Search results for: openings in deep beams
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2548

Search results for: openings in deep beams

1588 Non-Chronological Approach in Crane Girder and Composite Steel Beam Installation: Case Study

Authors: Govindaraj Ramanathan

Abstract:

The time delay and the structural stability are major issues in big size projects due to several factors. Improper planning and poor coordination lead to delay in construction, which sometimes result in reworking or rebuilding. This definitely increases the cost and time of project. This situation stresses the structural engineers to plan out of the limits of contemporary technology utilizing non-chronological approach with creative ideas. One of the strategies to solve this issue is through structural integrity solutions in a cost-effective way. We have faced several problems in a project worth 470 million USD, and one such issue is crane girder installation with composite steel beams. We have applied structural integrity approach with the proper and revised planning schedule to solve the problem efficiently with minimal expenses.

Keywords: construction management, delay, non-chronological approach, composite beam, structural integrity

Procedia PDF Downloads 225
1587 Out-of-Plane Free Vibrations of Circular Rods

Authors: Faruk Firat Çalim, Nurullah Karaca, Hakan Tacettin Türker

Abstract:

In this study, out-of-plane free vibrations of a circular rods is investigated theoretically. The governing equations for naturally twisted and curved spatial rods are obtained using Timoshenko beam theory and rewritten for circular rods. Effects of the axial and shear deformations are considered in the formulations. Ordinary differential equations in scalar form are solved analytically by using transfer matrix method. The circular rods of the mass matrix are obtained by using straight rod of consistent mass matrix. Free vibrations frequencies obtained by solving eigenvalue problem. A computer program coded in MATHEMATICA language is prepared. Circular beams are analyzed through various examples for free vibrations analysis. Results are compared with ANSYS results based on finite element method and available in the literature.

Keywords: circular rod, out-of-plane free vibration analysis, transfer matrix method

Procedia PDF Downloads 293
1586 Magnetic Navigation in Underwater Networks

Authors: Kumar Divyendra

Abstract:

Underwater Sensor Networks (UWSNs) have wide applications in areas such as water quality monitoring, marine wildlife management etc. A typical UWSN system consists of a set of sensors deployed randomly underwater which communicate with each other using acoustic links. RF communication doesn't work underwater, and GPS too isn't available underwater. Additionally Automated Underwater Vehicles (AUVs) are deployed to collect data from some special nodes called Cluster Heads (CHs). These CHs aggregate data from their neighboring nodes and forward them to the AUVs using optical links when an AUV is in range. This helps reduce the number of hops covered by data packets and helps conserve energy. We consider the three-dimensional model of the UWSN. Nodes are initially deployed randomly underwater. They attach themselves to the surface using a rod and can only move upwards or downwards using a pump and bladder mechanism. We use graph theory concepts to maximize the coverage volume while every node maintaining connectivity with at least one surface node. We treat the surface nodes as landmarks and each node finds out its hop distance from every surface node. We treat these hop-distances as coordinates and use them for AUV navigation. An AUV intending to move closer to a node with given coordinates moves hop by hop through nodes that are closest to it in terms of these coordinates. In absence of GPS, multiple different approaches like Inertial Navigation System (INS), Doppler Velocity Log (DVL), computer vision-based navigation, etc., have been proposed. These systems have their own drawbacks. INS accumulates error with time, vision techniques require prior information about the environment. We propose a method that makes use of the earth's magnetic field values for navigation and combines it with other methods that simultaneously increase the coverage volume under the UWSN. The AUVs are fitted with magnetometers that measure the magnetic intensity (I), horizontal inclination (H), and Declination (D). The International Geomagnetic Reference Field (IGRF) is a mathematical model of the earth's magnetic field, which provides the field values for the geographical coordinateson earth. Researchers have developed an inverse deep learning model that takes the magnetic field values and predicts the location coordinates. We make use of this model within our work. We combine this with with the hop-by-hop movement described earlier so that the AUVs move in such a sequence that the deep learning predictor gets trained as quickly and precisely as possible We run simulations in MATLAB to prove the effectiveness of our model with respect to other methods described in the literature.

Keywords: clustering, deep learning, network backbone, parallel computing

Procedia PDF Downloads 81
1585 Seismic Assessment of Flat Slab and Conventional Slab System for Irregular Building Equipped with Shear Wall

Authors: Muhammad Aji Fajari, Ririt Aprilin Sumarsono

Abstract:

Particular instability of structural building under lateral load (e.g earthquake) will rise due to irregularity in vertical and horizontal direction as stated in SNI 03-1762-2012. The conventional slab has been considered for its less contribution in increasing the stability of the structure, except special slab system such as flat slab turned into account. In this paper, the analysis of flat slab system at Sequis Tower located in South Jakarta will be assessed its performance under earthquake. It consists of 6 floors of the basement where the flat slab system is applied. The flat slab system will be the main focus in this paper to be compared for its performance with conventional slab system under earthquake. Regarding the floor plan of Sequis Tower basement, re-entrant corner signed for this building is 43.21% which exceeded the allowable re-entrant corner is 15% as stated in ASCE 7-05 Based on that, the horizontal irregularity will be another concern for analysis, otherwise vertical irregularity does not exist for this building. Flat slab system is a system where the slabs use drop panel with shear head as their support instead of using beams. Major advantages of flat slab application are decreasing dead load of structure, removing beams so that the clear height can be maximized, and providing lateral resistance due to lateral load. Whilst, deflection at middle strip and punching shear are problems to be detail considered. Torsion usually appears when the structural member under flexure such as beam or column dimension is improper in ratio. Considering flat slab as alternative slab system will keep the collapse due to torsion down. Common seismic load resisting system applied in the building is a shear wall. Installation of shear wall will keep the structural system stronger and stiffer affecting in reduced displacement under earthquake. Eccentricity of shear wall location of this building resolved the instability due to horizontal irregularity so that the earthquake load can be absorbed. Performing linear dynamic analysis such as response spectrum and time history analysis due to earthquake load is suitable as the irregularity arise so that the performance of structure can be significantly observed. Utilization of response spectrum data for South Jakarta which PGA 0.389g is basic for the earthquake load idealization to be involved in several load combinations stated on SNI 03-1726-2012. The analysis will result in some basic seismic parameters such as period, displacement, and base shear of the system; besides the internal forces of the critical member will be presented. Predicted period of a structure under earthquake load is 0.45 second, but as different slab system applied in the analysis then the period will show a different value. Flat slab system will probably result in better performance for the displacement parameter compare to conventional slab system due to higher contribution of stiffness to the whole system of the building. In line with displacement, the deflection of the slab will result smaller for flat slab than a conventional slab. Henceforth, shear wall will be effective to strengthen the conventional slab system than flat slab system.

Keywords: conventional slab, flat slab, horizontal irregularity, response spectrum, shear wall

Procedia PDF Downloads 176
1584 Deep Learning-Based Classification of 3D CT Scans with Real Clinical Data; Impact of Image format

Authors: Maryam Fallahpoor, Biswajeet Pradhan

Abstract:

Background: Artificial intelligence (AI) serves as a valuable tool in mitigating the scarcity of human resources required for the evaluation and categorization of vast quantities of medical imaging data. When AI operates with optimal precision, it minimizes the demand for human interpretations and, thereby, reduces the burden on radiologists. Among various AI approaches, deep learning (DL) stands out as it obviates the need for feature extraction, a process that can impede classification, especially with intricate datasets. The advent of DL models has ushered in a new era in medical imaging, particularly in the context of COVID-19 detection. Traditional 2D imaging techniques exhibit limitations when applied to volumetric data, such as Computed Tomography (CT) scans. Medical images predominantly exist in one of two formats: neuroimaging informatics technology initiative (NIfTI) and digital imaging and communications in medicine (DICOM). Purpose: This study aims to employ DL for the classification of COVID-19-infected pulmonary patients and normal cases based on 3D CT scans while investigating the impact of image format. Material and Methods: The dataset used for model training and testing consisted of 1245 patients from IranMehr Hospital. All scans shared a matrix size of 512 × 512, although they exhibited varying slice numbers. Consequently, after loading the DICOM CT scans, image resampling and interpolation were performed to standardize the slice count. All images underwent cropping and resampling, resulting in uniform dimensions of 128 × 128 × 60. Resolution uniformity was achieved through resampling to 1 mm × 1 mm × 1 mm, and image intensities were confined to the range of (−1000, 400) Hounsfield units (HU). For classification purposes, positive pulmonary COVID-19 involvement was designated as 1, while normal images were assigned a value of 0. Subsequently, a U-net-based lung segmentation module was applied to obtain 3D segmented lung regions. The pre-processing stage included normalization, zero-centering, and shuffling. Four distinct 3D CNN models (ResNet152, ResNet50, DensNet169, and DensNet201) were employed in this study. Results: The findings revealed that the segmentation technique yielded superior results for DICOM images, which could be attributed to the potential loss of information during the conversion of original DICOM images to NIFTI format. Notably, ResNet152 and ResNet50 exhibited the highest accuracy at 90.0%, and the same models achieved the best F1 score at 87%. ResNet152 also secured the highest Area under the Curve (AUC) at 0.932. Regarding sensitivity and specificity, DensNet201 achieved the highest values at 93% and 96%, respectively. Conclusion: This study underscores the capacity of deep learning to classify COVID-19 pulmonary involvement using real 3D hospital data. The results underscore the significance of employing DICOM format 3D CT images alongside appropriate pre-processing techniques when training DL models for COVID-19 detection. This approach enhances the accuracy and reliability of diagnostic systems for COVID-19 detection.

Keywords: deep learning, COVID-19 detection, NIFTI format, DICOM format

Procedia PDF Downloads 62
1583 Symmetrical In-Plane Resonant Gyroscope with Decoupled Modes

Authors: Shady Sayed, Samer Wagdy, Ahmed Badawy, Moutaz M. Hegaze

Abstract:

A symmetrical single mass resonant gyroscope is discussed in this paper. The symmetrical design allows matched resonant frequencies for driving and sensing vibration modes, which leads to amplifying the sensitivity of the gyroscope by the mechanical quality factor of the sense mode. It also achieves decoupled vibration modes for getting a low zero-rate output shift and more stable operation environment. A new suspension beams design is developed to get a symmetrical gyroscope with matched and decoupled modes at the same time. Finite element simulations are performed using ANSYS software package to verify the theoretical calculations. The gyroscope is fabricated from aluminum alloy 2024 substrate, the measured drive and sense resonant frequencies of the fabricated model are matched and equal 81.4 Hz with 5.7% error from the simulation results.

Keywords: decoupled mode shapes, resonant sensor, symmetrical gyroscope, finite element simulation

Procedia PDF Downloads 297
1582 The Impact of Using Flattening Filter-Free Energies on Treatment Efficiency for Prostate SBRT

Authors: T. Al-Alawi, N. Shorbaji, E. Rashaidi, M.Alidrisi

Abstract:

Purpose/Objective(s): The main purpose of this study is to analyze the planning of SBRT treatments for localized prostate cancer with 6FFF and 10FFF energies to see if there is a dosimetric difference between the two energies and how we can increase the plan efficiency and reduce its complexity. Also, to introduce a planning method in our department to treat prostate cancer by utilizing high energy photons without increasing patient toxicity and fulfilled all dosimetric constraints for OAR (an organ at risk). Then toevaluate the target 95% coverage PTV95, V5%, V2%, V1%, low dose volume for OAR (V1Gy, V2Gy, V5Gy), monitor unit (beam-on time), and estimate the values of homogeneity index HI, conformity index CI a Gradient index GI for each treatment plan.Materials/Methods: Two treatment plans were generated for15 patients with localized prostate cancer retrospectively using the CT planning image acquired for radiotherapy purposes. Each plan contains two/three complete arcs with two/three different collimator angle sets. The maximum dose rate available is 1400MU/min for the energy 6FFF and 2400MU/min for 10FFF. So in case, we need to avoid changing the gantry speed during the rotation, we tend to use the third arc in the plan with 6FFF to accommodate the high dose per fraction. The clinical target volume (CTV) consists of the entire prostate for organ-confined disease. The planning target volume (PTV) involves a margin of 5 mm. A 3-mm margin is favored posteriorly. Organs at risk identified and contoured include the rectum, bladder, penile bulb, femoral heads, and small bowel. The prescription dose is to deliver 35Gyin five fractions to the PTV and apply constraints for organ at risk (OAR) derived from those reported in references. Results: In terms of CI=0.99, HI=0.7, and GI= 4.1, it was observed that they are all thesame for both energies 6FFF and 10FFF with no differences, but the total delivered MUs are much less for the 10FFF plans (2907 for 6FFF vs.2468 for 10FFF) and the total delivery time is 124Sc for 6FFF vs. 61Sc for 10FFF beams. There were no dosimetric differences between 6FFF and 10FFF in terms of PTV coverage and mean doses; the mean doses for the bladder, rectum, femoral heads, penile bulb, and small bowel were collected, and they were in favor of the 10FFF. Also, we got lower V1Gy, V2Gy, and V5Gy doses for all OAR with 10FFF plans. Integral dosesID in (Gy. L) were recorded for all OAR, and they were lower with the 10FFF plans. Conclusion: High energy 10FFF has lower treatment time and lower delivered MUs; also, 10FFF showed lower integral and meant doses to organs at risk. In this study, we suggest usinga 10FFF beam for SBRTprostate treatment, which has the advantage of lowering the treatment time and that lead to lessplan complexity with respect to 6FFF beams.

Keywords: FFF beam, SBRT prostate, VMAT, prostate cancer

Procedia PDF Downloads 67
1581 Structural Optimization Method for 3D Reinforced Concrete Building Structure with Shear Wall

Authors: H. Nikzad, S. Yoshitomi

Abstract:

In this paper, an optimization procedure is applied for 3D Reinforced concrete building structure with shear wall.  In the optimization problem, cross sections of beams, columns and shear wall dimensions are considered as design variables and the optimal cross sections can be derived to minimize the total cost of the structure. As for final design application, the most suitable sections are selected to satisfy ACI 318-14 code provision based on static linear analysis. The validity of the method is examined through numerical example of 15 storied 3D RC building with shear wall.  This optimization method is expected to assist in providing a useful reference in design early stage, and to be an effective and powerful tool for structural design of RC shear wall structures.

Keywords: structural optimization, linear static analysis, ETABS, MATLAB, RC moment frame, RC shear wall structures

Procedia PDF Downloads 241
1580 Opinion Mining to Extract Community Emotions on Covid-19 Immunization Possible Side Effects

Authors: Yahya Almurtadha, Mukhtar Ghaleb, Ahmed M. Shamsan Saleh

Abstract:

The world witnessed a fierce attack from the Covid-19 virus, which affected public life socially, economically, healthily and psychologically. The world's governments tried to confront the pandemic by imposing a number of precautionary measures such as general closure, curfews and social distancing. Scientists have also made strenuous efforts to develop an effective vaccine to train the immune system to develop antibodies to combat the virus, thus reducing its symptoms and limiting its spread. Artificial intelligence, along with researchers and medical authorities, has accelerated the vaccine development process through big data processing and simulation. On the other hand, one of the most important negatives of the impact of Covid 19 was the state of anxiety and fear due to the blowout of rumors through social media, which prompted governments to try to reassure the public with the available means. This study aims to proposed using Sentiment Analysis (AKA Opinion Mining) and deep learning as efficient artificial intelligence techniques to work on retrieving the tweets of the public from Twitter and then analyze it automatically to extract their opinions, expression and feelings, negatively or positively, about the symptoms they may feel after vaccination. Sentiment analysis is characterized by its ability to access what the public post in social media within a record time and at a lower cost than traditional means such as questionnaires and interviews, not to mention the accuracy of the information as it comes from what the public expresses voluntarily.

Keywords: deep learning, opinion mining, natural language processing, sentiment analysis

Procedia PDF Downloads 153
1579 A Novel Hybrid Deep Learning Architecture for Predicting Acute Kidney Injury Using Patient Record Data and Ultrasound Kidney Images

Authors: Sophia Shi

Abstract:

Acute kidney injury (AKI) is the sudden onset of kidney damage in which the kidneys cannot filter waste from the blood, requiring emergency hospitalization. AKI patient mortality rate is high in the ICU and is virtually impossible for doctors to predict because it is so unexpected. Currently, there is no hybrid model predicting AKI that takes advantage of two types of data. De-identified patient data from the MIMIC-III database and de-identified kidney images and corresponding patient records from the Beijing Hospital of the Ministry of Health were collected. Using data features including serum creatinine among others, two numeric models using MIMIC and Beijing Hospital data were built, and with the hospital ultrasounds, an image-only model was built. Convolutional neural networks (CNN) were used, VGG and Resnet for numeric data and Resnet for image data, and they were combined into a hybrid model by concatenating feature maps of both types of models to create a new input. This input enters another CNN block and then two fully connected layers, ending in a binary output after running through Softmax and additional code. The hybrid model successfully predicted AKI and the highest AUROC of the model was 0.953, achieving an accuracy of 90% and F1-score of 0.91. This model can be implemented into urgent clinical settings such as the ICU and aid doctors by assessing the risk of AKI shortly after the patient’s admission to the ICU, so that doctors can take preventative measures and diminish mortality risks and severe kidney damage.

Keywords: Acute kidney injury, Convolutional neural network, Hybrid deep learning, Patient record data, ResNet, Ultrasound kidney images, VGG

Procedia PDF Downloads 116
1578 Participatory Testing of Precision Fertilizer Management Technologies in Mid-Hills of Nepal

Authors: Kedar Nath Nepal, Dyutiman Choudhary, Naba Raj Pandit, Yam Gahire

Abstract:

Crop fertilizer recommendations are outdated as these are based on the response trails conducted over half a century ago. Further, these recommendations were based on the response trials conducted over large geographical area ignoring the large spatial variability in indigenous nutrient supplying capacity of soils typical of most smallholder systems. Application of fertilizer following such blanket recommendation in fields with varying native nutrient supply capacity leads to under application in some places and over application in others leading to reduced nutrient-use-efficiency (NUE), loss of profitability, and increased environmental risks associated with loss of unutilized nutrient through emissions or leaching. Opportunities exist to further increase yield and profitability through a significant gain in fertilizer use efficiency with commercialization of affordable and precise application technologies. We conducted participatory trails in Maize (Zea Mays), Cauliflower (Brassica oleracea var. botrytis) and Tomato (Solanum lycopersicum) in Mid Hills of Nepal to evaluate the efficacy of Urea Deep Placement (UDP and Polymer Coated Urea (PCU);. UDP contains 46% of N having individual briquette size 2.7 gm each and PCU contains 44% of N . Both PCU and urea briquette applied at reduced amount (100 kg N/ha) during planting produced similar yields (p>0.05) compared with regular urea (200 Kg N/ha). . These fertilizers also reduced N fertilizer by 35 - 50% over government blanket recommendations. Further, PCU and urea briquette increased farmer’s net income by USD 60 to 80.

Keywords: high efficiency fertilizers, urea deep placement, briquette polymer coated urea, zea mays, brassica, lycopersicum, Nepal

Procedia PDF Downloads 161
1577 Subthalamic Nucleus in Adult Human Cadaveric Brain: A Morphometric Study

Authors: Mangala Kohli, P. A. Athira, Reeha Mahajan

Abstract:

The subthalamic nucleus (STN) is a biconvex nucleus situated in the diencephalon. The knowledge of the morphometry of the subthalamic nucleus is essential for accurate targeting of the nucleus during Deep Brain Stimulation. The present study aims to note the morphometry of the subthalamic nucleus in both the cerebral hemispheres which will prove to be of great value to radiologists and neurosurgeons. A cross‐sectional observational study was conducted in the Departments of Anatomy and Forensic Medicine, Lady Hardinge Medical College & Associated Hospitals, New Delhi on thirty adult cadaveric brain specimens of unclaimed and donated corpses. The specimens were categorized into 3 age groups: 20-35, 35-50 and above 50 years. All samples were collected after following the standard protocol for ethical clearance. The morphometric study of 60 subthalamic nucleus was thus conducted. Transverse section of the brain was made at a plane 4mm ventral to the plane containing mid commissural point. The dimensions of the subthalamic nucleus were measured bilaterally with the aid of digital Vernier caliper and magnifying glass. In the present study, the mean length and width and AC-PC length of the subthalamic nucleus was recorded on the right and left side in Group A, B and C. On comparison of mean of subthalamic nucleus dimensions between the right and left side in Group C, no statistically significant difference was observed. The length and width of subthalamic nucleus measured in the 3 age groups were compared with each other and the p value calculated. There was no statistically significant difference between the dimensions of Group A and B, Group B and C as well as Group A and C. The present study reveals that there is no significant reduction in the size of the nucleus was noted with increasing age. Thus, the values obtained in the present study can be used as a reference for various invasive and non-invasive procedures on subthalamic nucleus.

Keywords: cerebral hemisphere, deep brain stimulation, morphometry, subthalamic nucleus

Procedia PDF Downloads 165
1576 Empowering Transformers for Evidence-Based Medicine

Authors: Jinan Fiaidhi, Hashmath Shaik

Abstract:

Breaking the barrier for practicing evidence-based medicine relies on effective methods for rapidly identifying relevant evidence from the body of biomedical literature. An important challenge confronted by medical practitioners is the long time needed to browse, filter, summarize and compile information from different medical resources. Deep learning can help in solving this based on automatic question answering (Q&A) and transformers. However, Q&A and transformer technologies are not trained to answer clinical queries that can be used for evidence-based practice, nor can they respond to structured clinical questioning protocols like PICO (Patient/Problem, Intervention, Comparison and Outcome). This article describes the use of deep learning techniques for Q&A that are based on transformer models like BERT and GPT to answer PICO clinical questions that can be used for evidence-based practice extracted from sound medical research resources like PubMed. We are reporting acceptable clinical answers that are supported by findings from PubMed. Our transformer methods are reaching an acceptable state-of-the-art performance based on two staged bootstrapping processes involving filtering relevant articles followed by identifying articles that support the requested outcome expressed by the PICO question. Moreover, we are also reporting experimentations to empower our bootstrapping techniques with patch attention to the most important keywords in the clinical case and the PICO questions. Our bootstrapped patched with attention is showing relevancy of the evidence collected based on entropy metrics.

Keywords: automatic question answering, PICO questions, evidence-based medicine, generative models, LLM transformers

Procedia PDF Downloads 22
1575 Analytical Investigation of Replaceable Links with Reduced Web Section for Link-to-Column Connections in Eccentrically Braced Frames

Authors: Daniel Y. Abebe, Sijeong Jeong, Jaehyouk Choi

Abstract:

The use of eccentrically braced frame (EBF) is increasing day by day as EBF possesses high elastic stiffness, stable inelastic response under cyclic lateral loading, and excellent ductility and energy dissipation capacity. The ductility and energy dissipation capacity of EBF depends on the active link beams. Recently, there are two types EBFs; these are conventional EBFs and EBFs with replaceable links. The conventional EBF has a disadvantage during maintenance in post-earthquake. The concept of removable active link beam in EBF is developed to overcome the limitation of the conventional EBF in post-earthquake. In this study, a replaceable link with reduced web section is introduced and design equations are suggested. In addition, nonlinear finite element analysis was conducted in order to evaluate the proposed links.

Keywords: EBFs, replaceable link, earthquake disaster, reduced section

Procedia PDF Downloads 312
1574 A Design of Beam-Steerable Antenna Array for Use in Future Mobile Handsets

Authors: Naser Ojaroudi Parchin, Atta Ullah, Haleh Jahanbakhsh Basherlou, Raed A. Abd-Alhameed, Peter S. Excell

Abstract:

A design of beam-steerable antenna array for the future cellular communication (5G) is presented. The proposed design contains eight elements of compact end-fire antennas arranged on the top edge of smartphone printed circuit board (PCB). Configuration of the antenna element consists of the conductive patterns on the top and bottom copper foil layers and a substrate layer with a via-hole. The simulated results including input-impedance and also fundamental radiation properties have been presented and discussed. The impedance bandwidth (S11 ≤ -10 dB) of the antenna spans from 17.5 to 21 GHz (more than 3 GHz bandwidth) with a resonance at 19 GHz. The antenna exhibits end-fire (directional) radiation beams with wide-angle scanning property and could be used for the future 5G beam-forming. Furthermore, the characteristics of the array design in the vicinity of user-hand are studied.

Keywords: beam-steering, end-fire radiation mode, mobile-phone antenna, phased array

Procedia PDF Downloads 135
1573 Optimization Modeling of the Hybrid Antenna Array for the DoA Estimation

Authors: Somayeh Komeylian

Abstract:

The direction of arrival (DoA) estimation is the crucial aspect of the radar technologies for detecting and dividing several signal sources. In this scenario, the antenna array output modeling involves numerous parameters including noise samples, signal waveform, signal directions, signal number, and signal to noise ratio (SNR), and thereby the methods of the DoA estimation rely heavily on the generalization characteristic for establishing a large number of the training data sets. Hence, we have analogously represented the two different optimization models of the DoA estimation; (1) the implementation of the decision directed acyclic graph (DDAG) for the multiclass least-squares support vector machine (LS-SVM), and (2) the optimization method of the deep neural network (DNN) radial basis function (RBF). We have rigorously verified that the LS-SVM DDAG algorithm is capable of accurately classifying DoAs for the three classes. However, the accuracy and robustness of the DoA estimation are still highly sensitive to technological imperfections of the antenna arrays such as non-ideal array design and manufacture, array implementation, mutual coupling effect, and background radiation and thereby the method may fail in representing high precision for the DoA estimation. Therefore, this work has a further contribution on developing the DNN-RBF model for the DoA estimation for overcoming the limitations of the non-parametric and data-driven methods in terms of array imperfection and generalization. The numerical results of implementing the DNN-RBF model have confirmed the better performance of the DoA estimation compared with the LS-SVM algorithm. Consequently, we have analogously evaluated the performance of utilizing the two aforementioned optimization methods for the DoA estimation using the concept of the mean squared error (MSE).

Keywords: DoA estimation, Adaptive antenna array, Deep Neural Network, LS-SVM optimization model, Radial basis function, and MSE

Procedia PDF Downloads 80
1572 Uncertainty Quantification of Crack Widths and Crack Spacing in Reinforced Concrete

Authors: Marcel Meinhardt, Manfred Keuser, Thomas Braml

Abstract:

Cracking of reinforced concrete is a complex phenomenon induced by direct loads or restraints affecting reinforced concrete structures as soon as the tensile strength of the concrete is exceeded. Hence it is important to predict where cracks will be located and how they will propagate. The bond theory and the crack formulas in the actual design codes, for example, DIN EN 1992-1-1, are all based on the assumption that the reinforcement bars are embedded in homogeneous concrete without taking into account the influence of transverse reinforcement and the real stress situation. However, it can often be observed that real structures such as walls, slabs or beams show a crack spacing that is orientated to the transverse reinforcement bars or to the stirrups. In most Finite Element Analysis studies, the smeared crack approach is used for crack prediction. The disadvantage of this model is that the typical strain localization of a crack on element level can’t be seen. The crack propagation in concrete is a discontinuous process characterized by different factors such as the initial random distribution of defects or the scatter of material properties. Such behavior presupposes the elaboration of adequate models and methods of simulation because traditional mechanical approaches deal mainly with average material parameters. This paper concerned with the modelling of the initiation and the propagation of cracks in reinforced concrete structures considering the influence of transverse reinforcement and the real stress distribution in reinforced concrete (R/C) beams/plates in bending action. Therefore, a parameter study was carried out to investigate: (I) the influence of the transversal reinforcement to the stress distribution in concrete in bending mode and (II) the crack initiation in dependence of the diameter and distance of the transversal reinforcement to each other. The numerical investigations on the crack initiation and propagation were carried out with a 2D reinforced concrete structure subjected to quasi static loading and given boundary conditions. To model the uncertainty in the tensile strength of concrete in the Finite Element Analysis correlated normally and lognormally distributed random filed with different correlation lengths were generated. The paper also presents and discuss different methods to generate random fields, e.g. the Covariance Matrix Decomposition Method. For all computations, a plastic constitutive law with softening was used to model the crack initiation and the damage of the concrete in tension. It was found that the distributions of crack spacing and crack widths are highly dependent of the used random field. These distributions are validated to experimental studies on R/C panels which were carried out at the Laboratory for Structural Engineering at the University of the German Armed Forces in Munich. Also, a recommendation for parameters of the random field for realistic modelling the uncertainty of the tensile strength is given. The aim of this research was to show a method in which the localization of strains and cracks as well as the influence of transverse reinforcement on the crack initiation and propagation in Finite Element Analysis can be seen.

Keywords: crack initiation, crack modelling, crack propagation, cracks, numerical simulation, random fields, reinforced concrete, stochastic

Procedia PDF Downloads 134
1571 Experimental Characterization of the Shear Behavior of Fiber Reinforced Concrete Beam Elements in Chips

Authors: Djamal Atlaoui, Youcef Bouafia

Abstract:

This work deals with the experimental study of the mechanical behavior, by shear tests (fracture shear), elements of concrete beams reinforced with fibers in chips. These fibers come from the machining waste of the steel parts. The shear tests are carried out on prismatic specimens of dimensions 10 x 20 x 120 cm3. The fibers are characterized by mechanical resistance and tearing. The optimal composition of the concrete was determined by the workability test. Two fiber contents are selected for this study (W = 0.6% and W = 0.8%) and a BT control concrete (W = 0%) of the same composition as the matrix is developed to serve as a reference with a sand-to-gravel ratio (S/G) of concrete matrix equal to 1. The comparison of the different results obtained shows that the chips fibers confer a significant ductility to the material after cracking of the concrete. Also, the fibers used limit diagonal cracks in shear and improve strength and rigidity.

Keywords: characterization, chips fibers, cracking mode, ductility, undulation, shear

Procedia PDF Downloads 115
1570 Devulcanization of Waste Rubber Tyre Utilizing Deep Eutectic Solvents and Ultrasonic Energy

Authors: Ricky Saputra, Rashmi Walvekar, Mohammad Khalid, Kaveh Shahbaz, Suganti Ramarad

Abstract:

This particular study of interest aims to study the effect of coupling ultrasonic treatment with eutectic solvents in devulcanization process of waste rubber tyre. Specifically, three different types of Deep Eutectic Solvents (DES) were utilized, namely ChCl:Urea (1:2), ChCl:ZnCl₂ (1:2) and ZnCl₂:urea (2:7) in which their physicochemical properties were analysed and proven to have permissible water content that is less than 3.0 wt%, degradation temperature below 200ᵒC and freezing point below 60ᵒC. The mass ratio of rubber to DES was varied from 1:20-1:40, sonicated for 1 hour at 37 kHz and heated at variable time of 5-30 min at 180ᵒC. Energy dispersive x-rays (EDX) results revealed that the first two DESs give the highest degree of sulphur removal at 74.44 and 76.69% respectively with optimum heating time at 15 minutes whereby if prolonged, reformation of crosslink network would be experienced. Such is supported by the evidence shown by both FTIR and FESEM results where di-sulfide peak reappears at 30 minutes and morphological structures from 15 to 30 minutes change from smooth with high voidage to rigid with low voidage respectively. Furthermore, TGA curve reveals similar phenomena whereby at 15 minutes thermal decomposition temperature is at the lowest due to the decrease of molecular weight as a result of sulphur removal but increases back at 30 minutes. Type of bond change was also analysed whereby it was found that only di-sulphide bond was cleaved and which indicates partial-devulcanization. Overall, the results show that DES has a great potential to be used as devulcanizing solvent.

Keywords: crosslink network, devulcanization, eutectic solvents, reformation, ultrasonic

Procedia PDF Downloads 163
1569 Artificial Intelligence for Traffic Signal Control and Data Collection

Authors: Reggie Chandra

Abstract:

Trafficaccidents and traffic signal optimization are correlated. However, 70-90% of the traffic signals across the USA are not synchronized. The reason behind that is insufficient resources to create and implement timing plans. In this work, we will discuss the use of a breakthrough Artificial Intelligence (AI) technology to optimize traffic flow and collect 24/7/365 accurate traffic data using a vehicle detection system. We will discuss what are recent advances in Artificial Intelligence technology, how does AI work in vehicles, pedestrians, and bike data collection, creating timing plans, and what is the best workflow for that. Apart from that, this paper will showcase how Artificial Intelligence makes signal timing affordable. We will introduce a technology that uses Convolutional Neural Networks (CNN) and deep learning algorithms to detect, collect data, develop timing plans and deploy them in the field. Convolutional Neural Networks are a class of deep learning networks inspired by the biological processes in the visual cortex. A neural net is modeled after the human brain. It consists of millions of densely connected processing nodes. It is a form of machine learning where the neural net learns to recognize vehicles through training - which is called Deep Learning. The well-trained algorithm overcomes most of the issues faced by other detection methods and provides nearly 100% traffic data accuracy. Through this continuous learning-based method, we can constantly update traffic patterns, generate an unlimited number of timing plans and thus improve vehicle flow. Convolutional Neural Networks not only outperform other detection algorithms but also, in cases such as classifying objects into fine-grained categories, outperform humans. Safety is of primary importance to traffic professionals, but they don't have the studies or data to support their decisions. Currently, one-third of transportation agencies do not collect pedestrian and bike data. We will discuss how the use of Artificial Intelligence for data collection can help reduce pedestrian fatalities and enhance the safety of all vulnerable road users. Moreover, it provides traffic engineers with tools that allow them to unleash their potential, instead of dealing with constant complaints, a snapshot of limited handpicked data, dealing with multiple systems requiring additional work for adaptation. The methodologies used and proposed in the research contain a camera model identification method based on deep Convolutional Neural Networks. The proposed application was evaluated on our data sets acquired through a variety of daily real-world road conditions and compared with the performance of the commonly used methods requiring data collection by counting, evaluating, and adapting it, and running it through well-established algorithms, and then deploying it to the field. This work explores themes such as how technologies powered by Artificial Intelligence can benefit your community and how to translate the complex and often overwhelming benefits into a language accessible to elected officials, community leaders, and the public. Exploring such topics empowers citizens with insider knowledge about the potential of better traffic technology to save lives and improve communities. The synergies that Artificial Intelligence brings to traffic signal control and data collection are unsurpassed.

Keywords: artificial intelligence, convolutional neural networks, data collection, signal control, traffic signal

Procedia PDF Downloads 145
1568 A Systematic Review and Meta-Analysis in Slow Gait Speed and Its Association with Worse Postoperative Outcomes in Cardiac Surgery

Authors: Vignesh Ratnaraj, Jaewon Chang

Abstract:

Background: Frailty is associated with poorer outcomes in cardiac surgery, but the heterogeneity in frailty assessment tools makes it difficult to ascertain its true impact in cardiac surgery. Slow gait speed is a simple, validated, and reliable marker of frailty. We performed a systematic review and meta-analysis to examine the effect of slow gait speed on postoperative cardiac surgical patients. Methods: PubMED, MEDLINE, and EMBASE databases were searched from January 2000 to August 2021 for studies comparing slow gait speed and “normal” gait speed. The primary outcome was in-hospital mortality. Secondary outcomes were composite mortality and major morbidity, AKI, stroke, deep sternal wound infection, prolonged ventilation, discharge to a healthcare facility, and ICU length of stay. Results: There were seven eligible studies with 36,697 patients. Slow gait speed was associated with an increased likelihood of in-hospital mortality (risk ratio [RR]: 2.32; 95% confidence interval [CI]: 1.87–2.87). Additionally, they were more likely to suffer from composite mortality and major morbidity (RR: 1.52; 95% CI: 1.38–1.66), AKI (RR: 2.81; 95% CI: 1.44–5.49), deep sternal wound infection (RR: 1.77; 95% CI: 1.59–1.98), prolonged ventilation >24 h (RR: 1.97; 95% CI: 1.48–2.63), reoperation (RR: 1.38; 95% CI: 1.05–1.82), institutional discharge (RR: 2.08; 95% CI: 1.61–2.69), and longer ICU length of stay (MD: 21.69; 95% CI: 17.32–26.05). Conclusion: Slow gait speed is associated with poorer outcomes in cardiac surgery. Frail patients are twofold more likely to die during hospital admission than non-frail counterparts and are at an increased risk of developing various perioperative complications.

Keywords: cardiac surgery, gait speed, recovery, frailty

Procedia PDF Downloads 60
1567 Seismic Reflection Highlights of New Miocene Deep Aquifers in Eastern Tunisia Basin (North Africa)

Authors: Mourad Bédir, Sami Khomsi, Hakim Gabtni, Hajer Azaiez, Ramzi Gharsalli, Riadh Chebbi

Abstract:

Eastern Tunisia is a semi-arid area; located in the northern Africa plate; southern Mediterranean side. It is facing water scarcity, overexploitation, and decreasing of water quality of phreatic water table. Water supply and storage will not respond to the demographic and economic growth and demand. In addition, only 5 109 m3 of rainwater from 35 109 m3 per year renewable rain water supply can be retained and remobilized. To remediate this water deficiency, researches had been focused to near new subsurface deep aquifers resources. Among them, Upper Miocene sandstone deposits of Béglia, Saouaf, and Somaa Formations. These sandstones are known for their proven Hydrogeologic and hydrocarbon reservoir characteristics in the Tunisian margin. They represent semi-confined to confined aquifers. This work is based on new integrated approaches of seismic stratigraphy, seismic tectonics, and hydrogeology, to highlight and characterize these reservoirs levels for aquifer exploitation in semi-arid area. As a result, five to six third order sequence deposits had been highlighted. They are composed of multi-layered extended sandstones reservoirs; separated by shales packages. These reservoir deposits represent lowstand and highstand system tracts of these sequences, which represent lowstand and highstand system tracts of these sequences. They constitute important strategic water resources volumes for the region.

Keywords: Tunisia, Hydrogeology, sandstones, basin, seismic, aquifers, modeling

Procedia PDF Downloads 159
1566 A Review of Brain Implant Device: Current Developments and Applications

Authors: Ardiansyah I. Ryan, Ashsholih K. R., Fathurrohman G. R., Kurniadi M. R., Huda P. A

Abstract:

The burden of brain-related disease is very high. There are a lot of brain-related diseases with limited treatment result and thus raise the burden more. The Parkinson Disease (PD), Mental Health Problem, or Paralysis of extremities treatments had risen concern, as the patients for those diseases usually had a low quality of life and low chance to recover fully. There are also many other brain or related neural diseases with the similar condition, mainly the treatments for those conditions are still limited as our understanding of the brain function is insufficient. Brain Implant Technology had given hope to help in treating this condition. In this paper, we examine the current update of the brain implant technology. Neurotechnology is growing very rapidly worldwide. The United States Food and Drug Administration (FDA) has approved the use of Deep Brain Stimulation (DBS) as a brain implant in humans. As for neural implant both the cochlear implant and retinal implant are approved by FDA too. All of them had shown a promising result. DBS worked by stimulating a specific region in the brain with electricity. This device is planted surgically into a very specific region of the brain. This device consists of 3 main parts: Lead (thin wire inserted into the brain), neurostimulator (pacemaker-like device, planted surgically in the chest) and an external controller (to turn on/off the device by patient/programmer). FDA had approved DBS for the treatment of PD, Pain Management, Epilepsy and Obsessive Compulsive Disorder (OCD). The target treatment of DBS in PD is to reduce the tremor and dystonia symptoms. DBS has been showing the promising result in animal and limited human trial for other conditions such as Alzheimer, Mental Health Problem (Major Depression, Tourette Syndrome), etc. Every surgery has risks of complications, although in DBS the chance is very low. DBS itself had a very satisfying result as long as the subject criteria to be implanted this device based on indication and strictly selection. Other than DBS, there are several brain implant devices that still under development. It was included (not limited to) implant to treat paralysis (In Spinal Cord Injury/Amyotrophic Lateral Sclerosis), enhance brain memory, reduce obesity, treat mental health problem and treat epilepsy. The potential of neurotechnology is unlimited. When brain function and brain implant were fully developed, it may be one of the major breakthroughs in human history like when human find ‘fire’ for the first time. Support from every sector for further research is very needed to develop and unveil the true potential of this technology.

Keywords: brain implant, deep brain stimulation (DBS), deep brain stimulation, Parkinson

Procedia PDF Downloads 141
1565 Omni-Modeler: Dynamic Learning for Pedestrian Redetection

Authors: Michael Karnes, Alper Yilmaz

Abstract:

This paper presents the application of the omni-modeler towards pedestrian redetection. The pedestrian redetection task creates several challenges when applying deep neural networks (DNN) due to the variety of pedestrian appearance with camera position, the variety of environmental conditions, and the specificity required to recognize one pedestrian from another. DNNs require significant training sets and are not easily adapted for changes in class appearances or changes in the set of classes held in its knowledge domain. Pedestrian redetection requires an algorithm that can actively manage its knowledge domain as individuals move in and out of the scene, as well as learn individual appearances from a few frames of a video. The Omni-Modeler is a dynamically learning few-shot visual recognition algorithm developed for tasks with limited training data availability. The Omni-Modeler adapts the knowledge domain of pre-trained deep neural networks to novel concepts with a calculated localized language encoder. The Omni-Modeler knowledge domain is generated by creating a dynamic dictionary of concept definitions, which are directly updatable as new information becomes available. Query images are identified through nearest neighbor comparison to the learned object definitions. The study presented in this paper evaluates its performance in re-identifying individuals as they move through a scene in both single-camera and multi-camera tracking applications. The results demonstrate that the Omni-Modeler shows potential for across-camera view pedestrian redetection and is highly effective for single-camera redetection with a 93% accuracy across 30 individuals using 64 example images for each individual.

Keywords: dynamic learning, few-shot learning, pedestrian redetection, visual recognition

Procedia PDF Downloads 60
1564 Geochemical Characterization of Geothermal Waters in Albania, Preliminary Results

Authors: Aurela Jahja, Katarzyna Wątor, Arjan Beqiraj, Piotr Rusiniak, Nevton Kodhelaj

Abstract:

Albanian geological terrains represent an important node of the Alpine – Mediterranean mountain belt and are divided into several predominantly NNW - SSE striking geotectonic units, which, based on the presence or lack of Cretaceous transgression and magmatic rocks, belong to Internal or External Albanides. The internal (Korabi, Mirdita and Gashi) units are characterized by the Lower Cretaceous discordance and the presence of abundant magmatic rocks whereas in the external (Alps, Krasta-Cukali, Kruja, Ionian, Sazani and Peri Adriatic Depression) units an almost continuous sedimentation from Triassic to Paleogene is evidenced. The internal and external units show relevant differences in both geothermal and heat flow density values. The gradient values vary from 15-21.3 to 36 mK/m, while the heat flow density ranges from 42 to 60 mW/m2, in the external (Preadriatic Depression) and internal (ophiolitic belt) units, respectively. The geothermal fluids, which are found in natural springs and deep oil wells of Albania, are located in four thermo-mineral provinces: a) Peshkopi (Korabi) province; b) Kruja province; c) Preadriatic basin province, and d) South Ionian province. Thirteen geothermal waters were sampled from 11 natural springs and 2 deep wells, of which 6 springs and 2 wells from Kruja, 1 spring from Peshkopia, 2 springs from Preadriatic basin and 2 springs South Ionian province. Temperature, pH and Electrical Conductivity were measured in situ, while in laboratory were analyzed by ICP method major anions and cations and several trace elements (B, Li, Sr, Rb, I, Br, etc.). The measured values of temperature, pH and electrical conductivity range within 17-63°C, 6.26-7.92 and 724- 26856µS/cm intervals, respectively. The chemical type of the Albania thermal waters is variable. In the Kruja province prevail the Cl-SO4-NaCa and Cl-Na-Ca water types; while SO4-Ca, HCO3-Ca and Cl-HCO3-Na-Ca, and Cl-Na are found in the provinces of Peshkopi, Ionian and Preadriatic basin, respectively. In the Cl-SO4-HCO3 triangular diagram most of the geothermal waters are close to the chloride corner that belong to “mature waters”, typical of geothermal deep and hot fluids. Only samples from the Ionian province are located within the region of high bicarbonate concentration and they can be classified as peripheral waters that may have mixed with cold groundwater. In the Na-Ca-Mg and Na-K-Mg triangular diagram the majority of waters fall in the corner of sodium, suggesting that their cation ratios are controlled by mineral-solution equilibrium. There is a linear relationship between Cl and B which indicates the mixing of geothermal water with cold water, where the low-chlorine thermal waters from Ionian basin and Preadriatic depression provinces are distinguished by high-chlorine thermal waters from Kruja province. The Cl/Br molar ration of the thermal waters from Kruja province ranges from 1000 to 2660 and separates them from the thermal waters of Ionian basin and Preadriatic depression provinces having Cl/Br molar ratio lower than 650. The apparent increase of Cl/Br molar ratio that correlates with the increasing of the chloride, is probably related with dissolution of the Halite.

Keywords: geothermal fluids, geotectonic units, natural springs, deep wells, mature waters, peripheral waters

Procedia PDF Downloads 204
1563 Effectiveness of Interactive Integrated Tutorial in Teaching Medical Subjects to Dental Students: A Pilot Study

Authors: Mohammad Saleem, Neeta Kumar, Anita Sharma, Sazina Muzammil

Abstract:

It is observed that some of the dental students in our setting take less interest in medical subjects. Various teaching methods are focus of research interest currently and being tried to generate interest among students. An approach of interactive integrated tutorial was used to assess its feasibility in teaching medical subjects to dental undergraduates. The aim was to generate interest and promote active self-learning among students. The objectives were to (1) introduce the integrated interactive learning method through two departments, (2) get feedback from the students and faculty on feasibility and effectiveness of this method. Second-year students in Bachelor of Dental Surgery course were divided into two groups. Each group was asked to study physiology and pathology of a common and important condition (anemia and hypertension) in a week’s time. During the tutorial, students asked questions on physiology and pathology of that condition from each other in the presence of teachers of both physiology and pathology departments. The teachers acted only as facilitators. After the session, the feedback from students and faculty on this alternative learning method was obtained. Results: Majority of the students felt that this method of learning is enjoyable, helped to develop reasoning skills and ability to correlate and integrate the knowledge from two related fields. Majority of the students felt that this kind of learning led to better understanding of the topic and motivated them towards deep learning. Teachers observed that the study promoted interdepartmental cross-discipline collaboration and better students’ linkages. Conclusion: Interactive integrated tutorial is effective in motivating dental students for better and deep learning of medical subjects.

Keywords: active learning, education, integrated, interactive, self-learning, tutorials

Procedia PDF Downloads 299
1562 Harnessing Deep-Level Metagenomics to Explore the Three Dynamic One Health Areas: Healthcare, Domiciliary and Veterinary

Authors: Christina Killian, Katie Wall, Séamus Fanning, Guerrino Macori

Abstract:

Deep-level metagenomics offers a useful technical approach to explore the three dynamic One Health axes: healthcare, domiciliary and veterinary. There is currently limited understanding of the composition of complex biofilms, natural abundance of AMR genes and gene transfer occurrence in these ecological niches. By using a newly established small-scale complex biofilm model, COMBAT has the potential to provide new information on microbial diversity, antimicrobial resistance (AMR)-encoding gene abundance, and their transfer in complex biofilms of importance to these three One Health axes. Shotgun metagenomics has been used to sample the genomes of all microbes comprising the complex communities found in each biofilm source. A comparative analysis between untreated and biocide-treated biofilms is described. The basic steps include the purification of genomic DNA, followed by library preparation, sequencing, and finally, data analysis. The use of long-read sequencing facilitates the completion of metagenome-assembled genomes (MAG). Samples were sequenced using a PromethION platform, and following quality checks, binning methods, and bespoke bioinformatics pipelines, we describe the recovery of individual MAGs to identify mobile gene elements (MGE) and the corresponding AMR genotypes that map to these structures. High-throughput sequencing strategies have been deployed to characterize these communities. Accurately defining the profiles of these niches is an essential step towards elucidating the impact of the microbiota on each niche biofilm environment and their evolution.

Keywords: COMBAT, biofilm, metagenomics, high-throughput sequencing

Procedia PDF Downloads 39
1561 The Effect of an Infill on the Bearing Capacity and Stiffness of Infilled Frames

Authors: Goran Baloevic, Jure Radnic, Nikola Grgic

Abstract:

The application of frames with masonry or panel infill is common in the engineering practice. In these cases, a frame is often considered to be a primary structure, while an infill is considered to be a secondary structure. In past calculations, the infill was rarely included in the design of frame structures in terms of their bearing capacity and safety. Recent calculations of such structures necessarily include the effect of infill since it contributes to stiffness and bearing capacity of overall system, especially under horizontal loads. In certain cases, if the infill is not included in the seismic design of frame structures, the result can be lower design safety. However, since the different configuration of the infill through the building’s height can be made, it is possible that contribution of such infill to the overall bearing capacity can be lower and seismic forces on the building can be increased due to greater stiffness of the structure. So far, many experimental and numerical researches on the behavior of infilled frames under horizontal static forces and earthquake have been performed. In this paper, several masonry-infilled concrete and steel frames under horizontal static forces and earthquake are analysed. The experimental results by shake-table and numerical results are compared in terms of the bearing capacity of bare and infilled frames. Herein, the stiffness of frames and infill were varied, with different position of the infill and different types of openings. Cases with positive and negative effects of the infill to the bearing capacity of the frames were considered. Finally, main conclusions and recommendations for practical application and design of masonry-infilled concrete and steel frames are given.

Keywords: bearing capacity, infilled frame, numerical model, shake table

Procedia PDF Downloads 446
1560 Intelligent Fault Diagnosis for the Connection Elements of Modular Offshore Platforms

Authors: Jixiang Lei, Alexander Fuchs, Franz Pernkopf, Katrin Ellermann

Abstract:

Within the Space@Sea project, funded by the Horizon 2020 program, an island consisting of multiple platforms was designed. The platforms are connected by ropes and fenders. The connection is critical with respect to the safety of the whole system. Therefore, fault detection systems are investigated, which could detect early warning signs for a possible failure in the connection elements. Previously, a model-based method called Extended Kalman Filter was developed to detect the reduction of rope stiffness. This method detected several types of faults reliably, but some types of faults were much more difficult to detect. Furthermore, the model-based method is sensitive to environmental noise. When the wave height is low, a long time is needed to detect a fault and the accuracy is not always satisfactory. In this sense, it is necessary to develop a more accurate and robust technique that can detect all rope faults under a wide range of operational conditions. Inspired by this work on the Space at Sea design, we introduce a fault diagnosis method based on deep neural networks. Our method cannot only detect rope degradation by using the acceleration data from each platform but also estimate the contributions of the specific acceleration sensors using methods from explainable AI. In order to adapt to different operational conditions, the domain adaptation technique DANN is applied. The proposed model can accurately estimate rope degradation under a wide range of environmental conditions and help users understand the relationship between the output and the contributions of each acceleration sensor.

Keywords: fault diagnosis, deep learning, domain adaptation, explainable AI

Procedia PDF Downloads 161
1559 Evaluation of the Effect of Turbulence Caused by the Oscillation Grid on Oil Spill in Water Column

Authors: Mohammad Ghiasvand, Babak Khorsandi, Morteza Kolahdoozan

Abstract:

Under the influence of waves, oil in the sea is subject to vertical scattering in the water column. Scientists' knowledge of how oil is dispersed in the water column is one of the lowest levels of knowledge among other processes affecting oil in the marine environment, which highlights the need for research and study in this field. Therefore, this study investigates the distribution of oil in the water column in a turbulent environment with zero velocity characteristics. Lack of laboratory results to analyze the distribution of petroleum pollutants in deep water for information Phenomenon physics on the one hand and using them to calibrate numerical models on the other hand led to the development of laboratory models in research. According to the aim of the present study, which is to investigate the distribution of oil in homogeneous and isotropic turbulence caused by the oscillating Grid, after reaching the ideal conditions, the crude oil flow was poured onto the water surface and oil was distributed in deep water due to turbulence was investigated. In this study, all experimental processes have been implemented and used for the first time in Iran, and the study of oil diffusion in the water column was considered one of the key aspects of pollutant diffusion in the oscillating Grid environment. Finally, the required oscillation velocities were taken at depths of 10, 15, 20, and 25 cm from the water surface and used in the analysis of oil diffusion due to turbulence parameters. The results showed that with the characteristics of the present system in two static modes and network motion with a frequency of 0.8 Hz, the results of oil diffusion in the four mentioned depths at a frequency of 0.8 Hz compared to the static mode from top to bottom at 26.18, 57 31.5, 37.5 and 50% more. Also, after 2.5 minutes of the oil spill at a frequency of 0.8 Hz, oil distribution at the mentioned depths increased by 49, 61.5, 85, and 146.1%, respectively, compared to the base (static) state.

Keywords: homogeneous and isotropic turbulence, oil distribution, oscillating grid, oil spill

Procedia PDF Downloads 62