Search results for: data protection officer
25905 Explaining the Role of Iran Health System in Polypharmacy among the Elderly
Authors: Mohsen Shati, Seyede Salehe Mortazavi, Seyed Kazem Malakouti, Hamidreza Khanke Fazlollah Ahmadi
Abstract:
Taking unnecessary or excessive medication or using drugs with no indication (polypharmacy) by people of all ages, especially the elderly, is associated with increased adverse drug reactions (ADR), medical errors, hospitalization and escalating the costs. It may be facilitated or impeded by the healthcare system. In this study, we are going to describe the role of the health system in the practice of polypharmacy in Iranian elderly. In this Inductive qualitative content analysis using Graneheim and Lundman methods, purposeful sample selection until saturation has been made. Participants have been selected from doctors, pharmacists, policy-makers and the elderly. A total of 25 persons (9 men and 16 women) have participated in this study. Data analysis after incorporating codes with similar characteristics revealed 14 subcategories and six main categories of the referral system, physicians’ accessibility, health data management, drug market, laws enforcement, and social protection. Some of the conditions of the healthcare system have given rise to polypharmacy in the elderly. In the absence of a comprehensive specialty and subspecialty referral system, patients may go to any physician office so may well be confused about numerous doctors' prescriptions. Electronic records not being prepared for the patients, failure to comply with laws, lack of robust enforcement for the existing laws and close surveillance are among the contributing factors. Inadequate insurance and supportive services are also evident. Age-specific care providing has not yet been institutionalized, while, inadequate specialist workforce playing a major role. So, one may not ignore the health system as contributing factor in designing effective interventions to fix the problem.Keywords: elderly, polypharmacy, health system, qualitative study
Procedia PDF Downloads 14925904 Study of the Protective Effects of Summer Savory against Multiple Organ Damage Induced by Lead Acetate in Rats
Authors: Bassant M. M. Ibrahim, Doha H. Abou Baker, Ahmed Abd Elghafour
Abstract:
Excessive exposure to heavy metals contributes to the occurrence of deleterious health problems that affect vital organs like the brain, liver, kidneys, and heart. The use of natural products that have antioxidant capabilities may contribute to the protection of these organs. In the present study, the essential oil of summer savory (Satureja hortensis) was used to evaluate its protective effects against lead acetate induced damaging effect on rats’ vital organs, due to its high contents of carvacrol, y-terpinene, and p-cymene. Forty female Wister Albino rats were classified into five equal groups, the 1st served as normal group, the 2nd served as positive control group was given lead acetate (60 mg/kg) intra-peritoneal (IP), the third to fifth groups were treated with calcium disodium (EDTA) as chelating agent and summer savory essential oil in doses of (50 and 100mg/kg) respectively. All treatments were given IP concomitant with lead acetate for ten successive days. At the end of the experiment duration electrocardiogram (ECG), an open field test for the evaluation of psychological state, rotarod test as for the evaluation of locomotor coordination ability as well as anti-inflammatory and oxidative stress biomarkers in serum and histopathology of vital organs were performed. The investigations in this study show that the protective effect of high dose of summer savory essential oil is more than the low dose and that the essential oil of summer savory is a promising agent that can contribute to the protection of vital organs against the hazardous damaging effects of lead acetate.Keywords: brain, heart, kidneys, lead acetate, liver, protective, summer savory
Procedia PDF Downloads 12125903 Privacy Paradox and the Internet of Medical Things
Authors: Isabell Koinig, Sandra Diehl
Abstract:
In recent years, the health-care context has not been left unaffected by technological developments. In recent years, the Internet of Medical Things (IoMT)has not only led to a collaboration between disease management and advanced care coordination but also to more personalized health care and patient empowerment. With more than 40 % of all health technology being IoMT-related by 2020, questions regarding privacy become more prevalent, even more so during COVID-19when apps allowing for an intensive tracking of people’s whereabouts and their personal contacts cause privacy advocates to protest and revolt. There is a widespread tendency that even though users may express concerns and fears about their privacy, they behave in a manner that appears to contradict their statements by disclosing personal data. In literature, this phenomenon is discussed as a privacy paradox. While there are some studies investigating the privacy paradox in general, there is only scarce research related to the privacy paradox in the health sector and, to the authors’ knowledge, no empirical study investigating young people’s attitudes toward data security when using wearables and health apps. The empirical study presented in this paper tries to reduce this research gap by focusing on the area of digital and mobile health. It sets out to investigate the degree of importance individuals attribute to protecting their privacy and individual privacy protection strategies. Moreover, the question to which degree individuals between the ages of 20 and 30 years are willing to grant commercial parties access to their private data to use digital health services and apps are put to the test. To answer this research question, results from 6 focus groups with 40 participants will be presented. The focus was put on this age segment that has grown up in a digitally immersed environment. Moreover, it is particularly the young generation who is not only interested in health and fitness but also already uses health-supporting apps or gadgets. Approximately one-third of the study participants were students. Subjects were recruited in August and September 2019 by two trained researchers via email and were offered an incentive for their participation. Overall, results indicate that the young generation is well informed about the growing data collection and is quite critical of it; moreover, they possess knowledge of the potential side effects associated with this data collection. Most respondents indicated to cautiously handle their data and consider privacy as highly relevant, utilizing a number of protective strategies to ensure the confidentiality of their information. Their willingness to share information in exchange for services was only moderately pronounced, particularly in the health context, since health data was seen as valuable and sensitive. The majority of respondents indicated to rather miss out on using digital and mobile health offerings in order to maintain their privacy. While this behavior might be an unintended consequence, it is an important piece of information for app developers and medical providers, who have to find a way to find a user base for their products against the background of rising user privacy concerns.Keywords: digital health, privacy, privacy paradox, IoMT
Procedia PDF Downloads 13625902 Data Mining in Medicine Domain Using Decision Trees and Vector Support Machine
Authors: Djamila Benhaddouche, Abdelkader Benyettou
Abstract:
In this paper, we used data mining to extract biomedical knowledge. In general, complex biomedical data collected in studies of populations are treated by statistical methods, although they are robust, they are not sufficient in themselves to harness the potential wealth of data. For that you used in step two learning algorithms: the Decision Trees and Support Vector Machine (SVM). These supervised classification methods are used to make the diagnosis of thyroid disease. In this context, we propose to promote the study and use of symbolic data mining techniques.Keywords: biomedical data, learning, classifier, algorithms decision tree, knowledge extraction
Procedia PDF Downloads 55625901 Analysis of Different Classification Techniques Using WEKA for Diabetic Disease
Authors: Usama Ahmed
Abstract:
Data mining is the process of analyze data which are used to predict helpful information. It is the field of research which solve various type of problem. In data mining, classification is an important technique to classify different kind of data. Diabetes is most common disease. This paper implements different classification technique using Waikato Environment for Knowledge Analysis (WEKA) on diabetes dataset and find which algorithm is suitable for working. The best classification algorithm based on diabetic data is Naïve Bayes. The accuracy of Naïve Bayes is 76.31% and take 0.06 seconds to build the model.Keywords: data mining, classification, diabetes, WEKA
Procedia PDF Downloads 14525900 Geospatial Modeling of Dry Snow Avalanches Distribution Using Geographic Information Systems and Remote Sensing: A Case Study of the Šar Mountains (Balkan Peninsula)
Authors: Uroš Durlević, Ivan Novković, Nina Čegar, Stefanija Stojković
Abstract:
Snow avalanches represent one of the most dangerous natural phenomena in mountain regions worldwide. Material and human casualties caused by snow avalanches can be very significant. In this study, using geographic information systems and remote sensing, the natural conditions of the Šar Mountains were analyzed for geospatial modeling of dry slab avalanches. For this purpose, the Fuzzy Analytic Hierarchy Process (FAHP) multi-criteria analysis method was used, within which fifteen environmental criteria were analyzed and evaluated. Based on the existing analyzes and results, it was determined that a significant area of the Šar Mountains is very highly susceptible to the occurrence of dry slab avalanches. The obtained data can be of significant use to local governments, emergency services, and other institutions that deal with natural disasters at the local level. To our best knowledge, this is one of the first research in the Republic of Serbia that uses the FAHP method for geospatial modeling of dry slab avalanches.Keywords: GIS, FAHP, Šar Mountains, snow avalanches, environmental protection
Procedia PDF Downloads 9025899 Antifeedant Activity of Plant Extracts on the Spongy Moth (Lymantria dispar) Larvae
Authors: Jovana M. Ćirković, Aleksandar M. Radojković, Sanja Z. Perać, Jelena N. Jovanović, Zorica M. Branković, Slobodan D. Milanović, Ivan Lj. Milenković, Jovan N. Dobrosavljević, Nemanja V. Simović, Vanja M. Tadić, Ana R. Žugić, Goran O. Branković
Abstract:
The protection of forests is a national interest and of strategic importance in every country. The spongy moth (Lymantria dispar) is a damaging invasive pest that can weaken and destroy trees by defoliating them. Chemical pesticides commonly used to protect forests against spongy moths not only have a negative impact on terrestrial and aquatic organisms/ecosystems but also often fail to provide significant protection. Therefore, many eco-friendly alternatives have been considered. Within this research, a new biopesticide was developed based on the method of nanoencapsulation of plant extracts in a biopolymer matrix, which provides a slow release of the active components during a substantial time period. The antifeedant activity of plant extracts of common (Fraxinus excelsior L.), manna (F. ornus L.) ash tree, and the tree of heaven Ailanthus altissima (Mill.) was tested on the spongy moth (Lymantria dispar L, 1758) larvae. To test the antifeedant activity of these compounds, the choice and non-choice tests in laboratory conditions for different plant extract concentrations (0.01, 0.1, 0.5, and 1 % v/v) were carried out. In both cases, the best results showed formulations based on the tree of heaven and common ash for the concentration of 1%, with deterioration indices of 163 and 132, respectively. The main benefit of these formulations is their versatility, effectiveness, prolonged effect, and because they are completely environmentally acceptable. Therefore, they can be considered for suppression of the spongy moth in forest ecosystems.Keywords: Ailanthus altissima (Mill.), Fraxinus excelsior L., encapsulation, Lymantria dispar
Procedia PDF Downloads 7625898 Comprehensive Study of Data Science
Authors: Asifa Amara, Prachi Singh, Kanishka, Debargho Pathak, Akshat Kumar, Jayakumar Eravelly
Abstract:
Today's generation is totally dependent on technology that uses data as its fuel. The present study is all about innovations and developments in data science and gives an idea about how efficiently to use the data provided. This study will help to understand the core concepts of data science. The concept of artificial intelligence was introduced by Alan Turing in which the main principle was to create an artificial system that can run independently of human-given programs and can function with the help of analyzing data to understand the requirements of the users. Data science comprises business understanding, analyzing data, ethical concerns, understanding programming languages, various fields and sources of data, skills, etc. The usage of data science has evolved over the years. In this review article, we have covered a part of data science, i.e., machine learning. Machine learning uses data science for its work. Machines learn through their experience, which helps them to do any work more efficiently. This article includes a comparative study image between human understanding and machine understanding, advantages, applications, and real-time examples of machine learning. Data science is an important game changer in the life of human beings. Since the advent of data science, we have found its benefits and how it leads to a better understanding of people, and how it cherishes individual needs. It has improved business strategies, services provided by them, forecasting, the ability to attend sustainable developments, etc. This study also focuses on a better understanding of data science which will help us to create a better world.Keywords: data science, machine learning, data analytics, artificial intelligence
Procedia PDF Downloads 8125897 Construction and Optimization of Green Infrastructure Network in Mountainous Counties Based on Morphological Spatial Pattern Analysis and Minimum Cumulative Resistance Models: A Case Study of Shapingba District, Chongqing
Authors: Yuning Guan
Abstract:
Under the background of rapid urbanization, mountainous counties need to break through mountain barriers for urban expansion due to undulating topography, resulting in ecological problems such as landscape fragmentation and reduced biodiversity. Green infrastructure networks are constructed to alleviate the contradiction between urban expansion and ecological protection, promoting the healthy and sustainable development of urban ecosystems. This study applies the MSPA model, the MCR model and Linkage Mapper Tools to identify eco-sources and eco-corridors in the Shapingba District of Chongqing and combined with landscape connectivity assessment and circuit theory to delineate the importance levels to extract ecological pinch point areas on the corridors. The results show that: (1) 20 ecological sources are identified, with a total area of 126.47 km², accounting for 31.88% of the study area, and showing a pattern of ‘one core, three corridors, multi-point distribution’. (2) 37 ecological corridors are formed in the area, with a total length of 62.52km, with a ‘more in the west, less in the east’ pattern. (3) 42 ecological pinch points are extracted, accounting for 25.85% of the length of the corridors, which are mainly distributed in the eastern new area. Accordingly, this study proposes optimization strategies for sub-area protection of ecological sources, grade-level construction of ecological corridors, and precise restoration of ecological pinch points.Keywords: green infrastructure network, morphological spatial pattern, minimal cumulative resistance, mountainous counties, circuit theory, shapingba district
Procedia PDF Downloads 4225896 Mobile and Hot Spot Measurement with Optical Particle Counting Based Dust Monitor EDM264
Authors: V. Ziegler, F. Schneider, M. Pesch
Abstract:
With the EDM264, GRIMM offers a solution for mobile short- and long-term measurements in outdoor areas and at production sites. For research as well as permanent areal observations on a near reference quality base. The model EDM264 features a powerful and robust measuring cell based on optical particle counting (OPC) principle with all the advantages that users of GRIMM's portable aerosol spectrometers are used to. The system is embedded in a compact weather-protection housing with all-weather sampling, heated inlet system, data logger, and meteorological sensor. With TSP, PM10, PM4, PM2.5, PM1, and PMcoarse, the EDM264 provides all fine dust fractions real-time, valid for outdoor applications and calculated with the proven GRIMM enviro-algorithm, as well as six additional dust mass fractions pm10, pm2.5, pm1, inhalable, thoracic and respirable for IAQ and workplace measurements. This highly versatile instrument performs real-time monitoring of particle number, particle size and provides information on particle surface distribution as well as dust mass distribution. GRIMM's EDM264 has 31 equidistant size channels, which are PSL traceable. A high-end data logger enables data acquisition and wireless communication via LTE, WLAN, or wired via Ethernet. Backup copies of the measurement data are stored in the device directly. The rinsing air function, which protects the laser and detector in the optical cell, further increases the reliability and long term stability of the EDM264 under different environmental and climatic conditions. The entire sample volume flow of 1.2 L/min is analyzed by 100% in the optical cell, which assures excellent counting efficiency at low and high concentrations and complies with the ISO 21501-1standard for OPCs. With all these features, the EDM264 is a world-leading dust monitor for precise monitoring of particulate matter and particle number concentration. This highly reliable instrument is an indispensable tool for many users who need to measure aerosol levels and air quality outdoors, on construction sites, or at production facilities.Keywords: aerosol research, aerial observation, fence line monitoring, wild fire detection
Procedia PDF Downloads 14925895 Development of an Aerosol Protection Capsule for Patients with COVID-19
Authors: Isomar Lima da Silva, Aristeu Jonatas Leite de Oliveira, Roberto Maia Augusto
Abstract:
Biological isolation capsules are equipment commonly used in the control and prevention of infectious diseases in the hospital environment. This type of equipment, combined with pre-established medical protocols, contributes significantly to the containment of highly transmissible pathogens such as COVID-19. Due to its hermetic isolation, it allows more excellent patient safety, protecting companions and the health team. In this context, this work presents the development, testing, and validation of a medical capsule to treat patients affected by COVID-19. To this end, requirements such as low cost and easy handling were considered to meet the demand of people infected with the virus in remote locations in the Amazon region and/or where there are no ICU beds and mechanical ventilators for orotracheal intubation. Conceived and developed in a partnership between SAMEL Planos de Saúde and Instituto Conecthus, the device entitled "Vanessa Capsule" was designed to be used together with the NIV protocol (non-invasive ventilation), has an automatic exhaust system and filters performing the CO2 exchange, in addition to having BiPaps ventilatory support equipment (mechanical fans) in the Cabin Kit. The results show that the degree of effectiveness in protecting against infection by aerosols, with the protection cabin, is satisfactory, implying the consideration of the Vanessa capsule as an auxiliary method to be evaluated by the health team. It should also be noted that the medical observation of the evaluated patients found that the treatment against the COVID-19 virus started earlier with non-invasive mechanical ventilation reduces the patient's suffering and contributes positively to their recovery, in association with isolation through the Vanessa capsule.Keywords: COVID-19, mechanical ventilators, medical capsule, non-invasive ventilation
Procedia PDF Downloads 8225894 Investor Beware - Significance of Investor Conduct under the Fair and Equitable Treatment Standard
Authors: Damayanti Sen
Abstract:
The Fair and Equitable Treatment standard has emerged as a core tenet of a formulated legal structure aimed at encouraging investment through the granting of a secure and stable environment for the investor in the Host State. As an absolute, non-contingent standard, it constitutes an independent and reliable system for the protection of the investor and is frequently invoked and applied in investor-state dispute settlement under bilateral and multilateral investment treaties. Thus far, the standard has been examined principally as a measure for determining the responsibility of host countries towards investors and investments. The conduct of investor in applying the Fair and Equitable Treatment Standard is relatively unexplored. Such an assessment may be necessary in light of the development of new defenses to demands of host governments to confine the application of the standard in order to ensure a proper balance between the protection of investors and the inherent right of a State to regulate economic conduct within its borders. This paper explores the implications of including considerations of investor conduct in the determination of whether an act of the host country’s administrative and/or judicial authorities has breached the fair and equitable treatment principle. The need for such defenses are of special concern for governments of developing countries, whose limited resources can affect their ability to provide an effective evaluation of the nature of the proposed investment, and, subsequently, to ensure that the expected benefits are realized. On the basis of conceptual analysis, and emerging international judicial and arbitral case law, this paper suggests that investor duties such as, the avoidance of unconscionable conduct, the reasonable assessment of investment risk in the host country, and a duty to operate an investment reasonably are leading to a new limit upon the fair and equitable treatment standard- one that can be succinctly captured in the phrase “Caveat Investor”.Keywords: BITs, FET Standard, investor behavior, arbitral case law
Procedia PDF Downloads 31225893 Application of Artificial Neural Network Technique for Diagnosing Asthma
Authors: Azadeh Bashiri
Abstract:
Introduction: Lack of proper diagnosis and inadequate treatment of asthma leads to physical and financial complications. This study aimed to use data mining techniques and creating a neural network intelligent system for diagnosis of asthma. Methods: The study population is the patients who had visited one of the Lung Clinics in Tehran. Data were analyzed using the SPSS statistical tool and the chi-square Pearson's coefficient was the basis of decision making for data ranking. The considered neural network is trained using back propagation learning technique. Results: According to the analysis performed by means of SPSS to select the top factors, 13 effective factors were selected, in different performances, data was mixed in various forms, so the different models were made for training the data and testing networks and in all different modes, the network was able to predict correctly 100% of all cases. Conclusion: Using data mining methods before the design structure of system, aimed to reduce the data dimension and the optimum choice of the data, will lead to a more accurate system. Therefore, considering the data mining approaches due to the nature of medical data is necessary.Keywords: asthma, data mining, Artificial Neural Network, intelligent system
Procedia PDF Downloads 27325892 Interpreting Privacy Harms from a Non-Economic Perspective
Authors: Christopher Muhawe, Masooda Bashir
Abstract:
With increased Internet Communication Technology(ICT), the virtual world has become the new normal. At the same time, there is an unprecedented collection of massive amounts of data by both private and public entities. Unfortunately, this increase in data collection has been in tandem with an increase in data misuse and data breach. Regrettably, the majority of data breach and data misuse claims have been unsuccessful in the United States courts for the failure of proof of direct injury to physical or economic interests. The requirement to express data privacy harms from an economic or physical stance negates the fact that not all data harms are physical or economic in nature. The challenge is compounded by the fact that data breach harms and risks do not attach immediately. This research will use a descriptive and normative approach to show that not all data harms can be expressed in economic or physical terms. Expressing privacy harms purely from an economic or physical harm perspective negates the fact that data insecurity may result into harms which run counter the functions of privacy in our lives. The promotion of liberty, selfhood, autonomy, promotion of human social relations and the furtherance of the existence of a free society. There is no economic value that can be placed on these functions of privacy. The proposed approach addresses data harms from a psychological and social perspective.Keywords: data breach and misuse, economic harms, privacy harms, psychological harms
Procedia PDF Downloads 19525891 High Input Driven Factors in Idea Campaigns in Large Organizations: A Case Depicting Best Practices
Authors: Babar Rasheed, Saad Ghafoor
Abstract:
Introduction: Idea campaigns are commonly held across organizations for generating employee engagement. The contribution is specifically designed to identify and solve prevalent issues. It is argued that numerous organizations fail to achieve their desired goals despite arranging for such campaigns and investing heavily in them. There are however practices that organizations use to achieve higher degree of effectiveness, and these practices may be up for exploration by research to make them usable for the other organizations. Purpose: The aim of this research is to surface the idea management practices of a leading electric company with global operations. The study involves a large sized, multi site organization that is attributed to have added challenges in terms of managing ideas from employees, in comparison to smaller organizations. The study aims to highlight the factors that are looked at as the idea management team strategies for the campaign, sets terms and rewards for it, makes follow up with the employees and lastly, evaluate and award ideas. Methodology: The study is conducted in a leading electric appliance corporation that has a large number of employees and is based in numerous regions of the world. A total of 7 interviews are carried out involving the chief innovation officer, innovation manager and members of idea management and evaluation teams. The interviews are carried out either on Skype or in-person based on the availability of the interviewee. Findings: While this being a working paper and while the study is under way, it is anticipated that valuable information is being achieved about specific details on how idea management systems are governed and how idea campaigns are carried out. The findings may be particularly useful for innovation consultants as resources they can use to promote idea campaigning. The usefulness of the best practices highlighted as a result is, in any case, the most valuable output of this study.Keywords: employee engagement, motivation, idea campaigns, large organizations, best practices, employees input, organizational output
Procedia PDF Downloads 17125890 Machine Learning Analysis of Student Success in Introductory Calculus Based Physics I Course
Authors: Chandra Prayaga, Aaron Wade, Lakshmi Prayaga, Gopi Shankar Mallu
Abstract:
This paper presents the use of machine learning algorithms to predict the success of students in an introductory physics course. Data having 140 rows pertaining to the performance of two batches of students was used. The lack of sufficient data to train robust machine learning models was compensated for by generating synthetic data similar to the real data. CTGAN and CTGAN with Gaussian Copula (Gaussian) were used to generate synthetic data, with the real data as input. To check the similarity between the real data and each synthetic dataset, pair plots were made. The synthetic data was used to train machine learning models using the PyCaret package. For the CTGAN data, the Ada Boost Classifier (ADA) was found to be the ML model with the best fit, whereas the CTGAN with Gaussian Copula yielded Logistic Regression (LR) as the best model. Both models were then tested for accuracy with the real data. ROC-AUC analysis was performed for all the ten classes of the target variable (Grades A, A-, B+, B, B-, C+, C, C-, D, F). The ADA model with CTGAN data showed a mean AUC score of 0.4377, but the LR model with the Gaussian data showed a mean AUC score of 0.6149. ROC-AUC plots were obtained for each Grade value separately. The LR model with Gaussian data showed consistently better AUC scores compared to the ADA model with CTGAN data, except in two cases of the Grade value, C- and A-.Keywords: machine learning, student success, physics course, grades, synthetic data, CTGAN, gaussian copula CTGAN
Procedia PDF Downloads 4325889 The Effects of Cross-Border Use of Drones in Nigerian National Security
Authors: H. P. Kerry
Abstract:
Drone technology has become a significant discourse in a nation’s national security, while this technology could constitute a danger to national security on the one hand, on the other hand, it is used in developed and developing countries for border security, and in some cases, for protection of security agents and migrants. In the case of Nigeria, drones are used by the military to monitor and tighten security around the borders. However, terrorist groups have devised a means to utilize the technology to their advantage. Therefore, the potential danger in the widespread proliferation of this technology has become a myriad of risks. The research on the effects of cross-border use of drones in Nigerian national security looks at the negative and positive consequences of using drone technology. The study employs the use of interviews and relevant documents to obtain data while the study applied the Just War theory to justify the reason why countries use force; it further buttresses the points with what the realist theory thinks about the use of force. In conclusion, the paper recommends that the Nigerian government through the National Assembly should pass a bill for the establishment of a law that will guide the use of armed and unarmed drones in Nigeria enforced by the Nigeria Civil Aviation Authority and the office of the National Security Adviser.Keywords: armed drones, drones, cross-border, national security
Procedia PDF Downloads 15325888 Implementing Bioremediation Technologies to Degrade Chemical Warfare Agents and Explosives from War Affected Regions in Sri Lanka
Authors: Elackiya Sithamparanathan
Abstract:
Chemical agents used during the Sri Lankan civil war continue to threaten human and environmental health as affected areas are re-settled. Bioremediation is a cost-effective and eco-friendly approach to degrading chemical agents, and has greater public acceptance than chemical degradation. Baseline data on contaminant distribution, environmental parameters, and indigenous microbes are required before bioremediation can commence. The culture and isolate of suitable microbes and enzymes should be followed by laboratory trials, before field application and long-term monitoring of contaminant concentration, soil parameters, microbial ecology, and public health to monitor environmental and public health. As local people are not aware of the persistence of warfare chemicals and do not understand the potential impacts on human health, community awareness programs are required. Active community participation, and collaboration with international and local agencies, would contribute to the success of bioremediation and the effective removal of chemical agents in war affected areas of Sri Lanka.Keywords: bioremediation, environmental protection, human health, war affected regions in Sri Lanka
Procedia PDF Downloads 38225887 Water Management of Polish Agriculture and Adaptation to Climate Change
Authors: Dorota M. Michalak
Abstract:
The agricultural sector, due to the growing demand for food and over-exploitation of the natural environment, contributes to the deepening of climate change, on the one hand, and on the other hand, shrinking freshwater resources, as a negative effect of climate change, threaten the food security of each country. Therefore, adaptation measures to climate change should take into account effective water management and seek solutions ensuring food production at an unchanged or higher level, while not burdening the environment and not contributing to the worsening of the negative consequences of climate change. The problems of Poland's water management result not only from relatively small, natural water resources but to a large extent on the low efficiency of their use. Appropriate agricultural practices and state solutions in this field can contribute to achieving significant benefits in terms of economical water management in agriculture, providing a greater amount of water that could also be used for other purposes, including for purposes related to environmental protection. The aim of the article is to determine the level of use of water resources in Polish agriculture and the advancement of measures aimed at adapting Polish agriculture in the field of water management to climate change. The study provides knowledge about Polish legal regulations and water management tools, the shaping of water policy of Polish agriculture against the background of EU countries and other sources of energy, and measures supporting Polish agricultural holdings in the effective management of water resources run by state budget institutions. In order to achieve the above-mentioned goals, the author used research tools such as the analysis of existing sources and a survey conducted among five groups of entities, i.e. agricultural advisory centers and departments, agricultural, rural and environmental protection departments, regional water management boards, provincial agricultural chambers and restructuring and modernization of agriculture. The main conclusion of the analyses carried out is the low use of water in Polish agriculture in relation to other EU countries, other sources of intake in Poland, as well as irrigation. The analysis allows us to observe another problem, which is the lack of reporting and data collection, which is extremely important from the point of view of the effectiveness of adaptation measures to climate change. The results obtained from the survey indicate a very low level of support for government institutions in the implementation of adaptation measures to climate change and the water management of Polish farms. Some of the basic problems of the adaptation policy to change climate with regard to water management in Polish agriculture include a lack of knowledge regarding climate change, the possibilities of adapting, the available tools or ways to rationalize the use of water resources. It also refers to the lack of ordering procedures and the separation of responsibility with a proper territorial unit, non-functioning channels of information flow and practically low effects.Keywords: water management, adaptation policy, agriculture, climate change
Procedia PDF Downloads 14125886 Data Access, AI Intensity, and Scale Advantages
Authors: Chuping Lo
Abstract:
This paper presents a simple model demonstrating that ceteris paribus countries with lower barriers to accessing global data tend to earn higher incomes than other countries. Therefore, large countries that inherently have greater data resources tend to have higher incomes than smaller countries, such that the former may be more hesitant than the latter to liberalize cross-border data flows to maintain this advantage. Furthermore, countries with higher artificial intelligence (AI) intensity in production technologies tend to benefit more from economies of scale in data aggregation, leading to higher income and more trade as they are better able to utilize global data.Keywords: digital intensity, digital divide, international trade, scale of economics
Procedia PDF Downloads 6625885 Adolescent-Parent Relationship as the Most Important Factor in Preventing Mood Disorders in Adolescents: An Application of Artificial Intelligence to Social Studies
Authors: Elżbieta Turska
Abstract:
Introduction: One of the most difficult times in a person’s life is adolescence. The experiences in this period may shape the future life of this person to a large extent. This is the reason why many young people experience sadness, dejection, hopelessness, sense of worthlessness, as well as losing interest in various activities and social relationships, all of which are often classified as mood disorders. As many as 15-40% adolescents experience depressed moods and for most of them they resolve and are not carried into adulthood. However, (5-6%) of those affected by mood disorders develop the depressive syndrome and as many as (1-3%) develop full-blown clinical depression. Materials: A large questionnaire was given to 2508 students, aged 13–16 years old, and one of its parts was the Burns checklist, i.e. the standard test for identifying depressed mood. The questionnaire asked about many aspects of the student’s life, it included a total of 53 questions, most of which had subquestions. It is important to note that the data suffered from many problems, the most important of which were missing data and collinearity. Aim: In order to identify the correlates of mood disorders we built predictive models which were then trained and validated. Our aim was not to be able to predict which students suffer from mood disorders but rather to explore the factors influencing mood disorders. Methods: The problems with data described above practically excluded using all classical statistical methods. For this reason, we attempted to use the following Artificial Intelligence (AI) methods: classification trees with surrogate variables, random forests and xgboost. All analyses were carried out with the use of the mlr package for the R programming language. Resuts: The predictive model built by classification trees algorithm outperformed the other algorithms by a large margin. As a result, we were able to rank the variables (questions and subquestions from the questionnaire) from the most to least influential as far as protection against mood disorder is concerned. Thirteen out of twenty most important variables reflect the relationships with parents. This seems to be a really significant result both from the cognitive point of view and also from the practical point of view, i.e. as far as interventions to correct mood disorders are concerned.Keywords: mood disorders, adolescents, family, artificial intelligence
Procedia PDF Downloads 10025884 Secured Transmission and Reserving Space in Images Before Encryption to Embed Data
Authors: G. R. Navaneesh, E. Nagarajan, C. H. Rajam Raju
Abstract:
Nowadays the multimedia data are used to store some secure information. All previous methods allocate a space in image for data embedding purpose after encryption. In this paper, we propose a novel method by reserving space in image with a boundary surrounded before encryption with a traditional RDH algorithm, which makes it easy for the data hider to reversibly embed data in the encrypted images. The proposed method can achieve real time performance, that is, data extraction and image recovery are free of any error. A secure transmission process is also discussed in this paper, which improves the efficiency by ten times compared to other processes as discussed.Keywords: secure communication, reserving room before encryption, least significant bits, image encryption, reversible data hiding
Procedia PDF Downloads 41025883 Identity Verification Using k-NN Classifiers and Autistic Genetic Data
Authors: Fuad M. Alkoot
Abstract:
DNA data have been used in forensics for decades. However, current research looks at using the DNA as a biometric identity verification modality. The goal is to improve the speed of identification. We aim at using gene data that was initially used for autism detection to find if and how accurate is this data for identification applications. Mainly our goal is to find if our data preprocessing technique yields data useful as a biometric identification tool. We experiment with using the nearest neighbor classifier to identify subjects. Results show that optimal classification rate is achieved when the test set is corrupted by normally distributed noise with zero mean and standard deviation of 1. The classification rate is close to optimal at higher noise standard deviation reaching 3. This shows that the data can be used for identity verification with high accuracy using a simple classifier such as the k-nearest neighbor (k-NN).Keywords: biometrics, genetic data, identity verification, k nearest neighbor
Procedia PDF Downloads 25325882 Comparison of Clinical Profiles of Patients Seen in a Women and Children Protection Unit in a Local Government Hospital in Makati, Philippines Before and During the COVID-19 Pandemic Between January 2018 to February 2020 and March 2020 to December 2021
Authors: Margaret Denise P. Del Rosario, Geraldine Alcantara
Abstract:
Background: The declaration of the COVID-19 pandemic has impacted hospital visits of child abuse cases with less consults but more severe injuries. Objective: The study aims to identify the clinical profiles of patients seen in the hospital ng Makati Women and Children Protection Unit before and during the pandemic. Design: A cross-sectional analytic study design through review of records that underwent quantitative analysis. Results: 264 cases pre-pandemic and 208 cases during the pandemic were reviewed. Most reported cases were neglect comprising of 47% of the pre-pandemic cases and 68% of cases during the pandemic. Supervisory neglect was most commonly reported. An equal distribution between males and females were seen among victims and alleged perpetrators. The age group of both victims and alleged perpetrators during the pandemic was significantly younger compared to the pre-pandemic period. Children belonging to larger family groups were commonly encountered with most of them being the eldest amongst siblings. Alleged perpetrators were mostly secondary graduates for both time periods. A significant increase of cases during the pandemic occurred at home. More patients required hospitalization during the pandemic period with 37% compared to the 23% of admissions prior to the pandemic. Furthermore, a three-fold increase of injuries sustained during the pandemic required intensive care. Conclusion: The study reflects increased severity of injuries related to abuse during the pandemic compared to pre-pandemic times. A significant increase in injuries requiring intensive care were also seen despite less reported cases.Keywords: child abuse, COVID-19, violence against children, WCPU, neglect
Procedia PDF Downloads 5225881 A Review on Intelligent Systems for Geoscience
Authors: R Palson Kennedy, P.Kiran Sai
Abstract:
This article introduces machine learning (ML) researchers to the hurdles that geoscience problems present, as well as the opportunities for improvement in both ML and geosciences. This article presents a review from the data life cycle perspective to meet that need. Numerous facets of geosciences present unique difficulties for the study of intelligent systems. Geosciences data is notoriously difficult to analyze since it is frequently unpredictable, intermittent, sparse, multi-resolution, and multi-scale. The first half addresses data science’s essential concepts and theoretical underpinnings, while the second section contains key themes and sharing experiences from current publications focused on each stage of the data life cycle. Finally, themes such as open science, smart data, and team science are considered.Keywords: Data science, intelligent system, machine learning, big data, data life cycle, recent development, geo science
Procedia PDF Downloads 13325880 Tourist’s Perception and Identification of Landscape Elements of Traditional Village
Authors: Mengxin Feng, Feng Xu, Zhiyong Lai
Abstract:
As a typical representative of the countryside, traditional Chinese villages are rich in cultural landscape resources and historical information, but they are still in continuous decline. The problems of people's weak protection awareness and low cultural recognition are still serious, and the protection of cultural heritage is imminent. At the same time, with the rapid development of rural tourism, its cultural value has been explored and paid attention to again. From the perspective of tourists, this study aimed to explore people's perception and identity of cultural landscape resources under the current cultural tourism development background. We selected eleven typical landscape elements of Lingshui Village, a traditional village in Beijing, as research objects and conducted a questionnaire survey with two scales of perception and identity to explore the characteristics of people's perception and identification of landscape elements. We found that there was a strong positive correlation between the perception and identity of each element and that geographical location influenced visitors' overall perception. The perception dimensions scored the highest in location, and the lowest in history and culture, and the identity dimensions scored the highest in meaning and lowest in emotion. We analyzed the impact of visitors' backgrounds on people's perception and identity characteristics and found that age and education were two important factors. The elderly had a higher degree of perceived identity, as the familiarity effect increased their attention. Highly educated tourists had more stringent criteria for perception and identification. The above findings suggest strategies for conserving and optimizing landscape elements in the traditional village to improve the acceptance and recognition of cultural information in traditional villages, which will inject new vitality into the development of traditional villages.Keywords: traditional village, tourist perception, landscape elements, perception and identity
Procedia PDF Downloads 14525879 Laboratory Simulation of Subway Dynamic Stray Current Interference with Cathodically Protected Structures
Authors: Mohammad Derakhshani, Saeed Reza Allahkaram, Michael Isakani-Zakaria, Masoud Samadian, Hojat Sharifi Rasaey
Abstract:
Dynamic stray currents tend to change their magnitude and polarity with time at their source which will create anodic and cathodic spots on a nearby interfered structure. To date, one of the biggest known dynamic stray current sources are DC traction systems. Laboratory simulation is a suitable method to apply theoretical principles in order to identify effective parameters in dynamic stray current influenced corrosion. Simulation techniques can be utilized for various mitigation methods applied in a small scales for selection of the most efficient method with regards to field applications. In this research, laboratory simulation of potential fluctuations caused by dynamic stray current on a cathodically protected structure was investigated. A lab model capable of generating DC static and dynamic stray currents and simulating its effects on cathodically protected samples were developed based on stray current induced (contact-less) polarization technique. Stray current pick-up and discharge spots on an influenced structure were simulated by inducing fluctuations in the sample’s stationary potential. Two mitigation methods for dynamic stray current interference on buried structures namely application of sacrificial anodes as preferred discharge point for the stray current and potentially controlled cathodic protection was investigated. Results showed that the application of sacrificial anodes can be effective in reducing interference only in discharge spot. But cathodic protection through potential controlling is more suitable for mitigating dynamic stray current effects.Keywords: simulation, dynamic stray current, fluctuating potentials, sacrificial anode
Procedia PDF Downloads 30025878 Regulation Aspects for a Radioisotope Production Installation in Brazil
Authors: Rian O. Miranda, Lidia V. de Sa, Julio C. Suita
Abstract:
The Brazilian Nuclear Energy Commission (CNEN) is the main manufacturer of radiopharmaceuticals in Brazil. The Nuclear Engineering Institute (IEN), located at Rio de Janeiro, is one of its main centers of research and production, attending public and private hospitals in the state. This radiopharmaceutical production is used in diagnostic and therapy procedures and allows one and a half million nuclear medicine procedures annually. Despite this, the country is not self-sufficient to meet national demand, creating the need for importation and consequent dependence on other countries. However, IEN facilities were designed in the 60's, and today its structure is inadequate in relation to the good manufacturing practices established by sanitary regulator (ANVISA) and radiological protection leading to the need for a new project. In order to adapt and increase production in the country, a new plant will be built and integrated to the existing facilities with a new 30 MeV Cyclotron that is actually in project detailing process. Thus, it is proposed to survey current CNEN and ANVISA standards for radiopharmaceutical production facilities, as well as the radiological protection analysis of each area of the plant, following good manufacturing practices recommendations adopted nationally besides licensing exigencies for radioactive facilities. In this way, the main requirements for proper operation, equipment location, building materials, area classification, and maintenance program have been implemented. The access controls, interlocks, segregation zones and pass-through boxes integrated into the project were also analyzed. As a result, IEN will in future have the flexibility to produce all necessary radioisotopes for nuclear medicine application, more efficiently by simultaneously bombarding two targets, allowing the simultaneous production of two different radioisotopes, minimizing radiation exposure and saving operating costs.Keywords: cyclotron, legislation, norms, production, radiopharmaceuticals
Procedia PDF Downloads 13525877 Estimation of Morbidity Level of Industrial Labour Conditions at Zestafoni Ferroalloy Plant
Authors: M. Turmanauli, T. Todua, O. Gvaberidze, R. Javakhadze, N. Chkhaidze, N. Khatiashvili
Abstract:
Background: Mining process has the significant influence on human health and quality of life. In recent years the events in Georgia were reflected on the industry working process, especially minimal requirements of labor safety, hygiene standards of workplace and the regime of work and rest are not observed. This situation is often caused by the lack of responsibility, awareness, and knowledge both of workers and employers. The control of working conditions and its protection has been worsened in many of industries. Materials and Methods: For evaluation of the current situation the prospective epidemiological study by face to face interview method was conducted at Georgian “Manganese Zestafoni Ferroalloy Plant” in 2011-2013. 65.7% of employees (1428 bulletin) were surveyed and the incidence rates of temporary disability days were studied. Results: The average length of a temporary disability single accident was studied taking into consideration as sex groups as well as the whole cohort. According to the classes of harmfulness the following results were received: Class 2.0-10.3%; 3.1-12.4%; 3.2-35.1%; 3.3-12.1%; 3.4-17.6%; 4.0-12.5%. Among the employees 47.5% and 83.1% were tobacco and alcohol consumers respectively. According to the age groups and years of work on the base of previous experience ≥50 ages and ≥21 years of work data prevalence respectively. The obtained data revealed increased morbidity rate according to age and years of work. It was found that the bone and articulate system and connective tissue diseases, aggravation of chronic respiratory diseases, ischemic heart diseases, hypertension and cerebral blood discirculation were the leading among the other diseases. High prevalence of morbidity observed in the workplace with not satisfactory labor conditions from the hygienic point of view. Conclusion: According to received data the causes of morbidity are the followings: unsafety labor conditions; incomplete of preventive medical examinations (preliminary and periodic); lack of access to appropriate health care services; derangement of gathering, recording, and analysis of morbidity data. This epidemiological study was conducted at the JSC “Manganese Ferro Alloy Plant” according to State program “ Prevention of Occupational Diseases” (Program code is 35 03 02 05).Keywords: occupational health, mining process, morbidity level, cerebral blood discirculation
Procedia PDF Downloads 42725876 Data Quality as a Pillar of Data-Driven Organizations: Exploring the Benefits of Data Mesh
Authors: Marc Bachelet, Abhijit Kumar Chatterjee, José Manuel Avila
Abstract:
Data quality is a key component of any data-driven organization. Without data quality, organizations cannot effectively make data-driven decisions, which often leads to poor business performance. Therefore, it is important for an organization to ensure that the data they use is of high quality. This is where the concept of data mesh comes in. Data mesh is an organizational and architectural decentralized approach to data management that can help organizations improve the quality of data. The concept of data mesh was first introduced in 2020. Its purpose is to decentralize data ownership, making it easier for domain experts to manage the data. This can help organizations improve data quality by reducing the reliance on centralized data teams and allowing domain experts to take charge of their data. This paper intends to discuss how a set of elements, including data mesh, are tools capable of increasing data quality. One of the key benefits of data mesh is improved metadata management. In a traditional data architecture, metadata management is typically centralized, which can lead to data silos and poor data quality. With data mesh, metadata is managed in a decentralized manner, ensuring accurate and up-to-date metadata, thereby improving data quality. Another benefit of data mesh is the clarification of roles and responsibilities. In a traditional data architecture, data teams are responsible for managing all aspects of data, which can lead to confusion and ambiguity in responsibilities. With data mesh, domain experts are responsible for managing their own data, which can help provide clarity in roles and responsibilities and improve data quality. Additionally, data mesh can also contribute to a new form of organization that is more agile and adaptable. By decentralizing data ownership, organizations can respond more quickly to changes in their business environment, which in turn can help improve overall performance by allowing better insights into business as an effect of better reports and visualization tools. Monitoring and analytics are also important aspects of data quality. With data mesh, monitoring, and analytics are decentralized, allowing domain experts to monitor and analyze their own data. This will help in identifying and addressing data quality problems in quick time, leading to improved data quality. Data culture is another major aspect of data quality. With data mesh, domain experts are encouraged to take ownership of their data, which can help create a data-driven culture within the organization. This can lead to improved data quality and better business outcomes. Finally, the paper explores the contribution of AI in the coming years. AI can help enhance data quality by automating many data-related tasks, like data cleaning and data validation. By integrating AI into data mesh, organizations can further enhance the quality of their data. The concepts mentioned above are illustrated by AEKIDEN experience feedback. AEKIDEN is an international data-driven consultancy that has successfully implemented a data mesh approach. By sharing their experience, AEKIDEN can help other organizations understand the benefits and challenges of implementing data mesh and improving data quality.Keywords: data culture, data-driven organization, data mesh, data quality for business success
Procedia PDF Downloads 133