Search results for: lateral force microscopy
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4565

Search results for: lateral force microscopy

3605 The Structure and Function Investigation and Analysis of the Automatic Spin Regulator (ASR) in the Powertrain System of Construction and Mining Machines with the Focus on Dump Trucks

Authors: Amir Mirzaei

Abstract:

The powertrain system is one of the most basic and essential components in a machine. The occurrence of motion is practically impossible without the presence of this system. When power is generated by the engine, it is transmitted by the powertrain system to the wheels, which are the last parts of the system. Powertrain system has different components according to the type of use and design. When the force generated by the engine reaches to the wheels, the amount of frictional force between the tire and the ground determines the amount of traction and non-slip or the amount of slip. At various levels, such as icy, muddy, and snow-covered ground, the amount of friction coefficient between the tire and the ground decreases dramatically and considerably, which in turn increases the amount of force loss and the vehicle traction decreases drastically. This condition is caused by the phenomenon of slipping, which, in addition to the waste of energy produced, causes the premature wear of driving tires. It also causes the temperature of the transmission oil to rise too much, as a result, causes a reduction in the quality and become dirty to oil and also reduces the useful life of the clutches disk and plates inside the transmission. this issue is much more important in road construction and mining machinery than passenger vehicles and is always one of the most important and significant issues in the design discussion, in order to overcome. One of these methods is the automatic spin regulator system which is abbreviated as ASR. The importance of this method and its structure and function have solved one of the biggest challenges of the powertrain system in the field of construction and mining machinery. That this research is examined.

Keywords: automatic spin regulator, ASR, methods of reducing slipping, methods of preventing the reduction of the useful life of clutches disk and plate, methods of preventing the premature dirtiness of transmission oil, method of preventing the reduction of the useful life of tires

Procedia PDF Downloads 78
3604 Advanced Bio-Composite Materials Based on Biopolymer Blends and Cellulose Nanocrystals

Authors: Zineb Kassab, Nassima El Miri, A. Aboulkas, Abdellatif Barakat, Mounir El Achaby

Abstract:

Recently, more attention has been given to biopolymers with a focus on sustainable development and environmental preservation. Following this tendency, the attempt has been made to replace polymers derived from petroleum with superior biodegradable polymers (biopolymers). In this context, biopolymers are considered potential replacements for conventional plastic materials. However, some of their properties must be improved for better competitiveness, especially regarding their mechanical, thermal and barrier properties. Bio-nanocomposite technology using nanofillers has already been proven as an effective way to produce new materials with specific properties and high performances. With the emergence of nanostructured bio-composite materials, incorporating elongated rod-like cellulose nanocrystals (CNC) has attracted more and more attention in the field of nanotechnology. This study is aimed to develop bio-composite films of biopolymer matrices [Carboxymethyle cellulose (CMC), Starch (ST), Chitosan (CS) and Polyvinyl alcohol (PVA)] reinforced with cellulose nanocrystals (CNC) using the solution casting method. The CNC were extracted at a nanometric scale from lignocellulosic fibers via sulfuric acid hydrolysis and then characterized using X-ray diffraction (XRD), thermogravimetric analysis (TGA), confocal microscopy, infrared spectroscopy (IR), atomic force and transmission electron microscopies (AFM and TEM) techniques. The as extracted CNC were used as a reinforcing phase to produce a variety of bio-composite films at different CNC loading (0.5-10 wt %) with specific properties. The rheological properties of film-forming solutions (FFS) of bio-composites were studied, and their relation to the casting process was evaluated. Then, the structural, optical transparency, water vapor permeability, thermal stability and mechanical properties of all prepared bio-composite films were evaluated and studied in this report. The high performances of these bio-composite films are expected to have potential in biomaterials or packaging applications.

Keywords: biopolymer composites, cellulose nanocrystals, food packaging, lignocellulosic fibers

Procedia PDF Downloads 238
3603 Life Time Improvement of Clamp Structural by Using Fatigue Analysis

Authors: Pisut Boonkaew, Jatuporn Thongsri

Abstract:

In hard disk drive manufacturing industry, the process of reducing an unnecessary part and qualifying the quality of part before assembling is important. Thus, clamp was designed and fabricated as a fixture for holding in testing process. Basically, testing by trial and error consumes a long time to improve. Consequently, the simulation was brought to improve the part and reduce the time taken. The problem is the present clamp has a low life expectancy because of the critical stress that occurred. Hence, the simulation was brought to study the behavior of stress and compressive force to improve the clamp expectancy with all probability of designs which are present up to 27 designs, which excluding the repeated designs. The probability was calculated followed by the full fractional rules of six sigma methodology which was provided correctly. The six sigma methodology is a well-structured method for improving quality level by detecting and reducing the variability of the process. Therefore, the defective will be decreased while the process capability increasing. This research focuses on the methodology of stress and fatigue reduction while compressive force still remains in the acceptable range that has been set by the company. In the simulation, ANSYS simulates the 3D CAD with the same condition during the experiment. Then the force at each distance started from 0.01 to 0.1 mm will be recorded. The setting in ANSYS was verified by mesh convergence methodology and compared the percentage error with the experimental result; the error must not exceed the acceptable range. Therefore, the improved process focuses on degree, radius, and length that will reduce stress and still remain in the acceptable force number. Therefore, the fatigue analysis will be brought as the next process in order to guarantee that the lifetime will be extended by simulating through ANSYS simulation program. Not only to simulate it, but also to confirm the setting by comparing with the actual clamp in order to observe the different of fatigue between both designs. This brings the life time improvement up to 57% compared with the actual clamp in the manufacturing. This study provides a precise and trustable setting enough to be set as a reference methodology for the future design. Because of the combination and adaptation from the six sigma method, finite element, fatigue and linear regressive analysis that lead to accurate calculation, this project will able to save up to 60 million dollars annually.

Keywords: clamp, finite element analysis, structural, six sigma, linear regressive analysis, fatigue analysis, probability

Procedia PDF Downloads 233
3602 Associated Risks of Spontaneous Lung Collapse after Shoulder Surgery: A Literature Review

Authors: Fiona Bei Na Tan, Glen Wen Kiat Ho, Ee Leen Liow, Li Yin Tan, Sean Wei Loong Ho

Abstract:

Background: Shoulder arthroscopy is an increasingly common procedure. Pneumothorax post-shoulder arthroscopy is a rare complication. Objectives: Our aim is to highlight a case report of pneumothorax post shoulder arthroscopy and to conduct a literature review to evaluate the possible risk factors associated with developing a pneumothorax during or after shoulder arthroscopy. Case Report: We report the case of a 75-year-old male non-smoker who underwent left shoulder arthroscopy without regional anaesthesia and in the left lateral position. The general anaesthesia and surgery were uncomplicated. The patient was desaturated postoperatively and was found to have a pneumothorax on examination and chest X-ray. A chest tube drain was inserted promptly into the right chest. He had an uncomplicated postoperative course. Methods: PubMed Medline and Cochrane database search was carried out using the terms shoulder arthroplasty, pneumothorax, pneumomediastinum, and subcutaneous emphysema. We selected full-text articles written in English. Results: Thirty-two articles were identified and thoroughly reviewed. Based on our inclusion and exclusion criteria, 14 articles, which included 20 cases of pneumothorax during or after shoulder arthroscopy, were included. Eighty percent (16/20) of pneumothoraxes occurred postoperatively. In the articles that specify the side of pneumothorax, 91% (10/11) occur on the ipsilateral side of the arthroscopy. Eighty-eight percent (7/8) of pneumothoraxes occurred when subacromial decompression was performed. Fifty-six percent (9/16) occurred in patients placed in the lateral decubitus position. Only 30% (6/20) occurred in current or ex-smokers, and only 25% (5/20) had a pre-existing lung condition. Overall, of the articles that posit a mechanism, 75% (9/12) deem the pathogenesis to be multifactorial. Conclusion: The exact mechanism of pneumothorax is currently unknown. Awareness of this complication and timely recognition are important to prevent life-threatening sequelae. Surgeons should have a low threshold to obtain diagnostic plain radiographs in the event of clinical suspicion.

Keywords: rotator cuff repair, decompression, pressure, complication

Procedia PDF Downloads 64
3601 Urbanization and Income Inequality in Thailand

Authors: Acumsiri Tantikarnpanit

Abstract:

This paper aims to examine the relationship between urbanization and income inequality in Thailand during the period 2002–2020. Using a panel of data for 76 provinces collected from Thailand’s National Statistical Office (Labor Force Survey: LFS), as well as geospatial data from the U.S. Air Force Defense Meteorological Satellite Program (DMSP) and the Visible Infrared Imaging Radiometer Suite Day/Night band (VIIRS-DNB) satellite for nineteen selected years. This paper employs two different definitions to identify urban areas: 1) Urban areas defined by Thailand's National Statistical Office (Labor Force Survey: LFS), and 2) Urban areas estimated using nighttime light data from the DMSP and VIIRS-DNB satellite. The second method includes two sub-categories: 2.1) Determining urban areas by calculating nighttime light density with a population density of 300 people per square kilometer, and 2.2) Calculating urban areas based on nighttime light density corresponding to a population density of 1,500 people per square kilometer. The empirical analysis based on Ordinary Least Squares (OLS), fixed effects, and random effects models reveals a consistent U-shaped relationship between income inequality and urbanization. The findings from the econometric analysis demonstrate that urbanization or population density has a significant and negative impact on income inequality. Moreover, the square of urbanization shows a statistically significant positive impact on income inequality. Additionally, there is a negative association between logarithmically transformed income and income inequality. This paper also proposes the inclusion of satellite imagery, geospatial data, and spatial econometric techniques in future studies to conduct quantitative analysis of spatial relationships.

Keywords: income inequality, nighttime light, population density, Thailand, urbanization

Procedia PDF Downloads 76
3600 Characteristics of Handgrip (Kumi-Kata) Profile of Georgian Elite Judo Athletes

Authors: Belkadi Adel, Beboucha Wahib, Cherara lalia

Abstract:

Objective: The aim of this study was to investigate the characteristics of Kumi-kata in elite judokas and characterize the kinematic and temporal parameters of different types of handgrip (HG). Method: fourteen participated in this study male athlete (23.5±2.61 years; 1.81±0.37 0 m; 87.25±22.75 kg), members of the Georgian Judo team. To characterize the dominance and types of kumi-kata used, videos of international competitions from each athlete were analyzed, and to characterize kinematic and temporal parameters and handgrip, and the volunteers pressed a digital dynamometer with each hand for 30 seconds(s) after a visual signal. Results: The values of 0.26±0.69s and 0.31±0.03s for reaction time were obtained, respectively, in the full grip and pinch grip; 19.62±18.83N/cm/s and 6.17±3.48N/cm/s for the rate of force development; 475,21 ± 101,322N and 494,65±112,73 for the FDR; 1,37 ± 0,521s and 1,45 ± 0,824s for the time between the force onset to the TFP; and 41,27±4,54N/cm/s and 45,16 ± 5,64N/cm/s for the fall index, in the dominant hand. There was no significant difference between hands for any variable, except for the dominance of Kumi-kata (p<0.05) used in combat. Conclusion: The dominance of application of the Kumi-kata is a technical option, as it does not depend on the kinetic-temporal parameters of the handgrip.

Keywords: hand grip, judo, athletes, Kumi-Kata

Procedia PDF Downloads 187
3599 Electrical Properties of Cement-Based Piezoelectric Nanoparticles

Authors: Moustafa Shawkey, Ahmed G. El-Deen, H. M. Mahmoud, M. M. Rashad

Abstract:

Piezoelectric based cement nanocomposite is a promising technology for generating an electric charge upon mechanical stress of concrete structure. Moreover, piezoelectric nanomaterials play a vital role for providing accurate system of structural health monitoring (SHM) of the concrete structure. In light of increasing awareness of environmental protection and energy crises, generating renewable and green energy form cement based on piezoelectric nanomaterials attracts the attention of the researchers. Herein, we introduce a facial synthesis for bismuth ferrite nanoparticles (BiFeO3 NPs) as piezoelectric nanomaterial via sol gel strategy. The fabricated piezoelectric nanoparticles are uniformly distributed to cement-based nanomaterials with different ratios. The morphological shape was characterized by field emission scanning electron microscopy (FESEM) and high-resolution transmission electron microscopy (HR-TEM) as well as the crystal structure has been confirmed using X-ray diffraction (XRD). The ferroelectric and magnetic behaviours of BiFeO3 NPs have been investigated. Then, dielectric constant for the prepared cement samples nanocomposites (εr) is calculated. Intercalating BiFeO3 NPs into cement materials achieved remarkable results as piezoelectric cement materials, distinct enhancement in ferroelectric and magnetic properties. Overall, this present study introduces an effective approach to improve the electrical properties based cement applications.

Keywords: piezoelectric nanomaterials, cement technology, bismuth ferrite nanoparticles, dielectric

Procedia PDF Downloads 246
3598 Advances in Axonal Biomechanics and Mechanobiology: A Nanotechnology-Based Approach to the Study of Mechanotransduction of Axonal Growth

Authors: Alessandro Falconieri, Sara De Vincentiis, Vittoria Raffa

Abstract:

Mechanical force regulates axonal growth, elongation and maturation processes. This force is opening new frontiers in the field, contributing to a general understanding of the mechanisms of axon growth that, in the past, was thought to be governed exclusively by the growth cone and its ability to influence axonal growth in response to chemical signals. A method recently developed in our laboratory allows, through the labeling of neurons with magnetic nanoparticles (MNPs) and the use of permanent magnets, to apply extremely low mechanical forces, similar to those generated endogenously by the growth cone or by the increase of body mass during the organism growth. We found that these extremely low forces strongly enhance the spontaneous axonal elongation rate as well as neuronal sprouting. Data obtained don’t exclude that local phenomena, such as local transport and local translation, may be involved. These new advances could shed new light on what happens when the cell is subjected to external mechanical forces, opening new interesting scenarios in the field of mechanobiology.

Keywords: axon, external mechanical forces, magnetic nanoparticles, mechanotransduction

Procedia PDF Downloads 121
3597 Structural and Magnetic Properties of NiFe2O4 Spinel Ferrite Nanoparticles Synthesized by Starch-Assisted Sol-Gel Auto-Combustion Method

Authors: R. S. Yadav, J. Havlica, I. Kuřitka, Z. Kozakova, J. Masilko, L. Kalina, M. Hajdúchová, V. Enev, J. Wasserbauer

Abstract:

Nickel spinel ferrite NiFe2O4 nanoparticles with different particle size at different annealing temperature were synthesized using the starch-assisted sol-gel auto-combustion method. The synthesized nanoparticles were characterized by conventional powder X-ray diffraction (XRD) spectroscopy, Raman Spectroscopy, Fourier Transform Infrared Spectroscopy, Field-Emission Scanning Electron Microscopy, X-ray Photoelectron Spectroscopy and Vibrating Sample Magnetometer. The XRD patterns confirmed the formation of NiFe2O4 spinel ferrite nanoparticles. Field-Emission Scanning Electron Microscopy revealed that particles are of spherical morphology with particle size 5-20 nm at lower annealing temperature. An infrared spectroscopy study showed the presence of two principal absorption bands in the frequency range around 525 cm-1 (ν1) and around 340 cm-1 (ν2); which indicate the presence of tetrahedral and octahedral group complexes, respectively, within the spinel ferrite nanoparticles. Raman spectroscopy study also indicated the change in octahedral and tetrahedral site related Raman modes in nickel ferrite nanoparticles with change of particle size. This change in magnetic behavior with change of particle size of NiFe2O4 nanoparticles was observed.

Keywords: nickel ferrite, nanoparticles, magnetic property, NiFe2O4

Procedia PDF Downloads 382
3596 Microstructural Investigation and Fatigue Damage Quantification of Anisotropic Behavior in AA2017 Aluminum Alloy under Cyclic Loading

Authors: Abdelghani May

Abstract:

This paper reports on experimental investigations concerning the underlying reasons for the anisotropic behavior observed during the cyclic loading of AA2017 aluminum alloy. Initially, we quantified the evolution of fatigue damage resulting from controlled proportional cyclic loadings along the axial and shear directions. Our primary objective at this stage was to verify the anisotropic mechanical behavior recently observed. To accomplish this, we utilized various models of fatigue damage quantification and conducted a comparative study of the obtained results. Our analysis confirmed the anisotropic nature of the material under investigation. In the subsequent step, we performed microstructural investigations aimed at understanding the origins of the anisotropic mechanical behavior. To this end, we utilized scanning electron microscopy to examine the phases and precipitates in both the transversal and longitudinal sections. Our findings indicate that the structure and morphology of these entities are responsible for the anisotropic behavior observed in the aluminum alloy. Furthermore, results obtained from Kikuchi diagrams, pole figures, and inverse pole figures have corroborated these conclusions. These findings demonstrate significant differences in the crystallographic texture of the material.

Keywords: microstructural investigation, fatigue damage quantification, anisotropic behavior, AA2017 aluminum alloy, cyclic loading, crystallographic texture, scanning electron microscopy

Procedia PDF Downloads 75
3595 The Effects of Cross-Border Use of Drones in Nigerian National Security

Authors: H. P. Kerry

Abstract:

Drone technology has become a significant discourse in a nation’s national security, while this technology could constitute a danger to national security on the one hand, on the other hand, it is used in developed and developing countries for border security, and in some cases, for protection of security agents and migrants. In the case of Nigeria, drones are used by the military to monitor and tighten security around the borders. However, terrorist groups have devised a means to utilize the technology to their advantage. Therefore, the potential danger in the widespread proliferation of this technology has become a myriad of risks. The research on the effects of cross-border use of drones in Nigerian national security looks at the negative and positive consequences of using drone technology. The study employs the use of interviews and relevant documents to obtain data while the study applied the Just War theory to justify the reason why countries use force; it further buttresses the points with what the realist theory thinks about the use of force. In conclusion, the paper recommends that the Nigerian government through the National Assembly should pass a bill for the establishment of a law that will guide the use of armed and unarmed drones in Nigeria enforced by the Nigeria Civil Aviation Authority and the office of the National Security Adviser.

Keywords: armed drones, drones, cross-border, national security

Procedia PDF Downloads 153
3594 Comparative Study of Arch Bridges with Varying Rise to Span Ratio

Authors: Tauhidur Rahman, Arnab Kumar Sinha

Abstract:

This paper presents a comparative study of Arch bridges based on their varying rise to span ratio. The comparison is done between different steel Arch bridges which have variable span length and rise to span ratio keeping the same support condition. The aim of our present study is to select the optimum value of rise to span ratio of Arch bridge as the cost of the Arch bridge increases with the increasing of the rise. In order to fulfill the objective, several rise to span ratio have been considered for same span of Arch bridge and various structural parameters such as Bending moment, shear force etc have been calculated for different model. A comparative study has been done for several Arch bridges finally to select the optimum rise to span ratio of the Arch bridges. In the present study, Finite Element model for medium to long span, with different rise to span ratio have been modeled and are analyzed with the help of a Computational Software named MIDAS Civil to evaluate the results such as Bending moments, Shear force, displacements, Stresses, influence line diagrams, critical loads. In the present study, 60 models of Arch bridges for 80 to 120 m span with different rise to span ratio has been thoroughly investigated.

Keywords: arch bridge, analysis, comparative study, rise to span ratio

Procedia PDF Downloads 527
3593 Nd³⁺: Si₂N₂O (Sinoite) Phosphors for White Light Emitting Diodes

Authors: Alparslan A. Balta, Hilmi Yurdakul, Orkun Tunckan, Servet Turan, Arife Yurdakul

Abstract:

A silicon oxynitride (Si2N2O), the mineralogical name is “Sinoite”, reveals the outstanding physical, mechanical and thermal properties, e.g., good oxidation resistance at high temperatures, high fracture toughness with rod shape, high hardness, low theoretical density, good thermal shock resistance by low thermal expansion coefficient and high thermal conductivity. In addition, the orthorhombic crystal structure of Si2N2O allows accommodating the rare earth (RE) element atoms along the “c” axis due to existing large structural interstitial sites. Here, 0.02 to 0.12 wt. % Nd3+ doped Si2N2O samples were successfully synthesized by spark plasma sintering (SPS) method at 30MPa pressure and 1650oC temperature. Li2O was also utilized as a sintering additive to take advantage of low eutectic point during synthesizing. The specimens were characterized in detail by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and cathodoluminescence (CL) in SEM and photoluminescence (PL) spectroscopy. Based on the overall results, the Si2N2O phase was obtained above 90% by the SPS route. Furthermore, Nd3+: Si2N2O samples showed a very broad intense emission peak between 400-700 nm, which corresponds to white color. Therefore, this material can be considered as a promising candidate for white light-emitting diodes (WLEDs) purposes. This study was supported by TUBITAK under project number 217M667.

Keywords: neodymium, oxynitride, Si₂N₂O, WLEDs

Procedia PDF Downloads 135
3592 Seasonal and Monthly Field Soil Respiration Rate and Litter Fall Amounts of Kasuga-Yama Hill Primeval Forest

Authors: Ayuko Itsuki, Sachiyo Aburatani

Abstract:

The seasonal (January, April, July and October) and monthly soil respiration rate and the monthly litter fall amounts were examined in the laurel-leaved (B_B-1) and Cryptomeria japonica (B_B-2 and PW) forests in the Kasugayama Hill Primeval Forest (Nara, Japan). The change of the seasonal soil respiration rate corresponded to that of the soil temperature. The soil respiration rate was higher in October when fresh organic matter was supplied in the forest floor than in April in spite of the same temperature. The seasonal soil respiration rate of B_B-1 was higher than that of B_B-2, which corresponded to more numbers of bacteria and fungi counted by the dilution plate method and by the direct count method by microscopy in B_B-1 than that of B_B-2. The seasonal soil respiration rate of B_B-2 was higher than that of PW, which corresponded to more microbial biomass by the direct count method by microscopy in B_B-2 than that of PW. The correlation coefficient with the seasonal soil respiration and the soil temperature was higher than that of the monthly soil respiration. The soil respiration carbon was more than the litter fall carbon. It was suggested that the soil respiration included in the carbon dioxide which was emitted by the plant root and soil animal, or that the litter fall supplied to the forest floor included in animal and plant litter.

Keywords: field soil respiration rate, forest soil, litter fall, mineralization rate

Procedia PDF Downloads 288
3591 Investigation of the Self-Healing Sliding Wear Characteristics of Niti-Based PVD Coatings on Tool Steel

Authors: Soroush Momeni

Abstract:

Excellent damping capacity and superelasticity of the bulk NiTi shape memory alloy (SMA) makes it a suitable material of choice for tools in machining process as well as tribological systems. Although thin film of NiTi SMA has a same damping capacity as NiTi bulk alloys, it has a poor mechanical properties and undesirable tribological performance. This study aims at eliminating these application limitations for NiTi SMA thin films. In order to achieve this goal, NiTi thin films were magnetron sputtered as an interlayer between reactively sputtered hard TiCN coatings and hard work tool steel substrates. The microstructure, composition, crystallographic phases, mechanical and tribological properties of the deposited thin films were analyzed by using field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), nanoindentation, ball–on-disc, scratch test, and three dimensional (3D) optical microscopy. It was found that under a specific coating architecture, the superelasticity of NiTi inter-layer can be combined with high hardness and wear resistance of TiCN protective layers. The obtained results revealed that the thickness of NiTi interlayers is an important factor controlling mechanical and tribological performance of bi-layer composite coating systems.

Keywords: PVD coatings, sliding wear, hardness, tool steel

Procedia PDF Downloads 284
3590 Electromyography Analysis during Walking and Seated Stepping in the Elderly

Authors: P. Y. Chiang, Y. H. Chen, Y. J. Lin, C. C. Chang, W. C. Hsu

Abstract:

The number of the elderly in the world population and the rate of falls in this increasing numbers of older people are increasing. Decreasing muscle strength and an increasing risk of falling are associated with the ageing process. Because the effects of seated stepping training on the walking performance in the elderly remain unclear, the main purpose of the proposed study is to perform electromyography analysis during walking and seated stepping in the elderly. Four surface EMG electrodes were sticked on the surface of lower limbs muscles, including vastus lateralis (VL), and gastrocnemius (GT) of both sides. Before test, maximal voluntary contraction (MVC) of the respective muscle was obtained using manual muscle testing. The analog raw data of EMG signals were digitized with a sampling frequency of 2000 Hz. The signals were fully rectified and the linear envelope were calculated. Stepping motion cycle was separated into two phases by stepping timing (ST) and pedal return timing (PRT). ST refer to the time when the pedal marker reached the highest height, representing the contra-lateral leg was going to release the pedal. PRT refer to the time when the pedal marker reached the lowest height, representing the contra-lateral leg was going to step the pedal. We assumed that ST acted the same role in initial contact during walking, and PRT for toe-off. The period from ST to next PRT was called pushing phase (PP), during which the leg would start to step with resistance, and we compare this phase with the stance phase in level walking. The period from PRT to next ST was called returning phase (RP), during which leg would not have any resistance in this phase, and we compare this phase with the swing phase in level walking. VL and Gastro muscular activation had similar patterns in both side. The ability may transfer to those needed during loading response, mid-stance and terminal swing phase. User needed to make more effort in stepping compared with walking with similar timing; thus the strengthening of the VL and Gastro may be helpful to improve the walking endurance and efficiency for the elderly.

Keywords: elderly, electromyography, seated stepping, walking

Procedia PDF Downloads 219
3589 River Bank Erosion Studies: A Review on Investigation Approaches and Governing Factors

Authors: Azlinda Saadon

Abstract:

This paper provides detail review on river bank erosion studies with respect to their processes, methods of measurements and factors governing river bank erosion. Bank erosion processes are commonly associated with river changes initiation and development, through width adjustment and planform evolution. It consists of two main types of erosion processes; basal erosion due to fluvial hydraulic force and bank failure under the influence of gravity. Most studies had only focused on one factor rather than integrating both factors. Evidences of previous works have shown integration between both processes of fluvial hydraulic force and bank failure. Bank failure is often treated as probabilistic phenomenon without having physical characteristics and the geotechnical aspects of the bank. This review summarizes the findings of previous investigators with respect to measurement techniques and prediction rates of river bank erosion through field investigation, physical model and numerical model approaches. Factors governing river bank erosion considering physical characteristics of fluvial erosion are defined.

Keywords: river bank erosion, bank erosion, dimensional analysis, geotechnical aspects

Procedia PDF Downloads 432
3588 Isolation, Identification and Antimicrobial Susceptibility of Mycobacterium tuberculosis among Pulmonary Tuberculosis Patients

Authors: Naima Nur, Safa Islam, Saeema Islam, Faridul Alam

Abstract:

Background: Drug-resistant pulmonary tuberculosis (DR-PTB), particularly multidrug-resistant tuberculosis (MDR-TB) and pre-extensive drug-resistant (pre-XDR), is a major challenge in effectively controlling TB, especially in developing. This study aimed to identify the strains of M. tuberculosis complex (MTC) and drug resistance patterns among the pulmonary tuberculosis patients. Methods: The study used a cross-sectional design, and 815 patients were recruited randomly in three study periods. In the first-period, 210 treated PTB patients, who were completed their treatment, received their diagnoses using light microscopy, fluorescence microscopy and cultured on Lowenstein-Jensen (L-J) slant, and then strains were identified as MTC by biochemical tests, and then sensitivity test in National Institute of Diseases of the Chest and Hospital. In the second-period, 220 re-treated PTB patients, who were completed their treatment, received their diagnoses using culture on L-J slant, line probe assay (LPA), and GeneXpert in the same hospital. In the last-period, during treatment, 385 MDR-PTB patients received their diagnoses using culture on L-J slant and LPA in the same hospital. Results: Among sixty-two (29.5%) PTB patients, 13% were sensitive to all first-line anti-TB drugs, 26% were MDR-TB patients, and 14.2% were pre-XDR-TB among 14 MDR-TB patients. After three years, 31% were MDR-TB among 220 re-treated PTB patients. After five years, 16.4% was pre-XDR-TB among 385 MDR-TB patients. Compared to females, male patients were significantly higher at all times. Conclusion: The current study demonstrated that in three study periods, the proportions of DR-TB, MDR-TB, and pre-XDR patients were an alarming issue and increasing daily.

Keywords: multi-drug resistant, drug-resistant, pre-extensive drug resistant, pulmonary tuberculosis

Procedia PDF Downloads 54
3587 A Simple Chemical Approach to Regenerating Strength of Thermally Recycled Glass Fibre

Authors: Sairah Bashir, Liu Yang, John Liggat, James Thomason

Abstract:

Glass fibre is currently used as reinforcement in over 90% of all fibre-reinforced composites produced. The high rigidity and chemical resistance of these composites are required for optimum performance but unfortunately results in poor recyclability; when such materials are no longer fit for purpose, they are frequently deposited in landfill sites. Recycling technologies, for example, thermal treatment, can be employed to address this issue; temperatures typically between 450 and 600 °C are required to allow degradation of the rigid polymeric matrix and subsequent extraction of fibrous reinforcement. However, due to the severe thermal conditions utilised in the recycling procedure, glass fibres become too weak for reprocessing in second-life composite materials. In addition, more stringent legislation is being put in place regarding disposal of composite waste, and so it is becoming increasingly important to develop long-term recycling solutions for such materials. In particular, the development of a cost-effective method to regenerate strength of thermally recycled glass fibres will have a positive environmental effect as a reduced volume of composite material will be destined for landfill. This research study has demonstrated the positive impact of sodium hydroxide (NaOH) and potassium hydroxide (KOH) solution, prepared at relatively mild temperatures and at concentrations of 1.5 M and above, on the strength of heat-treated glass fibres. As a result, alkaline treatments can potentially be implemented to glass fibres that are recycled from composite waste to allow their reuse in second-life materials. The optimisation of the strength recovery process is being conducted by varying certain reaction parameters such as molarity of alkaline solution and treatment time. It is believed that deep V-shaped surface flaws exist commonly on severely damaged fibre surfaces and are effectively removed to form smooth, U-shaped structures following alkaline treatment. Although these surface flaws are believed to be present on glass fibres they have not in fact been observed, however, they have recently been discovered in this research investigation through analytical techniques such as AFM (atomic force microscopy) and SEM (scanning electron microscopy). Reaction conditions such as molarity of alkaline solution affect the degree of etching of the glass fibre surface, and therefore the extent to which fibre strength is recovered. A novel method in determining the etching rate of glass fibres after alkaline treatment has been developed, and the data acquired can be correlated with strength. By varying reaction conditions such as alkaline solution temperature and molarity, the activation energy of the glass etching process and the reaction order can be calculated respectively. The promising results obtained from NaOH and KOH treatments have opened an exciting route to strength regeneration of thermally recycled glass fibres, and the optimisation of the alkaline treatment process is being continued in order to produce recycled fibres with properties that match original glass fibre products. The reuse of such glass filaments indicates that closed-loop recycling of glass fibre reinforced composite (GFRC) waste can be achieved. In fact, the development of a closed-loop recycling process for GFRC waste is already underway in this research study.

Keywords: glass fibers, glass strengthening, glass structure and properties, surface reactions and corrosion

Procedia PDF Downloads 254
3586 Numerical Study of Effects of Air Dam on the Flow Field and Pressure Distribution of a Passenger Car

Authors: Min Ye Koo, Ji Ho Ahn, Byung Il You, Gyo Woo Lee

Abstract:

Everything that is attached to the outside of the vehicle to improve the driving performance of the vehicle by changing the flow characteristics of the surrounding air or to pursue the external personality is called a tuning part. Typical tuning components include front or rear air dam, also known as spoilers, splitter, and side air dam. Particularly, the front air dam prevents the airflow flowing into the lower portion of the vehicle and increases the amount of air flow to the side and front of the vehicle body, thereby reducing lift force generation that lifts the vehicle body, and thus, improving the steering and driving performance of the vehicle. The purpose of this study was to investigate the role of anterior air dam in the flow around a sedan passenger car using computational fluid dynamics. The effects of flow velocity, trajectory of fluid particles on static pressure distribution and pressure distribution on body surface were investigated by varying flow velocity and size of air dam. As a result, it has been confirmed that the front air dam improves the flow characteristics, thereby reducing the generation of lift force of the vehicle, so it helps in steering and driving characteristics.

Keywords: numerical study, air dam, flow field, pressure distribution

Procedia PDF Downloads 203
3585 Numerical Analysis of Laminar Flow around Square Cylinders with EHD Phenomenon

Authors: M. Salmanpour, O. Nourani Zonouz

Abstract:

In this research, a numerical simulation of an Electrohydrodynamic (EHD) actuator’s effects on the flow around a square cylinder by using a finite volume method has been investigated. This is one of the newest ways for controlling the fluid flows. Two plate electrodes are flush-mounted on the surface of the cylinder and one wire electrode is placed on the line with zero angle of attack relative to the stagnation point and excited with DC power supply. The discharge produces an electric force and changes the local momentum behaviors in the fluid layers. For this purpose, after selecting proper domain and boundary conditions, the electric field relating to the problem has been analyzed and then the results in the form of electrical body force have been entered in the governing equations of fluid field (Navier-Stokes equations). The effect of ionic wind resulted from the Electrohydrodynamic actuator, on the velocity, pressure and the wake behind cylinder has been considered. According to the results, it is observed that the fluid flow accelerates in the nearest wall of the frontal half of the cylinder and the pressure difference between frontal and hinder cylinder is increased.

Keywords: CFD, corona discharge, electro hydrodynamics, flow around square cylinders, simulation

Procedia PDF Downloads 470
3584 Evolution Mechanism of the Formation of Rock Heap under Seismic Action and Analysis on Engineering Geological Structure

Authors: Jian-Xiu Wan, Yao Yin

Abstract:

In complex terrain and poor geological conditions areas, Railway, highway and other transportation constructions are still strongly developing. However, various geological disasters happened such as landslide, rock heap and so on. According to the results of geological investigation, the form of skirt (trapezoidal), semicircle and triangle rock heaps are mainly due to complex internal force and external force, in a certain extent, which is related to the terrain, the nature of the rock mass, the supply area and the surface shape of rock heap. Combined with the above factors, discrete element numerical simulation of rock mass is established under different terrain conditions based on 3DEC, and accelerated formation process of rock heap under seismic action is simulated. The fragmentation structure supply area is calculated, in which the most dangerous area is located. At the same time, the formation mechanism and development process are studied in different terrain conditions, and the structure of rock heap is judged by section, which can provide a strong theoretical and technical support for the prevention and control of geological disasters.

Keywords: 3DEC, fragmentation structure, rock heap, slope, seismic action

Procedia PDF Downloads 294
3583 Elastic and Plastic Collision Comparison Using Finite Element Method

Authors: Gustavo Rodrigues, Hans Weber, Larissa Driemeier

Abstract:

The prevision of post-impact conditions and the behavior of the bodies during the impact have been object of several collision models. The formulation from Hertz’s theory is generally used dated from the 19th century. These models consider the repulsive force as proportional to the deformation of the bodies under contact and may consider it proportional to the rate of deformation. The objective of the present work is to analyze the behavior of the bodies during impact using the Finite Element Method (FEM) with elastic and plastic material models. The main parameters to evaluate are, the contact force, the time of contact and the deformation of the bodies. An advantage of using the FEM approach is the possibility to apply a plastic deformation to the model according to the material definition: there will be used Johnson–Cook plasticity model whose parameters are obtained through empirical tests of real materials. This model allows analyzing the permanent deformation caused by impact, phenomenon observed in real world depending on the forces applied to the body. These results are compared between them and with the model-based Hertz theory.

Keywords: collision, impact models, finite element method, Hertz Theory

Procedia PDF Downloads 173
3582 Graphene Reinforced Magnesium Metal Matrix Composites for Biomedical Applications

Authors: Khurram Munir, Cuie Wen, Yuncang Li

Abstract:

Magnesium (Mg) metal matrix composites (MMCs) reinforced with graphene nanoplatelets (GNPs) have been developed by powder metallurgy (PM). In this study, GNPs with different concentrations (0.1-0.3 wt.%) were dispersed into Mg powders by high-energy ball-milling processes. The microstructure and resultant mechanical properties of the fabricated nanocomposites were characterized using transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), Raman spectroscopy (RS), compression and nano-wear tests. The corrosion resistance of the fabricated composites was evaluated by electrochemical tests and hydrogen evolution measurements. Finally, the biological response of Mg-GNPs composites was assessed using osteoblast-like SaOS2 cells. The results indicate that GNPs are excellent candidates as reinforcements in Mg matrices for the manufacture of biodegradable Mg-based composite implants. GNP addition improved the mechanical properties of Mg via synergetic strengthening modes. Moreover, retaining the structural integrity of GNPs during PM processing improved the ductility, compressive strength, and corrosion resistance of the Mg-GNP composites as compared to monolithic Mg. Cytotoxicity assessments did not reveal any significant toxicity with the addition of GNPs to Mg matrices. This study demonstrates that Mg-xGNPs with x < 0.3 wt.%, may constitute novel biodegradable implant materials for load-bearing applications.

Keywords: magnesium-graphene composites, strengthening mechanisms, In vitro cytotoxicity, biocorrosion

Procedia PDF Downloads 156
3581 Superparamagnetic Sensor with Lateral Flow Immunoassays as Platforms for Biomarker Quantification

Authors: M. Salvador, J. C. Martinez-Garcia, A. Moyano, M. C. Blanco-Lopez, M. Rivas

Abstract:

Biosensors play a crucial role in the detection of molecules nowadays due to their advantages of user-friendliness, high selectivity, the analysis in real time and in-situ applications. Among them, Lateral Flow Immunoassays (LFIAs) are presented among technologies for point-of-care bioassays with outstanding characteristics such as affordability, portability and low-cost. They have been widely used for the detection of a vast range of biomarkers, which do not only include proteins but also nucleic acids and even whole cells. Although the LFIA has traditionally been a positive/negative test, tremendous efforts are being done to add to the method the quantifying capability based on the combination of suitable labels and a proper sensor. One of the most successful approaches involves the use of magnetic sensors for detection of magnetic labels. Bringing together the required characteristics mentioned before, our research group has developed a biosensor to detect biomolecules. Superparamagnetic nanoparticles (SPNPs) together with LFIAs play the fundamental roles. SPMNPs are detected by their interaction with a high-frequency current flowing on a printed micro track. By means of the instant and proportional variation of the impedance of this track provoked by the presence of the SPNPs, quantitative and rapid measurement of the number of particles can be obtained. This way of detection requires no external magnetic field application, which reduces the device complexity. On the other hand, the major limitations of LFIAs are that they are only qualitative or semiquantitative when traditional gold or latex nanoparticles are used as color labels. Moreover, the necessity of always-constant ambient conditions to get reproducible results, the exclusive detection of the nanoparticles on the surface of the membrane, and the short durability of the signal are drawbacks that can be advantageously overcome with the design of magnetically labeled LFIAs. The approach followed was to coat the SPIONs with a specific monoclonal antibody which targets the protein under consideration by chemical bonds. Then, a sandwich-type immunoassay was prepared by printing onto the nitrocellulose membrane strip a second antibody against a different epitope of the protein (test line) and an IgG antibody (control line). When the sample flows along the strip, the SPION-labeled proteins are immobilized at the test line, which provides magnetic signal as described before. Preliminary results using this practical combination for the detection and quantification of the Prostatic-Specific Antigen (PSA) shows the validity and consistency of the technique in the clinical range, where a PSA level of 4.0 ng/mL is the established upper normal limit. Moreover, a LOD of 0.25 ng/mL was calculated with a confident level of 3 according to the IUPAC Gold Book definition. Its versatility has also been proved with the detection of other biomolecules such as troponin I (cardiac injury biomarker) or histamine.

Keywords: biosensor, lateral flow immunoassays, point-of-care devices, superparamagnetic nanoparticles

Procedia PDF Downloads 229
3580 Effect of the Nature of Silica Precursor in Zeolite ZSM-22 Synthesis

Authors: Nyiko M. Chauke, James Ramontja, Richard M. Moutloali

Abstract:

The zeolite ZSM-22 material demonstrated effective hydrophilic character as a nanoadditive filler in the preparation of nanocomposite membranes. In this study, nanorods ZSM-22 zeolite materials were hydrothermally synthesised from a homogenous gel mixture prepared using different silica precursors: colloidal silica, fumed silica, tetraethylorthosilicate (TEOS), and aluminium precursor: aluminium sulphate octadecahydrate (Al₂(SO₄)₃.18H₂O to Si/Al of 60. This was focused on developing a defect-free zeolite framework for effective use in applications such as membrane separation process, adsorption, and catalysis. The obtained ZSM-22 zeolite materials with 60 Si/Al ratio exhibits high crystallinity, hydrophilicity, and needle-like morphologies, suggesting successful synthesis as shown by X-ray Diffraction (XRD), Brunauer-Emmett-Teller (BET), Fourier-Transform Infrared Spectroscopy (FTIR), Transmission Electron Microscopy (TEM) and Scanning Electron Microscopy (SEM) physicochemical analysis. It was revealed that the use of different nature of silica precursors significantly influenced the properties of the final product and contributed to the development of defect-free zeolite material. As such, the crystalline nanorods of Theta-1 (TON) ZSM-22 obtained from TEOS silica showed high phase purity, defect-free, and narrow particle size distribution. Morphological analysis exhibited that the use of TEOS as silica precursor was effective than its counterparts and produced high crystalline need-like agglomerated particles.

Keywords: silica precursor, hydrothermal synthesis, zeolite material, ZSM-22

Procedia PDF Downloads 135
3579 Nanoprofiling of GaAs Surface in a Combined Low-Temperature Plasma for Microwave Devices

Authors: Victor S. Klimin, Alexey A. Rezvan, Maxim S. Solodovnik, Oleg A. Ageev

Abstract:

In this paper, the problems of existing methods of profiling and surface modification of nanoscale arsenide-gallium structures are analyzed. The use of a combination of methods of local anodic oxidation and plasma chemical etching to solve this problem is considered. The main features that make this technology one of the promising areas of modification and profiling of near-surface layers of solids are demonstrated. In this paper, we studied the effect of formation stress and etching time on the geometrical parameters of the etched layer and the roughness of the etched surface. Experimental dependences of the thickness of the etched layer on the time and stress of formation were obtained. The surface analysis was carried out using atomic force microscopy methods, the corresponding profilograms were constructed from the obtained images, and the roughness of the etched surface was studied accordingly. It was shown that at high formation voltage, the depth of the etched surface increased, this is due to an increase in the number of active particles (oxygen ions and hydroxyl groups) formed as a result of the decomposition of water molecules in an electric field, during the formation of oxide nanostructures on the surface of gallium arsenide. Oxide layers were used as negative masks for subsequent plasma chemical etching by the STE ICPe68 unit. BCl₃ was chosen as the chlorine-containing gas, which differs from analogs in some parameters for the effect of etching of nanostructures based on gallium arsenide in the low-temperature plasma. The gas mixture of reaction chamber consisted of a buffer gas NAr = 100 cm³/min and a chlorine-containing gas NBCl₃ = 15 cm³/min at a pressure P = 2 Pa. The influence of these methods modes, which are formation voltage and etching time, on the roughness and geometric parameters, and corresponding dependences are demonstrated. Probe nanotechnology was used for surface analysis.

Keywords: nanostructures, GaAs, plasma chemical etching, modification structures

Procedia PDF Downloads 143
3578 Turmeric Mediated Synthesis and Characterization of Cerium Oxide Nanoparticles

Authors: Nithin Krisshna Gunasekaran, Prathima Prabhu Tumkur, Nicole Nazario Bayon, Krishnan Prabhakaran, Joseph C. Hall, Govindarajan T. Ramesh

Abstract:

Cerium oxide and turmeric have antioxidant properties, which have gained interest among researchers to study their applications in the field of biomedicine, such asanti-inflammatory, anticancer, and antimicrobial applications. In this study, the turmeric extract was prepared and mixed with cerium nitrate hexahydrate, stirred continuously to obtain a homogeneous solution and then heated on a hot plate to get the supernatant evaporated, then calcinated at 600°C to obtain the cerium oxide nanoparticles. Characterization of synthesized cerium oxide nanoparticles through Scanning Electron Microscopy determined the particle size to be in the range of 70 nm to 250 nm. Energy Dispersive X-Ray Spectroscopy determined the elemental composition of cerium and oxygen. Individual particles were identified through the characterization of cerium oxide nanoparticles using Field Emission Scanning Electron Microscopy, in which the particles were determined to be spherical and in the size of around 70 nm. The presence of cerium oxide was assured by analyzing the spectrum obtained through the characterization of cerium oxide nanoparticles by Fourier Transform Infrared Spectroscopy. The crystal structure of cerium oxide nanoparticles was determined to be face-centered cubic by analyzing the peaks obtained through theX-Ray Diffraction method. The crystal size of cerium oxide nanoparticles was determined to be around 13 nm by using the Debye Scherer equation. This study confirmed the synthesis of cerium oxide nanoparticles using turmeric extract.

Keywords: antioxidant, characterization, cerium oxide, synthesis, turmeric

Procedia PDF Downloads 162
3577 Growth Model and Properties of a 3D Carbon Aerogel

Authors: J. Marx, D. Smazna, R. Adelung, B. Fiedler

Abstract:

Aerographite is a 3D interconnected carbon foam. Its tetrapodal morphology is based on the zinc oxide (ZnO) template structure, which is replicated in the chemical vapour deposition (CVD) into a hollow carbon structure. This replication process is analyzed in ex-situ studies via interrupted synthesis and the observation of the reaction progress by using scanning electron (SEM), transmission electron microscopy (TEM) and Raman spectroscopy techniques. Based on the epitaxial growth process, with a layer-by-layer growth behaviour of the wall thickness or number of layers and the catalytical graphitization of the deposited amorphous carbon into graphitic carbon by zinc, a growth model is created. The properties of aerographite, such as the electrical conductivity is dependent on the graphitization and number of layer (wall thickness). Wall thicknesses between 3 nm and 22 nm are achieved by a controlled stepwise reduction of the synthesis time on the basis of the developed growth model, and by a further thermal treatment at 1800 °C the graphitization of the presented carbon foam is modified. The variation of the wall thickness leads to an optimum defect density (ID/IG ratio) and the graphitization to an improvement in the electrical conductivity. Furthermore, a metallic conducting behaviour of untreated and 1800 °C treated aerographite can be observed. Due to these structural and defective modifications, a fundamental structural-property equation for the description of their influences on the electrical conductivity is developed.

Keywords: electrical conductivity, electron microscopy (SEM/TEM), graphitization, wall thickness

Procedia PDF Downloads 153
3576 Interoperability of 505th Search and Rescue Group and the 205th Tactical Helicopter Wing of the Philippine Air Force in Search and Rescue Operations: An Assessment

Authors: Ryan C. Igama

Abstract:

The complexity of disaster risk reduction management paved the way for various innovations and approaches to mitigate the loss of lives and casualties during disaster-related situations. The efficiency of doing response operations during disasters relies on the timely and organized deployment of search, rescue and retrieval teams. Indeed, the assistance provided by the search, rescue, and retrieval teams during disaster operations is a critical service needed to further minimize the loss of lives and casualties. The Armed Forces of the Philippines was mandated to provide humanitarian assistance and disaster relief operations during calamities and disasters. Thus, this study “Interoperability of 505TH Search and Rescue Group and the 205TH Tactical Helicopter Wing of the Philippine Air Force in Search and Rescue Operations: An Assessment” was intended to provide substantial information to further strengthen and promote the capabilities of search and rescue operations in the Philippines. Further, this study also aims to assess the interoperability of the 505th Search and Rescue Group of the Philippine Air Force and the 205th Tactical Helicopter Wing Philippine Air Force. This study was undertaken covering the component units in the Philippine Air Force of the Armed Forces of the Philippines – specifically the 505th SRG and the 205th THW as the involved units who also acted as the respondents of the study. The qualitative approach was the mechanism utilized in the form of focused group discussions, key informant interviews, and documentary analysis as primary means to obtain the needed data for the study. Essentially, this study was geared towards the evaluation of the effectiveness of the interoperability of the two (2) involved PAF units during search and rescue operations. Further, it also delved into the identification of the impacts, gaps, and challenges confronted regarding interoperability as to training, equipment, and coordination mechanism vis-à-vis the needed measures for improvement, respectively. The result of the study regarding the interoperability of the two (2) PAF units during search and rescue operations showed that there was a duplication in terms of functions or tasks in HADR activities, specifically during the conduct of air rescue operations in situations like calamities. In addition, it was revealed that there was a lack of equipment and training for the personnel involved in search and rescue operations which is a vital element during calamity response activities. Based on the findings of the study, it was recommended that a strategic planning workshop/activity must be conducted regarding the duties and responsibilities of the personnel involved in the search and rescue operations to address the command and control and interoperability issues of these units. Additionally, the conduct of intensive HADR-related training for the personnel involved in search and rescue operations of the two (2) PAF Units must also be conducted so they can be more proficient in their skills and sustainably increase their knowledge of search and rescue scenarios, including the capabilities of the respective units. Lastly, the updating of existing doctrines or policies must be undertaken to adapt advancement to the evolving situations in search and rescue operations.

Keywords: interoperability, search and rescue capability, humanitarian assistance, disaster response

Procedia PDF Downloads 92