Search results for: methyl cycle metabolites
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2915

Search results for: methyl cycle metabolites

1955 Analysis on the Need of Engineering Drawing and Feasibility Study on 3D Model Based Engineering Implementation

Authors: Parthasarathy J., Ramshankar C. S.

Abstract:

Engineering drawings these days play an important role in every part of an industry. By and large, Engineering drawings are influential over every phase of the product development process. Traditionally, drawings are used for communication in industry because they are the clearest way to represent the product manufacturing information. Until recently, manufacturing activities were driven by engineering data captured in 2D paper documents or digital representations of those documents. The need of engineering drawing is inevitable. Still Engineering drawings are disadvantageous in re-entry of data throughout manufacturing life cycle. This document based approach is prone to errors and requires costly re-entry of data at every stage in the manufacturing life cycle. So there is a requirement to eliminate Engineering drawings throughout product development process and to implement 3D Model Based Engineering (3D MBE or 3D MBD). Adopting MBD appears to be the next logical step to continue reducing time-to-market and improve product quality. Ideally, by fully applying the MBD concept, the product definition will no longer rely on engineering drawings throughout the product lifecycle. This project addresses the need of Engineering drawing and its influence in various parts of an industry and the need to implement the 3D Model Based Engineering with its advantages and the technical barriers that must be overcome in order to implement 3D Model Based Engineering. This project also addresses the requirements of neutral formats and its realisation in order to implement the digital product definition principles in a light format. In order to prove the concepts of 3D Model Based Engineering, the screw jack body part is also demonstrated. At ZF Windpower Coimbatore Limited, 3D Model Based Definition is implemented to Torque Arm (Machining and Casting), Steel tube, Pinion shaft, Cover, Energy tube.

Keywords: engineering drawing, model based engineering MBE, MBD, CAD

Procedia PDF Downloads 435
1954 Cranioplasty with Custom Implant Realized Using 3D Printing Technology

Authors: Trad Khodja Rafik, Mahtout Amine, Ghoul Rachid, Benbouali Amine, Boulahlib Amine, Hariza Abdelmalik

Abstract:

Cranioplasty with custom implant realized using 3D printing technology. Cranioplasty is a surgical act that aims restoring cranial bone losses in order to protect the brain from external aggressions and to improve the patient aesthetic appearance. This objective can be achieved with taking advantage of the current technological development in computer science and biomechanics. The objective of this paper it to present an approach for the realization of high precision biocompatible cranial implants using new 3D printing technologies at the lowest cost. The proposed method is to reproduce the missing part of the skull by referring to its healthy contralateral part. Once the model is validated by the neurosurgeons, a mold is 3D printed for the production of a biocompatible implant in Poly-Methyl-Methacrylate (PMMA) acrylic cement. Using this procedure four patients underwent this procedure with excellent aesthetic results.

Keywords: cranioplasty, cranial bone loss, 3D printing technology, custom-made implants, PMMA

Procedia PDF Downloads 111
1953 A Study on the Synthesis and Antioxidant Activity of Hybrid Pyrazoline Integrated with Pyrazole and Thiazole Nuclei

Authors: Desta Gebretekle Shiferaw, Balakrishna Kalluraya

Abstract:

Pyrazole is an aromatic five-membered heterocycle with two nitrogen and three carbon atoms in its ring structure. According to the literature, pyrazoline, pyrazole, and thiazole-containing moieties are found in various drug structures and are responsible for nearly all pharmacological effects. The pyrazoline linked to pyrazole moiety carbothioamides was synthesized via the reaction of pyrazole-bearing chalcones (3-(5-chloro-3-methyl-¹-phenyl-1H-pyrazol-4-yl)-¹-(substituted aryl) prop-2-ene-¹-one derivatives) with a nucleophile thiosemicarbohyrazide by heating in ethanol using fused sodium acetate as a catalyst. Then the carbothioamide derivatives were converted into the pyrazoline hybrid to pyrazole and thiazole derivatives by condensing with substituted phenacyl bromide in alcohol in a basic medium. Next, the chemical structure of the newly synthesized molecules was confirmed by IR, 1H-NMR, and mass spectral data. Further, they were screened for their in vitro antioxidant activity. Compared to butylated hydroxy anisole (BHA)., the antioxidant data showed that the synthesized compounds had good to moderate activity.

Keywords: pyrazoline-pyrazole carbothioamide derivatives, pyrazoline-pyrazole-thiazole derivatives, spectral studies, antioxidant activity

Procedia PDF Downloads 72
1952 Bio-Hub Ecosystems: Expansion of Traditional Life Cycle Analysis Metrics to Include Zero-Waste Circularity Measures

Authors: Kimberly Samaha

Abstract:

In order to attract new types of investors into the emerging Bio-Economy, a new set of metrics and measurement system is needed to better quantify the environmental, social and economic impacts of circular zero-waste design. The Bio-Hub Ecosystem model was developed to address a critical area of concern within the global energy market regarding the use of biomass as a feedstock for power plants. Lack of an economically-viable business model for bioenergy facilities has resulted in the continuation of idled and decommissioned plants. In particular, the forestry-based plants which have been an invaluable outlet for woody biomass surplus, forest health improvement, timber production enhancement, and especially reduction of wildfire risk. This study looked at repurposing existing biomass-energy plants into Circular Zero-Waste Bio-Hub Ecosystems. A Bio-Hub model that first targets a ‘whole-tree’ approach and then looks at the circular economics of co-hosting diverse industries (wood processing, aquaculture, agriculture) in the vicinity of the Biomass Power Plants facilities. It proposes not only models for integration of forestry, aquaculture, and agriculture in cradle-to-cradle linkages of what have typically been linear systems, but the proposal also allows for the early measurement of the circularity and impact of resource use and investment risk mitigation, for these systems. Typically, life cycle analyses measure environmental impacts of different industrial production stages and are not integrated with indicators of material use circularity. This concept paper proposes the further development of a new set of metrics that would illustrate not only the typical life-cycle analysis (LCA), which shows the reduction in greenhouse gas (GHG) emissions, but also the zero-waste circularity measures of mass balance of the full value chain of the raw material and energy content/caloric value. These new measures quantify key impacts in making hyper-efficient use of natural resources and eliminating waste to landfills. The project utilized traditional LCA using the GREET model where the standalone biomass energy plant case was contrasted with the integration of a jet-fuel biorefinery. The methodology was then expanded to include combinations of co-hosts that optimize the life cycle of woody biomass from tree to energy, CO₂, heat and wood ash both from an energy/caloric value and for mass balance to include reuse of waste streams which are typically landfilled. The major findings of both a formal LCA study resulted in the masterplan for the first Bio-Hub to be built in West Enfield, Maine. Bioenergy facilities are currently at a critical juncture where they have an opportunity to be repurposed into efficient, profitable and socially responsible investments, or be idled and scrapped. If proven as a model, the expedited roll-out of these innovative scenarios can set a new standard for circular zero-waste projects that advance the critical transition from the current ‘take-make-dispose’ paradigm inherent in the energy, forestry and food industries to a more sustainable bio-economy paradigm where waste streams become valuable inputs, supporting local and rural communities in simple, sustainable ways.

Keywords: bio-economy, biomass energy, financing, metrics

Procedia PDF Downloads 156
1951 Green Synthesis and Photo Catalytic Activity of Monoclinic α-Bi2O3 Nanocrystals

Authors: R. Yuvakkumar, S. I. Hong

Abstract:

Visible light driven monoclinic α-Bi2O3 photocatalyst was synthesized employing green synthesis method using rambutan peel wastes. 10 ml rambutan extract was added to 50 ml of 0.1M Bi(NO3)3 under stirring at about 80°C for 2 hours. The centrifuged and dried product was calcinated in a muffle furnace at 450°C to get pure α-Bi2O3. The characterized product photocatalytic activity was evaluated employing methyl orange (MeO) as model pollutant with 10 mg l-1 concentration at pH 7. The obtained product optical absorption edges located at 484 nm clearly revealed the photocatalyst excitation by visible light irradiation. The obtained yellow color photocatalyst accord with its strong absorption spectrum revealed the visible light absorption due to the band gap transition. The band gap energy of α-Bi2O3 was estimated to be 2.81 eV indicating the absorption of α-Bi2O3 in visible light region. The photocatalytic results of MeO degradation revealed that green synthesized Bi2O3 can effectively degrade 92% MeO within 240 min under visible light (>400 nm), which is slightly increased to that of chemically synthesized Bi2O3 (90%).

Keywords: green synthesis, bismuth oxide, photocatalytic activity, nano

Procedia PDF Downloads 212
1950 Material Use and Life Cycle GHG Emissions of Different Electrification Options for Long-Haul Trucks

Authors: Nafisa Mahbub, Hajo Ribberink

Abstract:

Electrification of long-haul trucks has been in discussion as a potential strategy to decarbonization. These trucks will require large batteries because of their weight and long daily driving distances. Around 245 million battery electric vehicles are predicted to be on the road by the year 2035. This huge increase in the number of electric vehicles (EVs) will require intensive mining operations for metals and other materials to manufacture millions of batteries for the EVs. These operations will add significant environmental burdens and there is a significant risk that the mining sector will not be able to meet the demand for battery materials, leading to higher prices. Since the battery is the most expensive component in the EVs, technologies that can enable electrification with smaller batteries sizes have substantial potential to reduce the material usage and associated environmental and cost burdens. One of these technologies is an ‘electrified road’ (eroad), where vehicles receive power while they are driving, for instance through an overhead catenary (OC) wire (like trolleybuses and electric trains), through wireless (inductive) chargers embedded in the road, or by connecting to an electrified rail in or on the road surface. This study assessed the total material use and associated life cycle GHG emissions of two types of eroads (overhead catenary and in-road wireless charging) for long-haul trucks in Canada and compared them to electrification using stationary plug-in fast charging. As different electrification technologies require different amounts of materials for charging infrastructure and for the truck batteries, the study included the contributions of both for the total material use. The study developed a bottom-up approach model comparing the three different charging scenarios – plug in fast chargers, overhead catenary and in-road wireless charging. The investigated materials for charging technology and batteries were copper (Cu), steel (Fe), aluminium (Al), and lithium (Li). For the plug-in fast charging technology, different charging scenarios ranging from overnight charging (350 kW) to megawatt (MW) charging (2 MW) were investigated. A 500 km of highway (1 lane of in-road charging per direction) was considered to estimate the material use for the overhead catenary and inductive charging technologies. The study considered trucks needing an 800 kWh battery under the plug-in charger scenario but only a 200 kWh battery for the OC and inductive charging scenarios. Results showed that overall the inductive charging scenario has the lowest material use followed by OC and plug-in charger scenarios respectively. The materials use for the OC and plug-in charger scenarios were 50-70% higher than for the inductive charging scenarios for the overall system including the charging infrastructure and battery. The life cycle GHG emissions from the construction and installation of the charging technology material were also investigated.

Keywords: charging technology, eroad, GHG emissions, material use, overhead catenary, plug in charger

Procedia PDF Downloads 51
1949 Exploring the Role of Building Information Modeling for Delivering Successful Construction Projects

Authors: Muhammad Abu Bakar Tariq

Abstract:

Construction industry plays a crucial role in the progress of societies and economies. Furthermore, construction projects have social as well as economic implications, thus, their success/failure have wider impacts. However, the industry is lagging behind in terms of efficiency and productivity. Building Information Modeling (BIM) is recognized as a revolutionary development in Architecture, Engineering and Construction (AEC) industry. There are numerous interest groups around the world providing definitions of BIM, proponents describing its advantages and opponents identifying challenges/barriers regarding adoption of BIM. This research is aimed at to determine what actually BIM is, along with its potential role in delivering successful construction projects. The methodology is critical analysis of secondary data sources i.e. information present in public domain, which include peer reviewed journal articles, industry and government reports, conference papers, books, case studies etc. It is discovered that clash detection and visualization are two major advantages of BIM. Clash detection option identifies clashes among structural, architectural and MEP designs before construction actually commences, which subsequently saves time as well as cost and ensures quality during execution phase of a project. Visualization is a powerful tool that facilitates in rapid decision-making in addition to communication and coordination among stakeholders throughout project’s life cycle. By eliminating inconsistencies that consume time besides cost during actual construction, improving collaboration among stakeholders throughout project’s life cycle, BIM can play a positive role to achieve efficiency and productivity that consequently deliver successful construction projects.

Keywords: building information modeling, clash detection, construction project success, visualization

Procedia PDF Downloads 259
1948 Efficacy of Preimplantation Genetic Screening in Women with a Spontaneous Abortion History with Eukaryotic or Aneuploidy Abortus

Authors: Jayeon Kim, Eunjung Yu, Taeki Yoon

Abstract:

Most spontaneous miscarriage is believed to be a consequence of embryo aneuploidies. Transferring eukaryotic embryos selected by PGS is expected to decrease the miscarriage rate. Current PGS indications include advanced maternal age, recurrent pregnancy loss, repeated implantation failure. Recently, use of PGS for healthy women without above indications for the purpose of improving in vitro fertilization (IVF) outcomes is on the rise. However, it is still controversy about the beneficial effect of PGS in this population, especially, in women with a history of no more than 2 miscarriages or miscarriage of eukaryotic abortus. This study aimed to investigate if karyotyping result of abortus is a good indicator of preimplantation genetic screening (PGS) in subsequent IVF cycle in women with a history of spontaneous abortion. A single-center retrospective cohort study was performed. Women who had spontaneous abortion(s) (less than 3) and dilatation and evacuation, and subsequent IVF from January 2016 to November 2016 were included. Their medical information was extracted from the charts. Clinical pregnancy was defined as presence of a gestational sac with fetal heart beat detected on ultrasound in week 7. Statistical analysis was performed using SPSS software. Total 234 women were included. 121 out of 234 (51.7%) underwent karyotyping of the abortus, and 113 did not have the abortus karyotyped. Embryo biopsy was performed on 3 or 5 days after oocyte retrieval, followed by embryo transfer (ET) on a fresh or frozen cycle. The biopsied materials were subjected to microarray comparative genomic hybridization. Clinical pregnancy rate per ET was compared between PGS and non-PGS group in each study group. Patients were grouped by two criteria: karyotype of the abortus from previous miscarriage (unknown fetal karyotype (n=89, Group 1), eukaryotic abortus (n=36, Group 2) or aneuploidy abortus (n=67, Group 3)), and pursuing PGS in subsequent IVF cycle (pursuing PGS (PGS group, n=105) or not pursuing PGS (non-PGS group, n=87)). The PGS group was significantly older and had higher number of retrieved oocytes and prior miscarriages compared to non-PGS group. There were no differences in BMI and AMH level between those two groups. In PGS group, the mean number of transferable embryos (eukaryotic embryo) was 1.3 ± 0.7, 1.5 ± 0.5 and 1.4 ± 0.5, respectively (p = 0.049). In 42 cases, ET was cancelled because all embryos biopsied turned out to be abnormal. In all three groups (group 1, 2, and 3), clinical pregnancy rates were not statistically different between PGS and non-PGS group (Group 1: 48.8% vs. 52.2% (p=0.858), Group 2: 70% vs. 73.1% (p=0.730), Group 3: 42.3% vs. 46.7% (p=0.640), in PGS and non-PGS group, respectively). In both groups who had miscarriage with eukaryotic and aneuploidy abortus, the clinical pregnancy rate between IVF cycles with and without PGS was not different. When we compare miscarriage and ongoing pregnancy rate, there were no significant differences between PGS and non-PGS group in all three groups. Our results show that the routine application of PGS in women who had less than 3 miscarriages would not be beneficial, even in cases that previous miscarriage had been caused by fetal aneuploidy.

Keywords: preimplantation genetic diagnosis, miscarriage, kpryotyping, in vitro fertilization

Procedia PDF Downloads 181
1947 A Next-Generation Pin-On-Plate Tribometer for Use in Arthroplasty Material Performance Research

Authors: Lewis J. Woollin, Robert I. Davidson, Paul Watson, Philip J. Hyde

Abstract:

Introduction: In-vitro testing of arthroplasty materials is of paramount importance when ensuring that they can withstand the performance requirements encountered in-vivo. One common machine used for in-vitro testing is a pin-on-plate tribometer, an early stage screening device that generates data on the wear characteristics of arthroplasty bearing materials. These devices test vertically loaded rotating cylindrical pins acting against reciprocating plates, representing the bearing surfaces. In this study, a pin-on-plate machine has been developed that provides several improvements over current technology, thereby progressing arthroplasty bearing research. Historically, pin-on-plate tribometers have been used to investigate the performance of arthroplasty bearing materials under conditions commonly encountered during a standard gait cycle; nominal operating pressures of 2-6 MPa and an operating frequency of 1 Hz are typical. There has been increased interest in using pin-on-plate machines to test more representative in-vivo conditions, due to the drive to test 'beyond compliance', as well as their testing speed and economic advantages over hip simulators. Current pin-on-plate machines do not accommodate the increased performance requirements associated with more extreme kinematic conditions, therefore a next-generation pin-on-plate tribometer has been developed to bridge the gap between current technology and future research requirements. Methodology: The design was driven by several physiologically relevant requirements. Firstly, an increased loading capacity was essential to replicate the peak pressures that occur in the natural hip joint during running and chair-rising, as well as increasing the understanding of wear rates in obese patients. Secondly, the introduction of mid-cycle load variation was of paramount importance, as this allows for an approximation of the loads present in a gait cycle to be applied and to test the fatigue properties of materials. Finally, the rig must be validated against previous-generation pin-on-plate and arthroplasty wear data. Results: The resulting machine is a twelve station device that is split into three sets of four stations, providing an increased testing capacity compared to most current pin-on-plate tribometers. The loading of the pins is generated using a pneumatic system, which can produce contact pressures of up to 201 MPa on a 3.2 mm² round pin face. This greatly exceeds currently achievable contact pressures in literature and opens new research avenues such as testing rim wear of mal-positioned hip implants. Additionally, the contact pressure of each set can be changed independently of the others, allowing multiple loading conditions to be tested simultaneously. Using pneumatics also allows the applied pressure to be switched ON/OFF mid-cycle, another feature not currently reported elsewhere, which allows for investigation into intermittent loading and material fatigue. The device is currently undergoing a series of validation tests using Ultra-High-Molecular-Weight-Polyethylene pins and 316L Stainless Steel Plates (polished to a Ra < 0.05 µm). The operating pressures will be between 2-6 MPa, operating at 1 Hz, allowing for validation of the machine against results reported previously in the literature. The successful production of this next-generation pin-on-plate tribometer will, following its validation, unlock multiple previously unavailable research avenues.

Keywords: arthroplasty, mechanical design, pin-on-plate, total joint replacement, wear testing

Procedia PDF Downloads 94
1946 Similarity of the Disposition of the Electrostatic Potential of Tetrazole and Carboxylic Group to Investigate Their Bioisosteric Relationship

Authors: Alya A. Arabi

Abstract:

Bioisosteres are functional groups that can be interchangeably used without affecting the potency of the drug. Bioisosteres have similar pharmacological properties. Bioisosterism is useful for modifying the physicochemical properties of a drug while obeying the Lipinski’s rules. Bioisosteres are key in optimizing the pharmacokinetic and pharmacodynamics properties of a drug. Tetrazole and carboxylate anions are non-classic bioisosteres. Density functional theory was used to obtain the wavefunction of the molecules and the optimized geometries. The quantum theory of atoms in molecules (QTAIM) was used to uncover the similarity of the average electron density in tetrazole and carboxylate anions. This similarity between the bioisosteres capped by a methyl group was valid despite the fact that the groups have different volumes, charges, energies, or electron populations. The biochemical correspondence of tetrazole and carboxylic acid was also determined to be a result of the similarity of the topography of the electrostatic potential (ESP). The ESP demonstrates the pharmacological and biochemical resemblance for a matching “key-and-lock” interaction.

Keywords: bioisosteres, carboxylic acid, density functional theory, electrostatic potential, tetrazole

Procedia PDF Downloads 435
1945 Mansonone G and Its Ether Analogues as New Antibacterial Agents

Authors: Rita Hairani, Warinthorn Chavasiri

Abstract:

Naphthoquinones are secondary metabolites widespread in nature and can be produced by plants, fungi and actinomycetes. The interest of naphthoquinones is not only limited as organic dyes, but also their wide variety of biological activities such as antitumor, antibacterial, and cytotoxic activities. Typical 1,2-naphthoquinones such as mansonones can be found in Mansonia gagei Drumm. (“chan-cha-mod”), Sterculaceae family. This plant has been used traditionally to treat some diseases such as antiemetic and antidepressant. In this study, some natural mansonones isolated from the CH2Cl2 extract of M. gagei heartwood have been assessed for their antibacterial activities using agar well diffusion method. According to the antibacterial activity results of four natural mansonones (mansonones C, E, G and H), mansonones E and G showed higher activities than the others against Staphylococcus aureus, Propionibacterium acnes and Salmonella typhi, respectively. Since mansonone G exhibited good antibacterial activity and was obtained in the highest yield, we decided to derivertize mansonone G into five ether analogues. Based on the antibacterial activities of these synthesized compounds, four ether analogues (compounds 1-4) revealed higher antibacterial activities than its natural mansonone G against S. aureus and S. typhi.

Keywords: Mansonia gagei Drumm., antibacterial activities, mansonone G, ether analogues

Procedia PDF Downloads 426
1944 Antibacterial and Antifungal Activity of Essential Oil of Eucalyptus camendulensis on a Few Bacteria and Fungi

Authors: M. Mehani, N. Salhi, T. Valeria, S. Ladjel

Abstract:

Red River Gum (Eucalyptus camaldulensis) is a tree of the genus Eucalyptus widely distributed in Algeria and in the world. The value of its aromatic secondary metabolites offers new perspectives in the pharmaceutical industry. This strategy can contribute to the sustainable development of our country. Preliminary tests performed on the essential oil of Eucalyptus camendulensis showed that this oil has antibacterial activity vis-à-vis the bacterial strains (Enterococcus feacalis, Enterobacter cloaceai, Proteus microsilis, Escherichia coli, Klebsiella pneumonia, and Pseudomonas aeruginosa) and antifungic (Fusarium sporotrichioide and Fusarium graminearum). The culture medium used was nutrient broth Muller Hinton. The interaction between the bacteria and the essential oil is expressed by a zone of inhibition with diameters of MIC indirectly expression of. And we used the PDA medium to determine the fungal activity. The extraction of the aromatic fraction (essentially oil- hydrolat) of the fresh aerian part of the Eucalyptus camendulensis was performed by hydrodistillation. The average essential oil yield is 0.99%. The antimicrobial and fungal study of the essential oil and hydrosol showed a high inhibitory effect on the growth of pathogens.

Keywords: essential oil, Eucalyptus camendulensis, bacteria and fungi, red river gum

Procedia PDF Downloads 234
1943 Impact of Serum Estrogen and Progesterone Levels in the Outcome Pregnancy Rate in Frozen Embryo Transfer Cycles. A Prospective Cohort Study

Authors: Sayantika Biswas, Dipanshu Sur, Amitoj Athwal, Ratnabali Chakravorty

Abstract:

Title: Impact of serum estrogen and progesterone levels in the outcome pregnancy rate in frozen embryo transfer cycles. A prospective cohort study Objective: The aim of the current study was to evaluate the effect of serum estradiol (E2) and progesterone (P4) levels at different time points on pregnancy outcomes in frozen embryo transfer (FET) cycles. Materials & Method: A prospective cohort study was performed in patients undergoing frozen embryo transfer. Patients under age 37 years of age with at least one good blastocyst or three good day 3 embryos were included in the study. For endometrial preparation, 14 days of oral estradiol use (2X2 mg for 5 days. 3X2 mg for 4 days, and 4X2 mg for 5 days) was followed by vaginal progesterone twice a day and 50 mg intramuscular progesterone twice a day. Embryo transfer was scheduled 72-76 hrs or 116-120hrs after the initiation of progesterone. Serum E2 and P4 levels were examined at 4 times a) at the start of the menstrual cycle prior to the hormone supplementation. b) on the day of P4 start. c) on the day of ET. d) on the third day after ET. Result: A total 41 women were included in this study (mean age 31.8; SD 2.8). Clinical pregnancy rate was 65.55%. Serum E2 levels on at the start of the menstrual cycle prior to the hormone supplementation and on the day of P4 start were high in patients who achieved pregnancy compared to who did not (P=0.005 and P=0.019 respectively). P4 levels on on the day of ET were also high in patients with clinical pregnancy. On the day of P4 start, a serum E2 threshold of 186.4 pg/ml had a sensitivity of 82%, and P4 had a sensitivity of 71% for the prediction of clinical pregnancy at the threshold value 16.00 ng/ml. Conclusion: In women undergoing FET with hormone replacement, serum E2 level >186.4 pg/ml on the day of the start of progesterone and serum P4 levels >16.00 ng/ml on embryo transfer day are associated with clinical pregnancy.

Keywords: serum estradiol, serum progesterone, clinical pregnancy, frozen embryo transfer

Procedia PDF Downloads 80
1942 Induction of G1 Arrest and Apoptosis in Human Cancer Cells by Panaxydol

Authors: Dong-Gyu Leem, Ji-Sun Shin, Sang Yoon Choi, Kyung-Tae Lee

Abstract:

In this study, we focused on the anti-proliferative effects of panaxydol, a C17 polyacetylenic compound derived from Panax ginseng roots, against various human cancer cells. We treated with panaxydol to various cancer cells and panaxydol treatment was found to significantly inhibit the proliferation of human lung cancer cells (A549) and human pancreatic cancer cells (AsPC-1 and MIA PaCa-2), of which AsPC-1 cells were most sensitive to its treatment. DNA flow cytometric analysis indicated that panaxydol blocked cell cycle progression at the G1 phase in A549 cells, which accompanied by a parallel reduction of protein expression of cyclin-dependent kinase (CDK) 2, CDK4, CDK6, cyclin D1 and cyclin E. CDK inhibitors (CDKIs), such as p21CIP1/WAF1 and p27KIP1, were gradually upregulated after panaxydol treatment at the protein levels. Furthermore, panaxydol induced the activation of p53 in A549 cells. In addition, panaxydol also induced apoptosis of AsPC-1 and MIA PaCa-2 cells, as shown by accumulation of subG1 and apoptotic cell populations. Panaxydol triggered the activation of caspase-3, -8, -9 and the cleavage of poly (ADP-ribose) polymerase (PARP). Reduction of mitochondrial transmembrane potential by panaxydol was determined by staining with dihexyloxacarbocyanine iodide. Furthermore, panaxydol suppressed the levels of anti-apoptotic proteins, XIAP and Bcl-2, and increased the levels of proapoptotic proteins, Bax and Bad. In addition, panaxydol inhibited the activation of Akt and extracellular signal-regulated kinase (ERK) and activated the p38 mitogen-activated protein kinase kinase (MAPK). Our results suggest that panaxydol is an anti-tumor compound that causes p53-mediated cell cycle arrest and apoptosis via mitochondrial apoptotic pathway in various cancer cells.

Keywords: apoptosis, cancer, G1 arrest, panaxydol

Procedia PDF Downloads 322
1941 Predicting the Solubility of Aromatic Waste Petroleum Paraffin Wax in Organic Solvents to Separate Ultra-Pure Phase Change Materials (PCMs) by Molecular Dynamics Simulation

Authors: Fathi Soliman

Abstract:

With the ultimate goal of developing the separation of n-paraffin as phase change material (PCM) by means of molecular dynamic simulations, we attempt to predict the solubility of aromatic n-paraffin in two organic solvents: Butyl Acetate (BA) and Methyl Iso Butyl Ketone (MIBK). A simple model of aromatic paraffin: 2-hexadecylantharacene with amorphous molecular structure and periodic boundary conditions was constructed. The results showed that MIBK is the best solvent to separate ultra-pure phase change materials and this data was compatible with experimental data done to separate ultra-pure n-paraffin from waste petroleum aromatic paraffin wax, the separated n-paraffin was characterized by XRD, TGA, GC and DSC, moreover; data revealed that the n-paraffin separated by using MIBK is better as PCM than that separated using BA.

Keywords: molecular dynamics simulation, n-paraffin, organic solvents, phase change materials, solvent extraction

Procedia PDF Downloads 195
1940 Assessment of a Coupled Geothermal-Solar Thermal Based Hydrogen Production System

Authors: Maryam Hamlehdar, Guillermo A. Narsilio

Abstract:

To enhance the feasibility of utilising geothermal hot sedimentary aquifers (HSAs) for clean hydrogen production, one approach is the implementation of solar-integrated geothermal energy systems. This detailed modelling study conducts a thermo-economic assessment of an advanced Organic Rankine Cycle (ORC)-based hydrogen production system that uses low-temperature geothermal reservoirs, with a specific focus on hot sedimentary aquifers (HSAs) over a 30-year period. In the proposed hybrid system, solar-thermal energy is used to raise the water temperature extracted from the geothermal production well. This temperature increase leads to a higher steam output, powering the turbine and subsequently enhancing the electricity output for running the electrolyser. Thermodynamic modeling of a parabolic trough solar (PTS) collector is developed and integrated with modeling for a geothermal-based configuration. This configuration includes a closed regenerator cycle (CRC), proton exchange membrane (PEM) electrolyser, and thermoelectric generator (TEG). Following this, the study investigates the impact of solar energy use on the temperature enhancement of the geothermal reservoir. It assesses the resulting consequences on the lifecycle performance of the hydrogen production system in comparison with a standalone geothermal system. The results indicate that, with the appropriate solar collector area, a combined solar-geothermal hydrogen production system outperforms a standalone geothermal system in both cost and rate of production. These findings underscore a solar-assisted geothermal hybrid system holds the potential to generate lower-cost hydrogen with enhanced efficiency, thereby boosting the appeal of numerous low to medium-temperature geothermal sources for hydrogen production.

Keywords: clean hydrogen production, integrated solar-geothermal, low-temperature geothermal energy, numerical modelling

Procedia PDF Downloads 69
1939 Development of Closed System for Bacterial CO2 Mitigation

Authors: Somesh Misha, Smita Raghuvanshi, Suresh Gupta

Abstract:

Increasing concentration of green house gases (GHG's), such as CO2 is of major concern and start showing its impact nowadays. The recent studies are focused on developing the continuous system using photoautotrophs for CO2 mitigation and simultaneous production of primary and secondary metabolites as a value addition. The advent of carbon concentrating mechanism had blurred the distinction between autotrophs and heterotrophs and now the paradigm has shifted towards the carbon capture and utilization (CCU) rather than carbon capture and sequestration (CCS). In the present work, a bioreactor was developed utilizing the chemolithotrophic bacterial species using CO2 mitigation and simultaneous value addition. The kinetic modeling was done and the biokinetic parameters are obtained for developing the bioreactor. The bioreactor was developed and studied for its operation and performance in terms of volumetric loading rate, mass loading rate, elimination capacity and removal efficiency. The characterization of effluent from the bioreactor was carried out for the products obtained using the analyzing techniques such as FTIR, GC-MS, and NMR. The developed bioreactor promised an economic, efficient and effective solution for CO2 mitigation and simultaneous value addition.

Keywords: CO2 mitigation, bio-reactor, chemolithotrophic bacterial species, FTIR, GC-MS, NMR

Procedia PDF Downloads 468
1938 Explicable Enzymatic Mechanism of H-Ido to Oxidise Tryptophan by Employing Various Substrates

Authors: Ali Bahri Lubis

Abstract:

The study of dioxygenase enzymatic mechanism on tryptophan oxidation has been a wide interest since the reaction is rate-limiting step of kynurenine pathway. In this research, observation of tryptophan oxidation through h-IDO enzyme along with synthesis of enzyme products was conducted in order to comprehend how the enzyme works on distinct substrates. UV-vis spectrophotometry, LC-MS, H-NMR and HSQC measurement were carried out to characterise enzyme product. It is found that while tryptophan was oxidised to form Nformylkynurenine (NFK) as a major product and hydroxypyrroloindole amine carboxylic acid (HPIC) in cis and trans confirmed in HSQC, N-methyl tryptophan substrate was converted to NFK and trans HPIC only. Other intriguing results showed that 5-hydroxy- tryptophan and Stryptophan was degraded to become NFK and epoxide cyclic respectively. The formation of NFK was considered through dioxygenation pathway, however HPIC was formed via monooxygenation. The epoxide cyclic—considered as intermediate compound in the mechanism— from S-tryptophan was not able to cleave the epoxide ring since bond energy of epoxide was probably much stronger. This validates the enzymatic mechanism where the intermediate compound in the enzymatic mechanism is epoxide cyclic.

Keywords: tryptophan oxidation, heme-dioxygenases, N-formylkynurenine, hydroxypyrrroloindoleamine, monooxidation

Procedia PDF Downloads 89
1937 Sustainability in Retaining Wall Construction with Geosynthetics

Authors: Sateesh Kumar Pisini, Swetha Priya Darshini, Sanjay Kumar Shukla

Abstract:

This paper seeks to present a research study on sustainability in construction of retaining wall using geosynthetics. Sustainable construction is a way for the building and infrastructure industry to move towards achieving sustainable development, taking into account environmental, socioeconomic and cultural issues. Geotechnical engineering, being very resource intensive, warrants an environmental sustainability study, but a quantitative framework for assessing the sustainability of geotechnical practices, particularly at the planning and design stages, does not exist. In geotechnical projects, major economic issues to be addressed are in the design and construction of stable slopes and retaining structures within space constraints. In this paper, quantitative indicators for assessing the environmental sustainability of retaining wall with geosynthetics are compared with conventional concrete retaining wall through life cycle assessment (LCA). Geosynthetics can make a real difference in sustainable construction techniques and contribute to development in developing countries in particular. Their imaginative application can result in considerable cost savings over the use of conventional designs and materials. The acceptance of geosynthetics in reinforced retaining wall construction has been triggered by a number of factors, including aesthetics, reliability, simple construction techniques, good seismic performance, and the ability to tolerate large deformations without structural distress. Reinforced retaining wall with geosynthetics is the best cost-effective and eco-friendly solution as compared with traditional concrete retaining wall construction. This paper presents an analysis of the theme of sustainability applied to the design and construction of traditional concrete retaining wall and presenting a cost-effective and environmental solution using geosynthetics.

Keywords: sustainability, retaining wall, geosynthetics, life cycle assessment

Procedia PDF Downloads 2060
1936 Effect of Rhythmic Auditory Stimulation on Gait in Patients with Stroke

Authors: Mohamed Ahmed Fouad

Abstract:

Background: Stroke is the most leading cause to functional disability and gait problems. Objectives: The purpose of this study was to determine the effect of rhythmic auditory stimulation combined with treadmill training on selected gait kinematics in stroke patients. Methods: Thirty male stroke patients participated in this study. The patients were assigned randomly into two equal groups, (study and control). Patients in the study group received treadmill training combined with rhythmic auditory stimulation in addition to selected physical therapy program for hemiparetic patients. Patients in the control group received treadmill training in addition to the same selected physical therapy program including strengthening, stretching, weight bearing, balance exercises and gait training. Biodex gait trainer 2 TM was used to assess selected gait kinematics (step length, step cycle, walking speed, time on each foot and ambulation index) before and after six weeks training period (end of treatment) for both groups. Results: There was a statistically significant increase in walking speed, step cycle, step length, percent of the time on each foot and ambulation index in both groups post-treatment. The improvement in gait parameters post-treatment was significantly higher in the study group compared to the control. Conclusion: Rhythmic auditory stimulation combined with treadmill training is effective in improving selected gait kinematics in stroke patients when added to the selected physical therapy program.

Keywords: stroke, rhythmic auditory stimulation, treadmill training, gait kinematics

Procedia PDF Downloads 245
1935 Improved Morphology in Sequential Deposition of the Inverted Type Planar Heterojunction Solar Cells Using Cheap Additive (DI-H₂O)

Authors: Asmat Nawaz, Ceylan Zafer, Ali K. Erdinc, Kaiying Wang, M. Nadeem Akram

Abstract:

Hybrid halide Perovskites with the general formula ABX₃, where X = Cl, Br or I, are considered as an ideal candidates for the preparation of photovoltaic devices. The most commonly and successfully used hybrid halide perovskite for photovoltaic applications is CH₃NH₃PbI₃ and its analogue prepared from lead chloride, commonly symbolized as CH₃NH₃PbI₃_ₓClₓ. Some researcher groups are using lead free (Sn replaces Pb) and mixed halide perovskites for the fabrication of the devices. Both mesoporous and planar structures have been developed. By Comparing mesoporous structure in which the perovskite materials infiltrate into mesoporous metal oxide scaffold, the planar architecture is much simpler and easy for device fabrication. In a typical perovskite solar cell, a perovskite absorber layer is sandwiched between the hole and electron transport. Upon the irradiation, carriers are created in the absorber layer that can travel through hole and electron transport layers and the interface in between. We fabricated inverted planar heterojunction structure ITO/PEDOT/ Perovskite/PCBM/Al, based solar cell via two-step spin coating method. This is also called Sequential deposition method. A small amount of cheap additive H₂O was added into PbI₂/DMF to make a homogeneous solution. We prepared four different solution such as (W/O H₂O, 1% H₂O, 2% H₂O, 3% H₂O). After preparing, the whole night stirring at 60℃ is essential for the homogenous precursor solutions. We observed that the solution with 1% H₂O was much more homogenous at room temperature as compared to others. The solution with 3% H₂O was precipitated at once at room temperature. The four different films of PbI₂ were formed on PEDOT substrates by spin coating and after that immediately (before drying the PbI₂) the substrates were immersed in the methyl ammonium iodide solution (prepared in isopropanol) for the completion of the desired perovskite film. After getting desired films, rinse the substrates with isopropanol to remove the excess amount of methyl ammonium iodide and finally dried it on hot plate only for 1-2 minutes. In this study, we added H₂O in the PbI₂/DMF precursor solution. The concept of additive is widely used in the bulk- heterojunction solar cells to manipulate the surface morphology, leading to the enhancement of the photovoltaic performance. There are two most important parameters for the selection of additives. (a) Higher boiling point w.r.t host material (b) good interaction with the precursor materials. We observed that the morphology of the films was improved and we achieved a denser, uniform with less cavities and almost full surface coverage films but only using precursor solution having 1% H₂O. Therefore, we fabricated the complete perovskite solar cell by sequential deposition technique with precursor solution having 1% H₂O. We concluded that with the addition of additives in the precursor solutions one can easily be manipulate the morphology of the perovskite film. In the sequential deposition method, thickness of perovskite film is in µm and the charge diffusion length of PbI₂ is in nm. Therefore, by controlling the thickness using other deposition methods for the fabrication of solar cells, we can achieve the better efficiency.

Keywords: methylammonium lead iodide, perovskite solar cell, precursor composition, sequential deposition

Procedia PDF Downloads 246
1934 Bacteriocinogenic Strains of Bacillus thuringiensis Isolated from Soil at Northern of Algeria

Authors: R. Gounina-Allouane, I. Moussaoui, N. Boukahel

Abstract:

Bacillus antimicrobial metabolites, especially those of Bacillus thuringiensis (Bt), are of great interest for research because of health risks generated by the excessive use of chemical additives as well as the propagation of resistant microbial strains, caused by the massive treatment with antibiotics. The objective of this study was the selection of Bt strains producing antimicrobial peptides (bacteriocins), and the partial purification of the most powerful bacteriocins, then the determination of their spectra of antimicrobial action. A collection of twenty one Bt strains isolated from soil at Boumerdès (northern Algeria) was used for screening strains having an antagonistic activity against phylogenetically closed bacteria. Spectra of antagonistic activity of two selected strains was determined against other Bt strains, Gram positive and Gram negative bacterial strains of clinical origin and others from ATCC collection as well as yeasts isolated in human dermatology. Bacteriocins of these two strains were partially purified and their effect on the kinetics of growth of the most sensitive microbial strains was studied. The bacteriocinogenic strains were biochemically characterized and their sensitivity to antibiotics was studied.

Keywords: antimicrobial peptides, Bacillus thuringiensis, bacteriocin, partial purification

Procedia PDF Downloads 435
1933 Modeling of Thermally Induced Acoustic Emission Memory Effects in Heterogeneous Rocks with Consideration for Fracture Develo

Authors: Vladimir A. Vinnikov

Abstract:

The paper proposes a model of an inhomogeneous rock mass with initially random distribution of microcracks on mineral grain boundaries. It describes the behavior of cracks in a medium under the effect of thermal field, the medium heated instantaneously to a predetermined temperature. Crack growth occurs according to the concept of fracture mechanics provided that the stress intensity factor K exceeds the critical value of Kc. The modeling of thermally induced acoustic emission memory effects is based on the assumption that every event of crack nucleation or crack growth caused by heating is accompanied by a single acoustic emission event. Parameters of the thermally induced acoustic emission memory effect produced by cyclic heating and cooling (with the temperature amplitude increasing from cycle to cycle) were calculated for several rock texture types (massive, banded, and disseminated). The study substantiates the adaptation of the proposed model to humidity interference with the thermally induced acoustic emission memory effect. The influence of humidity on the thermally induced acoustic emission memory effect in quasi-homogeneous and banded rocks is estimated. It is shown that such modeling allows the structure and texture of rocks to be taken into account and the influence of interference factors on the distinctness of the thermally induced acoustic emission memory effect to be estimated. The numerical modeling can be used to obtain information about the thermal impacts on rocks in the past and determine the degree of rock disturbance by means of non-destructive testing.

Keywords: degree of rock disturbance, non-destructive testing, thermally induced acoustic emission memory effects, structure and texture of rocks

Procedia PDF Downloads 263
1932 Design, Molecular Modeling, Synthesize, and Biological Evaluation of Some Dual Inhibitors of Soluble Epoxide Hydrolase (sEH) and Cyclooxygenase 2 (COX-2)

Authors: Elham Rezaee, Sayyed Abbas Tabatabai

Abstract:

Dual inhibition of COX-2 and sEH enzymes represents one of the distinct pharmaceutical approaches for the treatment of inflammation, pain, cancers, and other diseases. The discovery of these inhibitors for treatment is a great deal of attention because of some advantages such as increased efficacy, a promising safety profile, ease of formulation, and better target engagement. In this research, based on the structure-activity relationship of COX-2 and sEH inhibitors, some amide derivatives with oxadiazole and dihydropyrimidinone rings against sEH and COX-2 enzymes were developed. The designed compounds showed high affinity to the active site of both enzymes in docking studies and were synthesized in good yield and characterized by IR, Mass, 1HNMR, and 13CNMR. All of the novel compounds exhibited considerable in-vitro sEH and COX-2 inhibitory activities in comparison with 12-(3-Adamantan-1-yl-ureido)- dodecanoic acid and celecoxib (a potent urea-based sEH inhibitor and selective nonsteroidal anti-inflammatory drug, respectively). Ethyl 6-methyl-4-(4-(4-(methylsulfonyl)benzamido)phenyl)-2-oxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate was found to be the most selective COX-2 inhibitor (COX-2/COX-1 ratio: 683) with IC50 value of 2.1 nM targeting sEH enzyme.

Keywords: COX-2, dual inhibitors, sEH, synthesis

Procedia PDF Downloads 50
1931 Widely Diversified Macroeconomies in the Super-Long Run Casts a Doubt on Path-Independent Equilibrium Growth Model

Authors: Ichiro Takahashi

Abstract:

One of the major assumptions of mainstream macroeconomics is the path independence of capital stock. This paper challenges this assumption by employing an agent-based approach. The simulation results showed the existence of multiple "quasi-steady state" equilibria of the capital stock, which may cast serious doubt on the validity of the assumption. The finding would give a better understanding of many phenomena that involve hysteresis, including the causes of poverty. The "market-clearing view" has been widely shared among major schools of macroeconomics. They understand that the capital stock, the labor force, and technology, determine the "full-employment" equilibrium growth path and demand/supply shocks can move the economy away from the path only temporarily: the dichotomy between the short-run business cycles and the long-run equilibrium path. The view then implicitly assumes the long-run capital stock to be independent of how the economy has evolved. In contrast, "Old Keynesians" have recognized fluctuations in output as arising largely from fluctuations in real aggregate demand. It will then be an interesting question to ask if an agent-based macroeconomic model, which is known to have path dependence, can generate multiple full-employment equilibrium trajectories of the capital stock in the super-long run. If the answer is yes, the equilibrium level of capital stock, an important supply-side factor, would no longer be independent of the business cycle phenomenon. This paper attempts to answer the above question by using the agent-based macroeconomic model developed by Takahashi and Okada (2010). The model would serve this purpose well because it has neither population growth nor technology progress. The objective of the paper is twofold: (1) to explore the causes of long-term business cycle, and (2) to examine the super-long behaviors of the capital stock of full-employment economies. (1) The simulated behaviors of the key macroeconomic variables such as output, employment, real wages showed widely diversified macro-economies. They were often remarkably stable but exhibited both short-term and long-term fluctuations. The long-term fluctuations occur through the following two adjustments: the quantity and relative cost adjustments of capital stock. The first one is obvious and assumed by many business cycle theorists. The reduced aggregate demand lowers prices, which raises real wages, thereby decreasing the relative cost of capital stock with respect to labor. (2) The long-term business cycles/fluctuations were synthesized with the hysteresis of real wages, interest rates, and investments. In particular, a sequence of the simulation runs with a super-long simulation period generated a wide range of perfectly stable paths, many of which achieved full employment: all the macroeconomic trajectories, including capital stock, output, and employment, were perfectly horizontal over 100,000 periods. Moreover, the full-employment level of capital stock was influenced by the history of unemployment, which was itself path-dependent. Thus, an experience of severe unemployment in the past kept the real wage low, which discouraged a relatively costly investment in capital stock. Meanwhile, a history of good performance sometimes brought about a low capital stock due to a high-interest rate that was consistent with a strong investment.

Keywords: agent-based macroeconomic model, business cycle, hysteresis, stability

Procedia PDF Downloads 210
1930 Preliminary Characterization of Hericium Species Sampled in Tuscany, Italy

Authors: V. Cesaroni, C. Girometta, A. Bernicchia, M. Brusoni, F. Corana, R. M. Baiguera, C. M. Cusaro, M. L. Guglielminetti, B. Mannucci, H. Kawagishi, C. Perini, A. M. Picco, P. Rossi, E. Salerni, E. Savino

Abstract:

Fungi of the genus Hericium contain various compounds with antibacterial activity, cytotoxic effect on cancer cells and bioactive molecules. Some of the active metabolites stimulate the synthesis of the Nerve Growth Factor (NGF). Recently, the effect of dietary supplement based on Hericium erinaceus on recognition memory and on hippocampal mossy fiber-CA3 neurotransmission was published. The aim of this study was to investigate the presence of Hericium species on Italian territory in order to isolate the strains for further studies and applications. The first step was to collect Hericium sporophores in Tuscany: H. alpestre Pers., H. coralloides (Scop.) Pers. and H. erinaceus (Bull.) Pers. were the species present. The strains of H. alpestre (H.a.1), H. coralloides (H.c.1) and H. erinaceus (H.e.1 & H.e.2) have been isolated in pure culture and preserved in the collection of the University of Pavia (MicUNIPV). The DNA sequences obtained from the strains were compared to other sequences found in international databases. Therefore, it was possible to construct a phylogenetic tree that highlights the clear separation in clades of the sequences and the molecular identification of our strains with the species of Hericium considered. The second step was to cultivate indoor and outdoor H. erinaceus in order to obtain as many sporophores as possible for further chemical analysis. All the procedures for H. erinaceus cultivation have been followed. Among the available recipes for indoor H. erinaceus cultivation, it was used a substrate formulation contained 70% oak sawdust, 20% rice bran, 10% wheat straw, 1% CaCO3 and 1% sucrose. The bioactive compounds present in the mycelia and in the sporophores of H. erinaceus were chemically analyzed in collaboration with the Centro Grandi Strumenti of the University of Pavia using high-performance liquid chromatography/electrospray ionization tandem mass spectrometry (HPLC/ESI-MS/MS). The materials to be analyzed were previously freeze-dried and then extracted with an alcoholic procedure. Preliminary chromatographic analysis revealed the presence of potentially bioactive and structurally different secondary metabolites such as polysaccharides, erinacins, ericenones, steroids and other terpenoids. Ericenones C and D (in sporophores) and erinacin A (in mycelium) have been identified by comparison with the respective standards. These molecules are known to have effects on the Central Nervous System (CNS) cells, which is the main objective of our studies. Thanks to the high sensitivity in the detection of bioactive compounds of H. erinaceus, it will be possible to use the To obtain lyophilized mycelium and the respective culture broth, 4 small pieces (about 5 mm2) of the respective H.e.1 or H.c.1 strains, taken from the margin of growing cultures (MEA), were inoculated into 1 liter of 2% ME (malt extract, Biokar Diagnostics). The static liquid cultures were kept at 24 °C in the dark chamber and fungi grew for one month. 10 replicates for each strain have been done. The method proposed as an analytical screening protocol to determine the optimal growth conditions of the fungus and to improve the production chain of H. erinaceus. These results encourage to carry out chemical analyzes also on H. alpestre and H. coralloides in order to evaluate the presence of bioactive compounds in these two species.

Keywords: Hericium species, Hercium erinaceus bioactive compounds, medicinal mushrooms, mushroom cultivation

Procedia PDF Downloads 143
1929 Powerful Bacteriocins Produced by Bacillus thuringiensis Strains Isolated from Soil at Northern of Algeria

Authors: R. Gounina-Allouane, I. Moussaoui, N. Boukahel

Abstract:

Bacillus antimicrobial metabolites, especially those of Bacillus thuringiensis (Bt), are of great interest for research because of health risks generated by the excessive use of chemical additives as well as the propagation of resistant microbial strains, caused by the massive treatment with antibiotics. The objective of this study was the selection of Bt strains producing antimicrobial peptides (bacteriocins), and the partial purification of the most powerful bacteriocins, then the determination of their spectra of antimicrobial action. A collection of twenty one Bt strains isolated from soil at Boumerdès (northern of Algeria) was used for screening strains having an antagonistic activity against phylogenetically closed bacteria. Spectra of antagonistic activity of two selected strains was determined against other Bt strains, Gram positive and Gram negative bacterial strains of clinical origin and others from ATCC collection as well as yeasts isolated in human dermatology. Bacteriocins of these two strains were partially purified and their effect on the kinetics of growth of the most sensitive microbial strains was studied. The bacteriocinogenic strains were biochemically characterized and their sensitivity to antibiotics was studied.

Keywords: antimicrobial peptides, Bacillus thuringiensis, bacteriocin, partial purification

Procedia PDF Downloads 358
1928 Investigating Sustainable Construction and Demolition Waste Management Practices in South Africa

Authors: Ademilade J. Aboginije, Clinton O. Aigbavboa

Abstract:

South Africa is among the emerging economy, which has a policy and suitable environment that dynamically stimulates waste management practices of diverting waste away from landfill through prevention, reuse, recycling, and recovery known as the 4R-approaches. The focus of this paper is to investigate the existing structures and processes that are environmentally responsible, then determine the resource-efficiency of the waste management practices in the South Africa construction industry. This paper indicates the results of an investigation carried out by using a systematic review of several related literatures to assess the sustainability of waste management scenarios with secondary material recovery to pinpoint all influential criteria and consequently, highlights a step by step approach to adequately analyze the process by using the indicators that can clearly and fully value the waste management practices in South Africa. Furthermore, a life cycle Analytical tool is used to support the development of a framework which can be applied in measuring the sustainability of existing waste management practices in South Africa. Finding shows that sustainable C&D waste management practices stance a great prospect far more noticeable in terms of job creation and opportunities, saving cost and conserving natural resources when incorporated, especially in the process of recycling and reusing of C&D waste materials in several construction projects in South Africa. However, there are problems such as; inadequacy of waste to energy plants, low compliances to policies and sustainable principles, lack of enough technical capacities confronting the effectiveness of the current waste management practices. Thus, with the increase in the pursuit of sustainable development in most developing countries, this paper determines how sustainability can be measured and used in top-level decision-making policy within construction and demolition waste management for a sustainable built environment.

Keywords: construction industry, green-star rating, life-cycle analysis, sustainability, zero-waste hierarchy

Procedia PDF Downloads 128
1927 Dynamic Determination of Spare Engine Requirements for Air Fighters Integrating Feedback of Operational Information

Authors: Tae Bo Jeon

Abstract:

Korean air force is undertaking a big project to replace prevailing hundreds of old air fighters such as F-4, F-5, KF-16 etc. The task is to develop and produce domestic fighters equipped with 2 complete-type engines each. A large number of engines, however, will be purchased as products from a foreign engine maker. In addition to the fighters themselves, secure the proper number of spare engines serves a significant role in maintaining combat readiness and effectively managing the national defense budget due to high cost. In this paper, we presented a model dynamically updating spare engine requirements. Currently, the military administration purchases all the fighters, engines, and spare engines at acquisition stage and does not have additional procurement processes during the life cycle, 30-40 years. With the assumption that procurement procedure during the operational stage is established, our model starts from the initial estimate of spare engine requirements based on limited information. The model then performs military missions and repair/maintenance works when necessary. During operation, detailed field information - aircraft repair and test, engine repair, planned maintenance, administration time, transportation pipeline between base, field, and depot etc., - should be considered for actual engine requirements. At the end of each year, the performance measure is recorded and proceeds to next year when it shows higher the threshold set. Otherwise, additional engine(s) will be bought and added to the current system. We repeat the process for the life cycle period and compare the results. The proposed model is seen to generate far better results appropriately adding spare engines thus avoiding possible undesirable situations. Our model may well be applied to future air force military operations.

Keywords: DMSMS, operational availability, METRIC, PRS

Procedia PDF Downloads 172
1926 A Decision Making Tool for Selecting the Most Environmental Friendly Wastewater Treatment Plant for Small-Scale Communities

Authors: Mehmet Bulent Topkaya, Mustafa Yildirim

Abstract:

Wastewater treatment systems are designed and used to minimize adverse impacts of the wastewater on the environment before discharging. Various treatment options for wastewater treatment have been developed, and each of them has different performance characteristics and environmental impacts (e.g. material and land usage, energy consumption, greenhouse gas emission, water and soil emission) during construction, operation or maintenance phases. Assessing the environmental impacts during these phases are essential for the overall evaluation of the treatment systems. In this study, wastewater treatment options, such as vegetated land treatment, constructed wetland, rotating biological contactor, conventional activated sludge treatment, membrane bioreactor, extended aeration and stabilization pond are evaluated. The comparison of the environmental impacts is conducted under the assumption that the effluents will be discharged to sensitive and less sensitive areas respectively. The environmental impacts of each alternative are evaluated by life cycle assessment (LCA) approach. For this purpose, data related to energy usage, land requirement, raw material consumption, and released emissions from the life phases were collected with inventory studies based on field studies and literature. The environmental impacts were assessed by using SimaPro 7.1 LCA software. As the scale of the LCA results is global, an MS-Excel based decision support tool that includes the LCA result is developed in order to meet also the local demands. Using this tool, it is possible to assign weight factors on the LCA results according to local conditions by using Analytical Hierarchy Process and finally the most environmentally appropriate treatment option can be selected.

Keywords: analytical hierarchy process, decision support system, life cycle assessment, wastewater treatment

Procedia PDF Downloads 301