Search results for: data driven decision making
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 30475

Search results for: data driven decision making

29515 Pre-Service Teachers’ Reasoning and Sense Making of Variables

Authors: Olteanu Constanta, Olteanu Lucian

Abstract:

Researchers note that algebraic reasoning and sense making is essential for building conceptual knowledge in school mathematics. Consequently, pre-service teachers’ own reasoning and sense making are useful in fostering and developing students’ algebraic reasoning and sense making. This article explores the forms of reasoning and sense making that pre-service mathematics teachers exhibit and use in the process of analysing problem-posing tasks with a focus on first-degree equations. Our research question concerns the characteristics of the problem-posing tasks used for reasoning and sense making of first-degree equations as well as the characteristics of pre-service teachers’ reasoning and sense making in problem-posing tasks. The analyses are grounded in a post-structuralist philosophical perspective and variation theory. Sixty-six pre-service primary teachers participated in the study. The results show that the characteristics of reasoning in problem-posing tasks and of pre-service teachers are selecting, exploring, reconfiguring, encoding, abstracting and connecting. The characteristics of sense making in problem-posing tasks and of pre-service teachers are recognition, relationships, profiling, comparing, laddering and verifying. Beside this, the connection between reasoning and sense making is rich in line of flight in problem-posing tasks, while the connection is rich in line of rupture for pre-service teachers.

Keywords: first-degree equations, problem posing, reasoning, rhizomatic assemblage, sense-making, variation theory

Procedia PDF Downloads 116
29514 Material Handling Equipment Selection Using Fuzzy AHP Approach

Authors: Priyanka Verma, Vijaya Dixit, Rishabh Bajpai

Abstract:

This research paper is aimed at selecting appropriate material handling equipment among the given choices so that the automation level in material handling can be enhanced. This work is a practical case scenario of material handling systems in consumer electronic appliances manufacturing organization. The choices of material handling equipment among which the decision has to be made are Automated Guided Vehicle’s (AGV), Autonomous Mobile Robots (AMR), Overhead Conveyer’s (OC) and Battery Operated Trucks/Vehicle’s (BOT). There is a need of attaining a certain level of automation in order to reduce human interventions in the organization. This requirement of achieving certain degree of automation can be attained by material handling equipment’s mentioned above. The main motive for selecting above equipment’s for study was solely based on corporate financial strategy of investment and return obtained through that investment made in stipulated time framework. Since the low cost automation with respect to material handling devices has to be achieved hence these equipment’s were selected. Investment to be done on each unit of this equipment is less than 20 lakh rupees (INR) and the recovery period is less than that of five years. Fuzzy analytic hierarchic process (FAHP) is applied here for selecting equipment where the four choices are evaluated on basis of four major criteria’s and 13 sub criteria’s, and are prioritized on the basis of weight obtained. The FAHP used here make use of triangular fuzzy numbers (TFN). The inability of the traditional AHP in order to deal with the subjectiveness and impreciseness in the pair-wise comparison process has been improved in the FAHP. The range of values for general rating purposes for all decision making parameters is kept between 0 and 1 on the basis of expert opinions captured on shop floor. These experts were familiar with operating environment and shop floor activity control. Instead of generating exact value the FAHP generates the ranges of values to accommodate the uncertainty in decision-making process. The four major criteria’s selected for the evaluation of choices of material handling equipment’s available are materials, technical capabilities, cost and other features. The thirteen sub criteria’s listed under these following four major criteria’s are weighing capacity, load per hour, material compatibility, capital cost, operating cost and maintenance cost, speed, distance moved, space required, frequency of trips, control required, safety and reliability issues. The key finding shows that among the four major criteria selected, cost is emerged as the most important criteria and is one of the key decision making aspect on the basis of which material equipment selection is based on. While further evaluating the choices of equipment available for each sub criteria it is found that AGV scores the highest weight in most of the sub-criteria’s. On carrying out complete analysis the research shows that AGV is the best material handling equipment suiting all decision criteria’s selected in FAHP and therefore it is beneficial for the organization to carry out automated material handling in the facility using AGV’s.

Keywords: fuzzy analytic hierarchy process (FAHP), material handling equipment, subjectiveness, triangular fuzzy number (TFN)

Procedia PDF Downloads 434
29513 Low-Voltage and Low-Power Bulk-Driven Continuous-Time Current-Mode Differentiator Filters

Authors: Ravi Kiran Jaladi, Ezz I. El-Masry

Abstract:

Emerging technologies such as ultra-wide band wireless access technology that operate at ultra-low power present several challenges due to their inherent design that limits the use of voltage-mode filters. Therefore, Continuous-time current-mode (CTCM) filters have become very popular in recent times due to the fact they have a wider dynamic range, improved linearity, and extended bandwidth compared to their voltage-mode counterparts. The goal of this research is to develop analog filters which are suitable for the current scaling CMOS technologies. Bulk-driven MOSFET is one of the most popular low power design technique for the existing challenges, while other techniques have obvious shortcomings. In this work, a CTCM Gate-driven (GD) differentiator has been presented with a frequency range from dc to 100MHz which operates at very low supply voltage of 0.7 volts. A novel CTCM Bulk-driven (BD) differentiator has been designed for the first time which reduces the power consumption multiple times that of GD differentiator. These GD and BD differentiator has been simulated using CADENCE TSMC 65nm technology for all the bilinear and biquadratic band-pass frequency responses. These basic building blocks can be used to implement the higher order filters. A 6th order cascade CTCM Chebyshev band-pass filter has been designed using the GD and BD techniques. As a conclusion, a low power GD and BD 6th order chebyshev stagger-tuned band-pass filter was simulated and all the parameters obtained from all the resulting realizations are analyzed and compared. Monte Carlo analysis is performed for both the 6th order filters and the results of sensitivity analysis are presented.

Keywords: bulk-driven (BD), continuous-time current-mode filters (CTCM), gate-driven (GD)

Procedia PDF Downloads 262
29512 Evaluation of a Hybrid Knowledge-Based System Using Fuzzy Approach

Authors: Kamalendu Pal

Abstract:

This paper describes the main features of a knowledge-based system evaluation method. System evaluation is placed in the context of a hybrid legal decision-support system, Advisory Support for Home Settlement in Divorce (ASHSD). Legal knowledge for ASHSD is represented in two forms, as rules and previously decided cases. Besides distinguishing the two different forms of knowledge representation, the paper outlines the actual use of these forms in a computational framework that is designed to generate a plausible solution for a given case, by using rule-based reasoning (RBR) and case-based reasoning (CBR) in an integrated environment. The nature of suitability assessment of a solution has been considered as a multiple criteria decision making process in ASHAD evaluation. The evaluation was performed by a combination of discussions and questionnaires with different user groups. The answers to questionnaires used in this evaluations method have been measured as a combination of linguistic variables, fuzzy numbers, and by using defuzzification process. The results show that the designed evaluation method creates suitable mechanism in order to improve the performance of the knowledge-based system.

Keywords: case-based reasoning, fuzzy number, legal decision-support system, linguistic variable, rule-based reasoning, system evaluation

Procedia PDF Downloads 367
29511 Systematic Examination of Methods Supporting the Social Innovation Process

Authors: Mariann Veresne Somosi, Zoltan Nagy, Krisztina Varga

Abstract:

Innovation is the key element of economic development and a key factor in social processes. Technical innovations can be identified as prerequisites and causes of social change and cannot be created without the renewal of society. The study of social innovation can be characterised as one of the significant research areas of our day. The study’s aim is to identify the process of social innovation, which can be defined by input, transformation, and output factors. This approach divides the social innovation process into three parts: situation analysis, implementation, follow-up. The methods associated with each stage of the process are illustrated by the chronological line of social innovation. In this study, we have sought to present methodologies that support long- and short-term decision-making that is easy to apply, have different complementary content, and are well visualised for different user groups. When applying the methods, the reference objects are different: county, district, settlement, specific organisation. The solution proposed by the study supports the development of a methodological combination adapted to different situations. Having reviewed metric and conceptualisation issues, we wanted to develop a methodological combination along with a change management logic suitable for structured support to the generation of social innovation in the case of a locality or a specific organisation. In addition to a theoretical summary, in the second part of the study, we want to give a non-exhaustive picture of the two counties located in the north-eastern part of Hungary through specific analyses and case descriptions.

Keywords: factors of social innovation, methodological combination, social innovation process, supporting decision-making

Procedia PDF Downloads 156
29510 Delayed Contralateral Prophylactic Mastectomy (CPM): Reasons and Rationale for Patients with Unilateral Breast Cancer

Authors: C. Soh, S. Muktar, C. M. Malata, J. R. Benson

Abstract:

Introduction Reasons for requesting CPM include prevention of recurrence, peace of mind and moving on after breast cancer. Some women seek CPM as a delayed procedure but factors influencing this are poorly understood. Methods A retrospective analysis examined patients undergoing CPM as either an immediate or delayed procedure with or without breast reconstruction (BR) between January 2009 and December 2019. A cross-sectional survey based on validated questionnaires (5 point Likert scale) explored patients’ decision-making process in terms of timing of CPM and any BR. Results A total of 123 patients with unilateral breast cancer underwent CPM with 39 (32.5%) delayed procedures with or without BR. The response rate amongst patients receiving questionnaires (n=33) was 22/33 (66%). Within this delayed CPM cohort were three reconstructive scenarios 1) unilateral immediate BR with CPM (n=12); 2) delayed CPM with concomitant bilateral BR (n=22); 3) delayed bilateral BR after delayed CPM (n=3). Two patients had delayed CPM without BR. The most common reason for delayed CPM was to complete all cancer treatments (including radiotherapy) before surgery on the unaffected breast (score 2.91). The second reason was unavailability of genetic test results at the time of therapeutic mastectomy (score 2.64) whilst the third most cited reason was a subsequent change in family cancer history. Conclusion Factors for delayed CPM are patient-driven with few women spontaneously changing their mind having initially decided against immediate CPM for reasons also including surgical duration. CPM should be offered as a potentially delayed option with informed discussion of risks and benefits.

Keywords: Breast Cancer, CPM, Prophylactic, Rationale

Procedia PDF Downloads 113
29509 Efficient Design of Distribution Logistics by Using a Model-Based Decision Support System

Authors: J. Becker, R. Arnold

Abstract:

The design of distribution logistics has a decisive impact on a company's logistics costs and performance. Hence, such solutions make an essential contribution to corporate success. This article describes a decision support system for analyzing the potential of distribution logistics in terms of logistics costs and performance. In contrast to previous procedures of business process re-engineering (BPR), this method maps distribution logistics holistically under variable distribution structures. Combined with qualitative measures the decision support system will contribute to a more efficient design of distribution logistics.

Keywords: decision support system, distribution logistics, potential analyses, supply chain management

Procedia PDF Downloads 410
29508 A Stochastic Volatility Model for Optimal Market-Making

Authors: Zubier Arfan, Paul Johnson

Abstract:

The electronification of financial markets and the rise of algorithmic trading has sparked a lot of interest from the mathematical community, for the market making-problem in particular. The research presented in this short paper solves the classic stochastic control problem in order to derive the strategy for a market-maker. It also shows how to calibrate and simulate the strategy with real limit order book data for back-testing. The ambiguity of limit-order priority in back-testing is dealt with by considering optimistic and pessimistic priority scenarios. The model, although it does outperform a naive strategy, assumes constant volatility, therefore, is not best suited to the LOB data. The Heston model is introduced to describe the price and variance process of the asset. The Trader's constant absolute risk aversion utility function is optimised by numerically solving a 3-dimensional Hamilton-Jacobi-Bellman partial differential equation to find the optimal limit order quotes. The results show that the stochastic volatility market-making model is more suitable for a risk-averse trader and is also less sensitive to calibration error than the constant volatility model.

Keywords: market-making, market-microsctrucure, stochastic volatility, quantitative trading

Procedia PDF Downloads 152
29507 A Decision Support System for Flight Disruptions Management

Authors: Burak Erkayman, Emin Gundogar, Hayrettin Evirgen, Murat Sarı

Abstract:

With the increasing competition in recent years, airline companies tend to manage their operations aiming fewer losses in a robust manner. Airline operations are complex operations and have the necessity of being performed just in time and more knock-on relevant elements in the event of a disruption. In this study a knowledge based decision support system is suggested and software is developed. The developed software includes knowledge bases which are based on expert experience and government regulations, model bases and data bases. The results of the suggested approach are presented and improvable aspects of the approach are discussed.

Keywords: knowledge based systems, irregular operations, decision support systems, flight disruptions management

Procedia PDF Downloads 315
29506 Hybrid Anomaly Detection Using Decision Tree and Support Vector Machine

Authors: Elham Serkani, Hossein Gharaee Garakani, Naser Mohammadzadeh, Elaheh Vaezpour

Abstract:

Intrusion detection systems (IDS) are the main components of network security. These systems analyze the network events for intrusion detection. The design of an IDS is through the training of normal traffic data or attack. The methods of machine learning are the best ways to design IDSs. In the method presented in this article, the pruning algorithm of C5.0 decision tree is being used to reduce the features of traffic data used and training IDS by the least square vector algorithm (LS-SVM). Then, the remaining features are arranged according to the predictor importance criterion. The least important features are eliminated in the order. The remaining features of this stage, which have created the highest level of accuracy in LS-SVM, are selected as the final features. The features obtained, compared to other similar articles which have examined the selected features in the least squared support vector machine model, are better in the accuracy, true positive rate, and false positive. The results are tested by the UNSW-NB15 dataset.

Keywords: decision tree, feature selection, intrusion detection system, support vector machine

Procedia PDF Downloads 266
29505 The Importance of Intellectual Property for Universities of Technology in South Africa: Challenges Faced and Proposed Way Forward

Authors: Martha E. Ikome, John M. Ikome

Abstract:

Intellectual property should be a day-to-day business decision due to its value, but increasingly, a number of institution are still not aware of the importance. Intellectual Property (IP) and its value are often not adequately appreciated. In the increasingly knowledge-driven economy, IP is a key consideration in day-to-day business decisions because new ideas and products appear almost daily in the market, which results in continuous innovation and research. Therefore, this paper will focus on the importance of IP for universities of technology and also further demonstrates how IP can become an economic tool and the challenges faced by these universities in implementing an IP system.

Keywords: intellectual property, institutions, challenges, protection

Procedia PDF Downloads 376
29504 Investigating the Chemical Structure of Drinking Water in Domestic Areas of Kuwait by Appling GIS Technology

Authors: H. Al-Jabli

Abstract:

The research on the presence of heavy metals and bromate in drinking water is of immense scientific significance due to the potential risks these substances pose to public health. These contaminants are subject to regulatory limits outlined by the National Primary Drinking Water Regulations. Through a comprehensive analysis involving the compilation of existing data and the collection of new data via water sampling in residential areas of Kuwait, the aim is to create detailed maps illustrating the spatial distribution of these substances. Furthermore, the investigation will utilize GRAPHER software to explore correlations among different chemical parameters. By implementing rigorous scientific methodologies, the research will provide valuable insights for the Ministry of Electricity and Water and the Ministry of Health. These insights can inform evidence-based decision-making, facilitate the implementation of corrective measures, and support strategic planning for future infrastructure activities.

Keywords: heavy metals, bromate, ozonation, GIS

Procedia PDF Downloads 88
29503 Performance Comparison of ADTree and Naive Bayes Algorithms for Spam Filtering

Authors: Thanh Nguyen, Andrei Doncescu, Pierre Siegel

Abstract:

Classification is an important data mining technique and could be used as data filtering in artificial intelligence. The broad application of classification for all kind of data leads to be used in nearly every field of our modern life. Classification helps us to put together different items according to the feature items decided as interesting and useful. In this paper, we compare two classification methods Naïve Bayes and ADTree use to detect spam e-mail. This choice is motivated by the fact that Naive Bayes algorithm is based on probability calculus while ADTree algorithm is based on decision tree. The parameter settings of the above classifiers use the maximization of true positive rate and minimization of false positive rate. The experiment results present classification accuracy and cost analysis in view of optimal classifier choice for Spam Detection. It is point out the number of attributes to obtain a tradeoff between number of them and the classification accuracy.

Keywords: classification, data mining, spam filtering, naive bayes, decision tree

Procedia PDF Downloads 413
29502 Statistical Analysis with Prediction Models of User Satisfaction in Software Project Factors

Authors: Katawut Kaewbanjong

Abstract:

We analyzed a volume of data and found significant user satisfaction in software project factors. A statistical significance analysis (logistic regression) and collinearity analysis determined the significance factors from a group of 71 pre-defined factors from 191 software projects in ISBSG Release 12. The eight prediction models used for testing the prediction potential of these factors were Neural network, k-NN, Naïve Bayes, Random forest, Decision tree, Gradient boosted tree, linear regression and logistic regression prediction model. Fifteen pre-defined factors were truly significant in predicting user satisfaction, and they provided 82.71% prediction accuracy when used with a neural network prediction model. These factors were client-server, personnel changes, total defects delivered, project inactive time, industry sector, application type, development type, how methodology was acquired, development techniques, decision making process, intended market, size estimate approach, size estimate method, cost recording method, and effort estimate method. These findings may benefit software development managers considerably.

Keywords: prediction model, statistical analysis, software project, user satisfaction factor

Procedia PDF Downloads 124
29501 Unveiling the Nexus: A Holistic Investigation on the Role of Cultural Beliefs and Family Dynamics in Shaping Maternal Health in Primigravida Women

Authors: Anum Obaid, Bushra Noor, Zoshia Zainab

Abstract:

In South Asian countries, Pakistan faces significant public health challenges regarding maternal and neonatal health (MNH). Despite global efforts to improve maternal, newborn, child, and health (MNCH) outcomes through initiatives like the Millennium Development Goals (MDGs) and Sustainable Development Goals (SDGs), high maternal and neonatal mortality rates persist. In patriarchal societies, cultural norms, family dynamics, and gender roles heavily influence healthcare accessibility and decision-making processes, often leading to delayed and inadequate maternal care. Addressing these socio-cultural barriers and enhancing healthcare resources is crucial to improving maternal health outcomes in areas like Faisalabad. A qualitative study was conducted involving two groups of informants: gynecologists practicing in private clinics and first-time pregnant women receiving care in government hospitals. Data collection included obtaining institutional permission, conducting semi-structured in-depth interviews, and using non-probability sampling techniques. A proactive strategy to overcome maternal health challenges involves using aversion therapy and disseminating knowledge among family members. This approach aims to foster a deep understanding within the family unit regarding the importance of maternal well-being, thereby creating a supportive environment and facilitating informed decision-making related to healthcare access and lifestyle choices. The findings indicate that maternal health is compromised both physiologically and psychologically, with significant implications for the baby's health. Mental well-being is profoundly affected, largely due to familial behavior and entrenched cultural taboos.

Keywords: maternal health, neonatal health, socio-cultural norms, primigravida women, gynecologist, familial conduct, cultural taboos

Procedia PDF Downloads 43
29500 Decision-making in the provision of Accessible Veterinary Care

Authors: Ellen Bryant, Virginia Behmer, Rebecca Garbed, Jeanette O’Quin, Dana Howard

Abstract:

As it currently stands, veterinary care in the United States is not accessible to everyone, and veterinarians regularly face cases of clients who are unable to provide necessary care to their animals regardless of the client’s desire to do so. There is currently limited research into how veterinarians address these issues of access to care. It is apparent that veterinarians regularly utilize funding or offer discounted services to treat cases that otherwise would go without care. With need currently exceeding the amount of funds and services available, veterinarians are tasked with deciding which cases are most deserving of assistance. This mixed methods study distributed a survey to companion animal veterinarians practicing in the United States to identify current trends in how these professionals apply principles of distributive justice in the scope of veterinary medicine. Ethical frameworks identified in human bioethics research into distributive justice were presented, along with demographic questions, to identify relationships between veterinarian priorities and the scope of their practice/respective roles/geographic region. By surveying veterinarians across a wide range of specialties, practice types, and clientele this study was able to assess how priorities and opinions shift based on external factors as well as among the respondents themselves. Participants were asked not only to choose how to distribute aid between different clients and case scenarios, but also asked directly which is the best way to distribute aid when need exceeds the resources available.

Keywords: access to veterinary care, bioethics, decision-making, distributive justice, subsidized care

Procedia PDF Downloads 66
29499 Integrating Evidence Into Health Policy: Navigating Cross-Sector and Interdisciplinary Collaboration

Authors: Tessa Heeren

Abstract:

The following proposal pertains to the complex process of successfully implementing health policies that are based on public health research. A systematic review was conducted by myself and faculty at the Cluj School of Public Health in Romania. The reviewed articles covered a wide range of topics, such as barriers and facilitators to multi-sector collaboration, differences in professional cultures, and systemic obstacles. The reviewed literature identified communication, collaboration, user-friendly dissemination, and documentation of processes in the execution of applied research as important themes for the promotion of evidence in the public health decision-making process. This proposal fits into the Academy Health National Health Policy conference because it identifies and examines differences between the worlds of research and politics. Implications and new insights for federal and/or state health policy: Recommendations made based on the findings of this research include using politically relevant levers to promote research (e.g. campaign donors, lobbies, established parties, etc.), modernizing dissemination practices, and reforms in which the involvement of external stakeholders is facilitated without relying on invitations from individual policy makers. Description of how evidence and/or data was or could be used: The reviewed articles illustrated shortcomings and areas for improvement in policy research processes and collaborative development. In general, the evidence base in the field of integrating research into policy lacks critical details of the actual process of developing evidence based policy. This shortcoming in logistical details creates a barrier for potential replication of collaborative efforts described in studies. Potential impact of the presentation for health policy: The reviewed articles focused on identifying barriers and facilitators that arise in cross sector collaboration, rather than the process and impact of integrating evidence into policy. In addition, the type of evidence used in policy was rarely specified, and widely varying interpretations of the definition of evidence complicated overall conclusions. Background: Using evidence to inform public health decision making processes has been proven effective; however, it is not clear how research is applied in practice. Aims: The objectives of the current study were to assess the extent to which evidence is used in public health decision-making process. Methods: To identify eligible studies, seven bibliographic databases, specifically, PubMed, Scopus, Cochrane Library, Science Direct, Web of Science, ClinicalKey, Health and Safety Science Abstract were screened (search dates: 1990 – September 2015); a general internet search was also conducted. Primary research and systematic reviews about the use of evidence in public health policy in Europe were included. The studies considered for inclusion were assessed by two reviewers, along with extracted data on objective, methods, population, and results. Data were synthetized as a narrative review. Results: Of 2564 articles initially identified, 2525 titles and abstracts were screened. Ultimately, 30 articles fit the research criteria by describing how or why evidence is used/not used in public health policy. The majority of included studies involved interviews and surveys (N=17). Study participants were policy makers, health care professionals, researchers, community members, service users, experts in public health.

Keywords: cross-sector, dissemination, health policy, policy implementation

Procedia PDF Downloads 226
29498 Cascade Screening for Beta-Thalassemia in Pakistan: Relatives’ Experiences of a Decision Support Intervention in Routine Practice

Authors: Shenaz Ahmed, Hussain Jafri, Muhammed Faran, Wajeeha Naseer Ahmed, Yasmin Rashid, Yasmin Ehsan, Shabnam Bashir, Mushtaq Ahmed

Abstract:

Low uptake of cascade screening for βeta-Thalassaemia Major (β-TM) in the ‘Punjab Thalassaemia Prevention Project’ (PTPP) in Pakistan led to the development of a ‘decision support intervention for relatives’ (DeSIRe). This paper presents the experiences of relatives of children with β-TM of the DeSIRe following its use by PTPP field officers in routine clinical practice. Fifty-four semi-structured qualitative interviews were conducted (April to June 2021) with relatives in seven cities in the Punjab province (Lahore, Sheikhupura, Nankana Sahab, Kasur, Gujranwala, Multan, and Faisalabad). Thematic analysis shows that participants were satisfied with the content of the DeSIRe and its delivery by the field officers in a family meeting. They understood the main purpose of the DeSIRe was to improve their knowledge of β-TM and its inheritance, to enable them to make decisions about thalassemia carrier testing, particularly before marriage. While participants raised concerns about the stigma of testing positive, they believed the DeSIRe was an appropriate intervention, which supported relatives to make informed decisions. Our findings show the DeSIRe is appropriate for use by healthcare professionals in routine practice in a low-middle income country and has the potential to facilitate shared decision-making about cascade screening for thalassemia. Further research is needed to prove the efficacy of the DeSIRe.

Keywords: thalassemia, Pakistan, cascade screening, decision support

Procedia PDF Downloads 243
29497 A Multi-Objective Gate Assignment Model Based on Airport Terminal Configuration

Authors: Seyedmirsajad Mokhtarimousavi, Danial Talebi, Hamidreza Asgari

Abstract:

Assigning aircrafts’ activities to appropriate gates is one the most challenging issues in airport authorities’ multiple criteria decision making. The potential financial loss due to imbalances of demand and supply in congested airports, higher occupation rates of gates, and the existing restrictions to expand facilities provide further evidence for the need for an optimal supply allocation. Passengers walking distance, towing movements, extra fuel consumption (as a result of awaiting longer to taxi when taxi conflicts happen at the apron area), etc. are the major traditional components involved in GAP models. In particular, the total cost associated with gate assignment problem highly depends on the airport terminal layout. The study herein presents a well-elaborated literature review on the topic focusing on major concerns, applicable variables and objectives, as well as proposing a three-objective mathematical model for the gate assignment problem. The model has been tested under different concourse layouts in order to check its performance in different scenarios. Results revealed that terminal layout pattern is a significant parameter in airport and that the proposed model is capable of dealing with key constraints and objectives, which supports its practical usability for future decision making tools. Potential solution techniques were also suggested in this study for future works.

Keywords: airport management, terminal layout, gate assignment problem, mathematical modeling

Procedia PDF Downloads 231
29496 Enhancing Higher Education Teaching and Learning Processes: Examining How Lecturer Evaluation Make a Difference

Authors: Daniel Asiamah Ameyaw

Abstract:

This research attempts to investigate how lecturer evaluation makes a difference in enhancing higher education teaching and learning processes. The research questions to guide this research work states first as, “What are the perspectives on the difference made by evaluating academic teachers in order to enhance higher education teaching and learning processes?” and second, “What are the implications of the findings for Policy and Practice?” Data for this research was collected mainly through interviewing and partly documents review. Data analysis was conducted under the framework of grounded theory. The findings showed that for individual lecturer level, lecturer evaluation provides a continuous improvement of teaching strategies, and serves as source of data for research on teaching. At the individual student level, it enhances students learning process; serving as source of information for course selection by students; and by making students feel recognised in the educational process. At the institutional level, it noted that lecturer evaluation is useful in personnel and management decision making; it assures stakeholders of quality teaching and learning by setting up standards for lecturers; and it enables institutions to identify skill requirement and needs as a basis for organising workshops. Lecturer evaluation is useful at national level in terms of guaranteeing the competencies of graduates who then provide the needed manpower requirement of the nation. Besides, it mentioned that resource allocation to higher educational institution is based largely on quality of the programmes being run by the institution. The researcher concluded, that the findings have implications for policy and practice, therefore, higher education managers are expected to ensure that policy is implemented as planned by policy-makers so that the objectives can successfully be achieved.

Keywords: academic quality, higher education, lecturer evaluation, teaching and learning processes

Procedia PDF Downloads 146
29495 Electronic Physical Activity Record (EPAR): Key for Data Driven Physical Activity Healthcare Services

Authors: Rishi Kanth Saripalle

Abstract:

Medical experts highly recommend to include physical activity in everyone’s daily routine irrespective of gender or age as it helps to improve various medical issues or curb potential issues. Simultaneously, experts are also diligently trying to provide various healthcare services (interventions, plans, exercise routines, etc.) for promoting healthy living and increasing physical activity in one’s ever increasing hectic schedules. With the introduction of wearables, individuals are able to keep track, analyze, and visualize their daily physical activities. However, there seems to be no common agreed standard for representing, gathering, aggregating and analyzing an individual’s physical activity data from disparate multiple sources (exercise pans, multiple wearables, etc.). This issue makes it highly impractical to develop any data-driven physical activity applications and healthcare programs. Further, the inability to integrate the physical activity data into an individual’s Electronic Health Record to provide a wholistic image of that individual’s health is still eluding the experts. This article has identified three primary reasons for this potential issue. First, there is no agreed standard, both structure and semantic, for representing and sharing physical activity data across disparate systems. Second, various organizations (e.g., LA fitness, Gold’s Gym, etc.) and research backed interventions and programs still primarily rely on paper or unstructured format (such as text or notes) to keep track of the data generated from physical activities. Finally, most of the wearable devices operate in silos. This article identifies the underlying problem, explores the idea of reusing existing standards, and identifies the essential modules required to move forward.

Keywords: electronic physical activity record, physical activity in EHR EIM, tracking physical activity data, physical activity data standards

Procedia PDF Downloads 284
29494 Development of Researcher Knowledge in Mathematics Education: Towards a Confluence Framework

Authors: Igor Kontorovich, Rina Zazkis

Abstract:

We present a framework of researcher knowledge ‎development in conducting a study in mathematics education. The key ‎components of the framework are: knowledge germane to conducting a ‎particular study, processes of knowledge accumulation, and catalyzing ‎filters that influence a researcher decision making. The components of ‎the framework originated from a confluence between constructs and ‎theories in Mathematics Education, Higher Education and Sociology. ‎Drawing on a self-reflective interview with a leading researcher in ‎mathematics education, professor Michèle Artigue, we illustrate how ‎the framework can be utilized in data analysis. Criteria for framework ‎evaluation are discussed. ‎

Keywords: community of practice, knowledge development, mathematics education research, researcher knowledge

Procedia PDF Downloads 509
29493 How Participatory Climate Information Services Assist Farmers to Uptake Rice Disease Forecasts and Manage Diseases in Advance: Evidence from Coastal Bangladesh

Authors: Moriom Akter Mousumi, Spyridon Paparrizos, Fulco Ludwig

Abstract:

Rice yield reduction due to climate change-induced disease occurrence is becoming a great concern for coastal farmers of Bangladesh. The development of participatory climate information services (CIS) based on farmers’ needs could implicitly facilitate farmers to get disease forecasts and make better decisions to manage diseases. Therefore, this study aimed to investigate how participatory climate information services assist coastal rice farmers to take up rice disease forecasts and better manage rice diseases by improving their informed decision-making. Through participatory approaches, we developed a tailor-made agrometeorological service through the DROP app to forecast rice diseases and manage them in advance. During farmers field schools (FFS) we communicated 7-day disease forecasts during face-to-face weekly meetings using printed paper and, messenger app derived from DROP app. Results show that the majority of the farmers understand disease forecasts through visualization, symbols, and text. The majority of them use disease forecast information directly from the DROP app followed by face-to-face meetings, messenger app, and printed paper. Farmers participation and engagement during capacity building training at FFS also assist them in making more informed decisions and improved management of diseases using both preventive measures and chemical measures throughout the rice cultivation period. We conclude that the development of participatory CIS and the associated capacity-building and training of farmers has increased farmers' understanding and uptake of disease forecasts to better manage of rice diseases. Participatory services such as the DROP app offer great potential as an adaptation option for climate-smart rice production under changing climatic conditions.

Keywords: participatory climate service, disease forecast, disease management, informed decision making, coastal Bangladesg

Procedia PDF Downloads 47
29492 Fast Prediction Unit Partition Decision and Accelerating the Algorithm Using Cudafor Intra and Inter Prediction of HEVC

Authors: Qiang Zhang, Chun Yuan

Abstract:

Since the PU (Prediction Unit) decision process is the most time consuming part of the emerging HEVC (High Efficient Video Coding) standardin intra and inter frame coding, this paper proposes the fast PU decision algorithm and speed up the algorithm using CUDA (Compute Unified Device Architecture). In intra frame coding, the fast PU decision algorithm uses the texture features to skip intra-frame prediction or terminal the intra-frame prediction for smaller PU size. In inter frame coding of HEVC, the fast PU decision algorithm takes use of the similarity of its own two Nx2N size PU's motion vectors and the hierarchical structure of CU (Coding Unit) partition to skip some modes of PU partition, so as to reduce the motion estimation times. The accelerate algorithm using CUDA is based on the fast PU decision algorithm which uses the GPU to make the motion search and the gradient computation could be parallel computed. The proposed algorithm achieves up to 57% time saving compared to the HM 10.0 with little rate-distortion losses (0.043dB drop and 1.82% bitrate increase on average).

Keywords: HEVC, PU decision, inter prediction, intra prediction, CUDA, parallel

Procedia PDF Downloads 399
29491 Determining Inventory Replenishment Policy for Major Component in Assembly-to-Order of Cooling System Manufacturing

Authors: Tippawan Nasawan

Abstract:

The objective of this study is to find the replenishment policy in Assembly-to-Order manufacturing (ATO) which some of the major components have lead-time longer than customer lead-time. The variety of products, independent component demand, and long component lead-time are the difficulty that has resulted in the overstock problem. In addition, the ordering cost is trivial when compared to the cost of material of the major component. A conceptual design of the Decision Supporting System (DSS) has introduced to assist the replenishment policy. Component replenishment by using the variable which calls Available to Promise (ATP) for making the decision is one of the keys. The Poisson distribution is adopted to realize demand patterns in order to calculate Safety Stock (SS) at the specified Customer Service Level (CSL). When distribution cannot identify, nonparametric will be applied instead. The test result after comparing the ending inventory between the new policy and the old policy, the overstock has significantly reduced by 46.9 percent or about 469,891.51 US-Dollars for the cost of the major component (material cost only). Besides, the number of the major component inventory is also reduced by about 41 percent which helps to mitigate the chance of damage and keeping stock.

Keywords: Assembly-to-Order, Decision Supporting System, Component replenishment , Poisson distribution

Procedia PDF Downloads 128
29490 The Role of Food Labeling on Consumers’ Buying Decision: Georgian Case

Authors: Nugzar Todua

Abstract:

The paper studies the role of food labeling in order to promote healthy eating issue in Georgia. The main focus of the research is directed to consumer attitudes regarding food labeling. The methodology of the paper is based on the focus group work, as well as online and face to face surveys. The data analysis has been provided through ANOVA. The study proves that the impact of variables such as the interest, awareness, reliability, assurance and satisfaction of consumers' on buying decision, is statistically important. The study reveals that consumers’ perception regarding to food labeling is positive, but their level of knowledge and ability is rather low. It is urgent to strengthen marketing promotions strategies in the process of implementations of food security policy in Georgia.

Keywords: food labeling, buying decision, Georgian consumers, marketing research

Procedia PDF Downloads 167
29489 Predicting Football Player Performance: Integrating Data Visualization and Machine Learning

Authors: Saahith M. S., Sivakami R.

Abstract:

In the realm of football analytics, particularly focusing on predicting football player performance, the ability to forecast player success accurately is of paramount importance for teams, managers, and fans. This study introduces an elaborate examination of predicting football player performance through the integration of data visualization methods and machine learning algorithms. The research entails the compilation of an extensive dataset comprising player attributes, conducting data preprocessing, feature selection, model selection, and model training to construct predictive models. The analysis within this study will involve delving into feature significance using methodologies like Select Best and Recursive Feature Elimination (RFE) to pinpoint pertinent attributes for predicting player performance. Various machine learning algorithms, including Random Forest, Decision Tree, Linear Regression, Support Vector Regression (SVR), and Artificial Neural Networks (ANN), will be explored to develop predictive models. The evaluation of each model's performance utilizing metrics such as Mean Squared Error (MSE) and R-squared will be executed to gauge their efficacy in predicting player performance. Furthermore, this investigation will encompass a top player analysis to recognize the top-performing players based on the anticipated overall performance scores. Nationality analysis will entail scrutinizing the player distribution based on nationality and investigating potential correlations between nationality and player performance. Positional analysis will concentrate on examining the player distribution across various positions and assessing the average performance of players in each position. Age analysis will evaluate the influence of age on player performance and identify any discernible trends or patterns associated with player age groups. The primary objective is to predict a football player's overall performance accurately based on their individual attributes, leveraging data-driven insights to enrich the comprehension of player success on the field. By amalgamating data visualization and machine learning methodologies, the aim is to furnish valuable tools for teams, managers, and fans to effectively analyze and forecast player performance. This research contributes to the progression of sports analytics by showcasing the potential of machine learning in predicting football player performance and offering actionable insights for diverse stakeholders in the football industry.

Keywords: football analytics, player performance prediction, data visualization, machine learning algorithms, random forest, decision tree, linear regression, support vector regression, artificial neural networks, model evaluation, top player analysis, nationality analysis, positional analysis

Procedia PDF Downloads 39
29488 Temporal Migration and Community Development in Rural Indonesia

Authors: Gunawan Prayitno, Kakuya Matshusima, Kiyoshi Kobayashi

Abstract:

Indonesia’s rural regions are characterized by wide-spread poverty, under-employment, and surplus of low-skilled labor. The aim of this paper is to empirically prove the effect of social ties (strong and weak tie) as social capital construct on households’ migration decision in the case of developing country (Indonesia). The methodology incorporated indicators of observe variables (four demographic attributes data: income, occupation, education, and family members) and indicators of latent variables (ties to neighbors, ties to community and sense of place) provided by responses to survey questions to aid in estimating the model. Using structural equation model that we employed in Mplus program, the result of our study shows that ties to community positively have a significant impact to the decision of respondents (migrate or not). Besides, education as observed variable directly influences the migration decisions. It seems that higher level of education have impact on migration decision. Our current model so far could explain the relation between social capital and migration decision choice.

Keywords: migration, ties to community, ties to neighbors, education

Procedia PDF Downloads 323
29487 Development of Analytical Systems for Nurses in Kenya

Authors: Peris Wanjiku

Abstract:

The objective of this paper is to describe the development and implications of a national nursing workforce analytical system in Kenya. Findings: Creating a national electronic nursing workforce analytical system provides more reliable information on nurses ‘national demographics, migration patterns, and workforce capacity and efficiency. Data analysis is most useful for human resources for health (HRH) planning when workforce capacity data can be linked to worksite staffing requirements. As a result of establishing this database, the Kenya Ministry of Health has improved its capability to assess its nursing workforce and document important workforce trends, such as out-migration. Current data identify the United States as the leading recipient country of Kenyan nurses. The overwhelming majority of Kenyan nurses who decide to out-migrate are amongst Kenya’s most qualified. Conclusions: The Kenya nursing database is a first step toward facilitating evidence-based decision-making in HRH. This database is unique to developing countries in sub-Saharan Africa. Establishing an electronic workforce database requires long-term investment and sustained support by national and global stakeholders.

Keywords: analytical, information, health, migration

Procedia PDF Downloads 99
29486 Information Communication Technology Based Road Traffic Accidents’ Identification, and Related Smart Solution Utilizing Big Data

Authors: Ghulam Haider Haidaree, Nsenda Lukumwena

Abstract:

Today the world of research enjoys abundant data, available in virtually any field, technology, science, and business, politics, etc. This is commonly referred to as big data. This offers a great deal of precision and accuracy, supportive of an in-depth look at any decision-making process. When and if well used, Big Data affords its users with the opportunity to produce substantially well supported and good results. This paper leans extensively on big data to investigate possible smart solutions to urban mobility and related issues, namely road traffic accidents, its casualties, and fatalities based on multiple factors, including age, gender, location occurrences of accidents, etc. Multiple technologies were used in combination to produce an Information Communication Technology (ICT) based solution with embedded technology. Those technologies include principally Geographic Information System (GIS), Orange Data Mining Software, Bayesian Statistics, to name a few. The study uses the Leeds accident 2016 to illustrate the thinking process and extracts thereof a model that can be tested, evaluated, and replicated. The authors optimistically believe that the proposed model will significantly and smartly help to flatten the curve of road traffic accidents in the fast-growing population densities, which increases considerably motor-based mobility.

Keywords: accident factors, geographic information system, information communication technology, mobility

Procedia PDF Downloads 208