem

Abstract:

This paper concentrates on the sustainable traditional architecture and urban planning in hot-humid regions of Iran. In a vast country such as Iran with different climatic zones traditional builders have presented series of logical solutions for human comfort. The aim of this paper is to demonstrate traditional architecture in hot-humid climate of Iran as a sample of sustainable architecture. Iranian traditional architecture has been able to response to environmental problems for a long period of time. Its features are based on climatic factors, local construction materials of hot-humid regions and culture. This paper concludes that Iranian traditional architecture can be addressed as a sustainable architecture.

Keywords: hot-humid climate, Iran, sustainable traditional architecture, urban planning

Procedia PDF Downloads 592
13904 Traditional Industries Innovation and Brand Value Analysis in Taiwan: Case Study of a Certain Plastic Company

Authors: Ju Shan Lin

Abstract:

The challenges for traditional industries in Taiwan the past few years are the changes of overall domestic and foreign industry structure, the entrepreneurs not only need to keep on improving their profession skills but also continuously research and develop new products. It is also necessary for the all traditional industries to keep updating the business strategy, let the enterprises continue to progress, and won't be easily replaced by the other industries. The traditional industry in Taiwan attach great importance to the field of enterprises upgrading and innovation in recent years, by the enterprise innovation and transformation can enhance the overall business situation also enable them to obtain more additional profits than in the past. Except the original industry structure's need to transform and upgrade, the brand's business and marketing strategy are also essential. This study will take a certain plastic company as case analysis, for the brand promotion of traditional industries, brand values and business innovation model for further exploration. It will also be mentioned that the other traditional industries cases which were already achieved success on the enterprise's upgrading and innovation, at the same time, the difficulties which they faced with and the way they overcome will be explored as well. This study will use the case study method combined with expert interviews to discuss and analyze this certain plastic company's current business situation, the existing products and the possible trends in the future. Looking forward to providing an innovative business model that will enable this plastic company to upgrade its corporate image and the brand could transform successfully.

Keywords: brand marketing strategy, enterprise upgrade, industrial transformation, traditional industry

Procedia PDF Downloads 224
13903 Biofuel Potential and Invasive Species Control: Exploring Prosopis Juliflora Pod Mash for Sustainable Energy Production

Authors: Mebrahtu Haile

Abstract:

Fuels obtained from renewable resources have garnered significant enthusiasm in recent decades due to concerns about fossil fuel depletion and climate change. This study aimed to investigate the potential of Prosopis juliflora pods mash for bio-ethanol production and its hydrolysis solid waste for solid fuel. Various parameters, such as acid concentration, hydrolysis times, fermentation times, fermentation temperature, and pH, were evaluated for their impact on bio-ethanol production using Saccharomyces cerevisiae yeast. The results showed that increasing acid concentration (up to 1 molar H₂SO₄) led to an increase in sugar content, reaching a maximum of 96.13%v/v. Optimal conditions for bio-ethanol production were found at 1 molar H₂SO₄ concentration (4.2%v/v), 48 hours fermentation time (5.1%v/v), 20 minutes hydrolysis time (5.57%v/v), 30°C fermentation temperature (5.57%v/v), and pH 5 (6.01%v/v), resulting in a maximum bio-ethanol yield of 6.01%v/v. The solid waste remaining after bio-ethanol production exhibited potential for use as a solid fuel, with a calorific value of 18.22 MJ/kg. These findings demonstrate the promising potential of Prosopis juliflora pods mash for bio-ethanol production and suggest a viable solution for addressing disposal challenges associated with solid waste, contributing to the exploration of renewable fuel sources in the face of fossil fuel depletion and climate change.

Keywords: prosopis juliflora, pods mash, invasive species, bio-ethanol, fermentation, Saccharomyces cerevisiae, solid fuel

Procedia PDF Downloads 5
13902 Drying Kinetics of Okara (Soy Pulp) Using the Multi-Commodity Heat Pump Dryer (MCHPD)

Authors: Lorcelie B. Taclan, Jolly S. Balila, Maribel Balagtas, Eunice M. Aclan, Myrtle C. Orbon, Emson Y. Taclan, Irenea A. Centeno

Abstract:

Okara (soy pulp), a by-product and waste from the production of soymilk, tufo and tokwa and soybean-based vegan food products is readily available in the university thrice a week. The Food Factory owned and managed by AUP produces these food products weekly. Generally the study was conducted to determine the drying kinetics of soya pulp using the MCHPD. Specifically, it aimed to establish the time of drying; moisture loss per hour and percent moisture content of soya pulp and to establish the dried okara as an ingredient to other foods. The MCHPD is drying equipment that has an ideal drying condition of 50.00C and 10.0% relative humidity. Fresh and wet soya pulp were weighed at 1.0 kg per tray (21 drying trays), laid on the trays lined with cheese cloth. The MCHPD was set to desired drying conditions. Weight loss was monitored every hour and calculated using standard formulas. Research results indicated that the drying time for soya pulp was 19.0 hours; the % moisture content was reduced from 87.6.0% to 9.7.0% at an average moisture loss of 3.0 g/hr. The nutritional values of okara were favorably maintained with enhanced color. The dried okara was added as an ingredient to other healthy bakery products produced by the AUP Food Factory. Making use of okara would add nutritional values to other food products and would also help waste management concerns inside the university.

Keywords: okara, MCHPD, drying kinetics, nutritional values, waste management

Procedia PDF Downloads 381
13901 Recycled Aggregates from Construction and Demolition Waste in the Production of Concrete Blocks

Authors: Juan A. Ferriz-Papi, Simon Thomas

Abstract:

The construction industry generates large amounts of waste, usually mixed, which can be composed of different origin materials, most of them catalogued as non-hazardous. The European Union targets for this waste for 2020 have been already achieved by the UK, but it is mainly developed in downcycling processes (backfilling) whereas upcycling (such as recycle in new concrete batches) still keeps at a low percentage. The aim of this paper is to explore further in the use of recycled aggregates from construction and demolition waste (CDW) in concrete mixes so as to improve upcycling. A review of most recent research and legislation applied in the UK is developed regarding the production of concrete blocks. As a case study, initial tests were developed with a CDW recycled aggregate sample from a CDW plant in Swansea. Composition by visual inspection and sieving tests of two samples were developed and compared to original aggregates. More than 70% was formed by soil waste from excavation, and the rest was a mix of waste from mortar, concrete, and ceramics with small traces of plaster, glass and organic matter. Two concrete mixes were made with 80% replacement of recycled aggregates and different water/cement ratio. Tests were carried out for slump, absorption, density and compression strength. The results were compared to a reference sample and showed a substantial reduction of quality in both mixes. Despite that, the discussion brings to identify different aspects to solve, such as heterogeneity or composition, and analyze them for the successful use of these recycled aggregates in the production of concrete blocks. The conclusions obtained can help increase upcycling processes ratio with mixed CDW as recycled aggregates in concrete mixes.

Keywords: aggregates, concrete, concrete block, construction and demolition waste, recycling

Procedia PDF Downloads 282
13900 Microplastics Found in Salmon and Bivalves from the Salish Sea

Authors: Sharon L. Gillies, Dario Jereb, Blayne Stam, Deji Arojojoye

Abstract:

Plastic contamination of the oceans has become a global concern. Created during the breakdown of plastic or direct production, microplastic can be ingested by animals. This study aimed to assess the abundance of microplastic contamination in native salmon and bivalve species collected from the Salish Sea near the mouth of the Fraser River. Samples collected from May 2022 to September 2023 show that microplastic contamination was present in both salmon and bivalves. The most common were coloured microfibers, making up about 85% of the total microplastics, and the rest were uncoloured fibers and a few irregularly shaped microplastics.

Keywords: microplastics, microplastics in bivalves, microplastics in salmon, Salish Sea

Procedia PDF Downloads 78
13899 Soil Composition in Different Agricultural Crops under Application of Swine Wastewater

Authors: Ana Paula Almeida Castaldelli Maciel, Gabriela Medeiros, Amanda de Souza Machado, Maria Clara Pilatti, Ralpho Rinaldo dos Reis, Silvio Cesar Sampaio

Abstract:

Sustainable agricultural systems are crucial to ensuring global food security and the long-term production of nutritious food. Comprehensive soil and water management practices, including nutrient management, balanced fertilizer use, and appropriate waste management, are essential for sustainable agriculture. Swine wastewater (SWW) treatment has become a significant focus due to environmental concerns related to heavy metals, antibiotics, resistant pathogens, and nutrients. In South America, small farms use soil to dispose of animal waste, a practice that is expected to increase with global pork production. The potential of SWW as a nutrient source is promising, contributing to global food security, nutrient cycling, and mineral fertilizer reduction. Short- and long-term studies evaluated the effects of SWW on soil and plant parameters, such as nutrients, heavy metals, organic matter (OM), cation exchange capacity (CEC), and pH. Although promising results have been observed in short- and medium-term applications, long-term applications require more attention due to heavy metal concentrations. Organic soil amendment strategies, due to their economic and ecological benefits, are commonly used to reduce the bioavailability of heavy metals. However, the rate of degradation and initial levels of OM must be monitored to avoid changes in soil pH and release of metals. The study aimed to evaluate the long-term effects of SWW application on soil fertility parameters, focusing on calcium (Ca), magnesium (Mg), and potassium (K), in addition to CEC and OM. Experiments were conducted at the Universidade Estadual do Oeste do Paraná, Brazil, using 24 drainage lysimeters for nine years, with different application rates of SWW and mineral fertilization. Principal Component Analysis (PCA) was then conducted to summarize the composite variables, known as principal components (PC), and limit the dimensionality to be evaluated. The retained PCs were then correlated with the original variables to identify the level of association between each variable and each PC. Data were interpreted using Analysis of Variance - ANOVA for general linear models (GLM). As OM was not measured in the 2007 soybean experiment, it was assessed separately from PCA to avoid loss of information. PCA and ANOVA indicated that crop type, SWW, and mineral fertilization significantly influenced soil nutrient levels. Soybeans presented higher concentrations of Ca, Mg, and CEC. The application of SWW influenced K levels, with higher concentrations observed in SWW from biodigesters and higher doses of swine manure. Variability in nutrient concentrations in SWW due to factors such as animal age and feed composition makes standard recommendations challenging. OM levels increased in SWW-treated soils, improving soil fertility and structure. In conclusion, the application of SWW can increase soil fertility and crop productivity, reducing environmental risks. However, careful management and long-term monitoring are essential to optimize benefits and minimize adverse effects.

Keywords: contamination, water research, biodigester, nutrients

Procedia PDF Downloads 36