Search results for: data analyses
26440 Identifying Model to Predict Deterioration of Water Mains Using Robust Analysis
Authors: Go Bong Choi, Shin Je Lee, Sung Jin Yoo, Gibaek Lee, Jong Min Lee
Abstract:
In South Korea, it is difficult to obtain data for statistical pipe assessment. In this paper, to address these issues, we find that various statistical model presented before is how data mixed with noise and are whether apply in South Korea. Three major type of model is studied and if data is presented in the paper, we add noise to data, which affects how model response changes. Moreover, we generate data from model in paper and analyse effect of noise. From this we can find robustness and applicability in Korea of each model.Keywords: proportional hazard model, survival model, water main deterioration, ecological sciences
Procedia PDF Downloads 74326439 Automated Testing to Detect Instance Data Loss in Android Applications
Authors: Anusha Konduru, Zhiyong Shan, Preethi Santhanam, Vinod Namboodiri, Rajiv Bagai
Abstract:
Mobile applications are increasing in a significant amount, each to address the requirements of many users. However, the quick developments and enhancements are resulting in many underlying defects. Android apps create and handle a large variety of 'instance' data that has to persist across runs, such as the current navigation route, workout results, antivirus settings, or game state. Due to the nature of Android, an app can be paused, sent into the background, or killed at any time. If the instance data is not saved and restored between runs, in addition to data loss, partially-saved or corrupted data can crash the app upon resume or restart. However, it is difficult for the programmer to manually test this issue for all the activities. This results in the issue of data loss that the data entered by the user are not saved when there is any interruption. This issue can degrade user experience because the user needs to reenter the information each time there is an interruption. Automated testing to detect such data loss is important to improve the user experience. This research proposes a tool, DroidDL, a data loss detector for Android, which detects the instance data loss from a given android application. We have tested 395 applications and found 12 applications with the issue of data loss. This approach is proved highly accurate and reliable to find the apps with this defect, which can be used by android developers to avoid such errors.Keywords: Android, automated testing, activity, data loss
Procedia PDF Downloads 23726438 Big Data: Appearance and Disappearance
Authors: James Moir
Abstract:
The mainstay of Big Data is prediction in that it allows practitioners, researchers, and policy analysts to predict trends based upon the analysis of large and varied sources of data. These can range from changing social and political opinions, patterns in crimes, and consumer behaviour. Big Data has therefore shifted the criterion of success in science from causal explanations to predictive modelling and simulation. The 19th-century science sought to capture phenomena and seek to show the appearance of it through causal mechanisms while 20th-century science attempted to save the appearance and relinquish causal explanations. Now 21st-century science in the form of Big Data is concerned with the prediction of appearances and nothing more. However, this pulls social science back in the direction of a more rule- or law-governed reality model of science and away from a consideration of the internal nature of rules in relation to various practices. In effect Big Data offers us no more than a world of surface appearance and in doing so it makes disappear any context-specific conceptual sensitivity.Keywords: big data, appearance, disappearance, surface, epistemology
Procedia PDF Downloads 42126437 From Data Processing to Experimental Design and Back Again: A Parameter Identification Problem Based on FRAP Images
Authors: Stepan Papacek, Jiri Jablonsky, Radek Kana, Ctirad Matonoha, Stefan Kindermann
Abstract:
FRAP (Fluorescence Recovery After Photobleaching) is a widely used measurement technique to determine the mobility of fluorescent molecules within living cells. While the experimental setup and protocol for FRAP experiments are usually fixed, data processing part is still under development. In this paper, we formulate and solve the problem of data selection which enhances the processing of FRAP images. We introduce the concept of the irrelevant data set, i.e., the data which are almost not reducing the confidence interval of the estimated parameters and thus could be neglected. Based on sensitivity analysis, we both solve the problem of the optimal data space selection and we find specific conditions for optimizing an important experimental design factor, e.g., the radius of bleach spot. Finally, a theorem announcing less precision of the integrated data approach compared to the full data case is proven; i.e., we claim that the data set represented by the FRAP recovery curve lead to a larger confidence interval compared to the spatio-temporal (full) data.Keywords: FRAP, inverse problem, parameter identification, sensitivity analysis, optimal experimental design
Procedia PDF Downloads 27826436 Exploring the Feasibility of Utilizing Blockchain in Cloud Computing and AI-Enabled BIM for Enhancing Data Exchange in Construction Supply Chain Management
Authors: Tran Duong Nguyen, Marwan Shagar, Qinghao Zeng, Aras Maqsoodi, Pardis Pishdad, Eunhwa Yang
Abstract:
Construction supply chain management (CSCM) involves the collaboration of many disciplines and actors, which generates vast amounts of data. However, inefficient, fragmented, and non-standardized data storage often hinders this data exchange. The industry has adopted building information modeling (BIM) -a digital representation of a facility's physical and functional characteristics to improve collaboration, enhance transmission security, and provide a common data exchange platform. Still, the volume and complexity of data require tailored information categorization, aligning with stakeholders' preferences and demands. To address this, artificial intelligence (AI) can be integrated to handle this data’s magnitude and complexities. This research aims to develop an integrated and efficient approach for data exchange in CSCM by utilizing AI. The paper covers five main objectives: (1) Investigate existing framework and BIM adoption; (2) Identify challenges in data exchange; (3) Propose an integrated framework; (4) Enhance data transmission security; and (5) Develop data exchange in CSCM. The proposed framework demonstrates how integrating BIM and other technologies, such as cloud computing, blockchain, and AI applications, can significantly improve the efficiency and accuracy of data exchange in CSCM.Keywords: construction supply chain management, BIM, data exchange, artificial intelligence
Procedia PDF Downloads 2626435 Representation Data without Lost Compression Properties in Time Series: A Review
Authors: Nabilah Filzah Mohd Radzuan, Zalinda Othman, Azuraliza Abu Bakar, Abdul Razak Hamdan
Abstract:
Uncertain data is believed to be an important issue in building up a prediction model. The main objective in the time series uncertainty analysis is to formulate uncertain data in order to gain knowledge and fit low dimensional model prior to a prediction task. This paper discusses the performance of a number of techniques in dealing with uncertain data specifically those which solve uncertain data condition by minimizing the loss of compression properties.Keywords: compression properties, uncertainty, uncertain time series, mining technique, weather prediction
Procedia PDF Downloads 42826434 Data Mining As A Tool For Knowledge Management: A Review
Authors: Maram Saleh
Abstract:
Knowledge has become an essential resource in today’s economy and become the most important asset of maintaining competition advantage in organizations. The importance of knowledge has made organizations to manage their knowledge assets and resources through all multiple knowledge management stages such as: Knowledge Creation, knowledge storage, knowledge sharing and knowledge use. Researches on data mining are continues growing over recent years on both business and educational fields. Data mining is one of the most important steps of the knowledge discovery in databases process aiming to extract implicit, unknown but useful knowledge and it is considered as significant subfield in knowledge management. Data miming have the great potential to help organizations to focus on extracting the most important information on their data warehouses. Data mining tools and techniques can predict future trends and behaviors, allowing businesses to make proactive, knowledge-driven decisions. This review paper explores the applications of data mining techniques in supporting knowledge management process as an effective knowledge discovery technique. In this paper, we identify the relationship between data mining and knowledge management, and then focus on introducing some application of date mining techniques in knowledge management for some real life domains.Keywords: Data Mining, Knowledge management, Knowledge discovery, Knowledge creation.
Procedia PDF Downloads 20826433 A PRISMA Systematic Review: Parent Sensitivity in Autism Spectrum Disorder and Its Relationship With Child and Parent Characteristics
Authors: Gabrielle Veloso, Melanie Porter, Kelsie Boulton, Adam Guastella
Abstract:
The aim of the current systematic review was to examine child and parent factors and their associations with parent sensitivity towards children with Autism Spectrum Disorder (ASD). Eight bibliographic databases were used to identify peer-reviewed journal articles examining these associations via quantitative analyses, with parent sensitivity measured via validated and reliable observation coding systems. Thirty-one studies were finalized as having met full criteria for inclusion. The review found agreement across studies that parent sensitivity was positively associated with the child’s initiations and responsiveness toward their parent, with more frequent parent-directed behaviors providing greater opportunity for parents to act and react in sensitive manner. There was also substantial evidence that parent sensitivity predicted later growth in child language ability and child social skills. Other factors such as child attachment, parent insightfulness toward their child, and parent resolution of the diagnosis were also identified across a number of studies as being positively associated with parent sensitivity, however, interpretations of these findings were limited by the absence of covariates identified in the literature as explaining much of the variance in parent sensitivity. With respect to non-significant associations, the literature reliably found that parents showed sensitivity toward their child with ASD, regardless of child age, ASD symptomology, concurrent child social skills, and concurrent child cognitive abilities. The robust associations found in this review and their potential explanations can serve as a jump off point in identifying an understanding protective and risk factors for families of children with ASD. With regard to future directions in research, assessment of the studies’ methodological quality identified points for improvement with respect to the measurement of parent sensitivity, as well as the consideration of several important methodological confounds that may be controlled for in statistical analyses.Keywords: ASD, autism, parenting, parent sensitivity
Procedia PDF Downloads 14626432 Comparative Study of Outcome of Patients with Wilms Tumor Treated with Upfront Chemotherapy and Upfront Surgery in Alexandria University Hospitals
Authors: Golson Mohamed, Yasmine Gamasy, Khaled EL-Khatib, Anas Al-Natour, Shady Fadel, Haytham Rashwan, Haytham Badawy, Nadia Farghaly
Abstract:
Introduction: Wilm's tumor is the most common malignant renal tumor in children. Much progress has been made in the management of patients with this malignancy over the last 3 decades. Today treatments are based on several trials and studies conducted by the International Society of Pediatric Oncology (SIOP) in Europe and National Wilm's Tumor Study Group (NWTS) in the USA. It is necessary for us to understand why do we follow either of the protocols, NWTS which follows the upfront surgery principle or the SIOP which follows the upfront chemotherapy principle in all stages of the disease. Objective: The aim of is to assess outcome in patients treated with preoperative chemotherapy and patients treated with upfront surgery to compare their effect on overall survival. Study design: to decide which protocol to follow, study was carried out on records for patients aged 1 day to 18 years old suffering from Wilm's tumor who were admitted to Alexandria University Hospital, pediatric oncology, pediatric urology and pediatric surgery departments, with a retrospective survey records from 2010 to 2015, Design and editing of the transfer sheet with a (PRISMA flow study) Preferred Reporting Items for Systematic Reviews and Meta-Analyses. Data were fed to the computer and analyzed using IBM SPSS software package version 20.0. (11) Qualitative data were described using number and percent. Quantitative data were described using Range (minimum and maximum), mean, standard deviation and median. Comparison between different groups regarding categorical variables was tested using Chi-square test. When more than 20% of the cells have expected count less than 5, correction for chi-square was conducted using Fisher’s Exact test or Monte Carlo correction. The distributions of quantitative variables were tested for normality using Kolmogorov-Smirnov test, Shapiro-Wilk test, and D'Agstino test, if it reveals normal data distribution, parametric tests were applied. If the data were abnormally distributed, non-parametric tests were used. For normally distributed data, a comparison between two independent populations was done using independent t-test. For abnormally distributed data, comparison between two independent populations was done using Mann-Whitney test. Significance of the obtained results was judged at the 5% level. Results: A significantly statistical difference was observed for survival between the two studied groups favoring the upfront chemotherapy(86.4%)as compared to the upfront surgery group (59.3%) where P=0.009. As regard complication, 20 cases (74.1%) out of 27 were complicated in the group of patients treated with upfront surgery. Meanwhile, 30 cases (68.2%) out of 44 had complications in patients treated with upfront chemotherapy. Also, the incidence of intraoperative complication (rupture) was less in upfront chemotherapy group as compared to upfront surgery group. Conclusion: Upfront chemotherapy has superiority over upfront surgery.As the patient who started with upfront chemotherapy shown, higher survival rate, less percent in complication, less percent needed for radiotherapy, and less rate in recurrence.Keywords: Wilm's tumor, renal tumor, chemotherapy, surgery
Procedia PDF Downloads 31826431 Anomaly Detection Based Fuzzy K-Mode Clustering for Categorical Data
Authors: Murat Yazici
Abstract:
Anomalies are irregularities found in data that do not adhere to a well-defined standard of normal behavior. The identification of outliers or anomalies in data has been a subject of study within the statistics field since the 1800s. Over time, a variety of anomaly detection techniques have been developed in several research communities. The cluster analysis can be used to detect anomalies. It is the process of associating data with clusters that are as similar as possible while dissimilar clusters are associated with each other. Many of the traditional cluster algorithms have limitations in dealing with data sets containing categorical properties. To detect anomalies in categorical data, fuzzy clustering approach can be used with its advantages. The fuzzy k-Mode (FKM) clustering algorithm, which is one of the fuzzy clustering approaches, by extension to the k-means algorithm, is reported for clustering datasets with categorical values. It is a form of clustering: each point can be associated with more than one cluster. In this paper, anomaly detection is performed on two simulated data by using the FKM cluster algorithm. As a significance of the study, the FKM cluster algorithm allows to determine anomalies with their abnormality degree in contrast to numerous anomaly detection algorithms. According to the results, the FKM cluster algorithm illustrated good performance in the anomaly detection of data, including both one anomaly and more than one anomaly.Keywords: fuzzy k-mode clustering, anomaly detection, noise, categorical data
Procedia PDF Downloads 5426430 Big Data Analytics and Data Security in the Cloud via Fully Homomorphic Encyption Scheme
Authors: Victor Onomza Waziri, John K. Alhassan, Idris Ismaila, Noel Dogonyara
Abstract:
This paper describes the problem of building secure computational services for encrypted information in the Cloud. Computing without decrypting the encrypted data; therefore, it meets the yearning of computational encryption algorithmic aspiration model that could enhance the security of big data for privacy or confidentiality, availability and integrity of the data and user’s security. The cryptographic model applied for the computational process of the encrypted data is the Fully Homomorphic Encryption Scheme. We contribute a theoretical presentations in a high-level computational processes that are based on number theory that is derivable from abstract algebra which can easily be integrated and leveraged in the Cloud computing interface with detail theoretic mathematical concepts to the fully homomorphic encryption models. This contribution enhances the full implementation of big data analytics based on cryptographic security algorithm.Keywords: big data analytics, security, privacy, bootstrapping, Fully Homomorphic Encryption Scheme
Procedia PDF Downloads 48026429 Modelling the Dynamics and Optimal Control Strategies of Terrorism within the Southern Borno State Nigeria
Authors: Lubem Matthew Kwaghkor
Abstract:
Terrorism, which remains one of the largest threats faced by various nations and communities around the world, including Nigeria, is the calculated use of violence to create a general climate of fear in a population to attain particular goals that might be political, religious, or economical. Several terrorist groups are currently active in Nigeria, leading to attacks on both civil and military targets. Among these groups, Boko Haram is the deadliest terrorist group operating majorly in Borno State. The southern part of Borno State in North-Eastern Nigeria has been plagued by terrorism, insurgency, and conflict for several years. Understanding the dynamics of terrorism is crucial for developing effective strategies to mitigate its impact on communities and to facilitate peace-building efforts. This research aims to develop a mathematical model that captures the dynamics of terrorism within the southern part of Borno State, Nigeria, capturing both government and local community intervention strategies as control measures in combating terrorism. A compartmental model of five nonlinear differential equations is formulated. The model analyses show that a feasible solution set of the model exists and is bounded. Stability analyses show that both the terrorism free equilibrium and the terrorism endermic equilibrium are asymptotically stable, making the model to have biological meaning. Optimal control theory will be employed to identify the most effective strategy to prevent or minimize acts of terrorism. The research outcomes are expected to contribute towards enhancing security and stability in Southern Borno State while providing valuable insights for policymakers, security agencies, and researchers. This is an ongoing research.Keywords: modelling, terrorism, optimal control, susceptible, non-susceptible, community intervention
Procedia PDF Downloads 2426428 Correlations among Their Characteristics and Determination of Some Morphological Characteristics of Perennial Ryegrass Genotypes
Authors: Abdullah Özköse, Ahmet Tamkoç
Abstract:
This study aimed to determine some plant characteristics of perennial ryegrass (Lolium perenne L.) genotypes collected from the natural flora of Ankara and correlations between these characteristics. In order to evaluate for breeding purposes according to Turkey's environmental conditions, perennial ryegrass plants collected from natural pasture of Ankara at 2004 were utilized. The collected seeds of plants were sown in pots and seedlings were prepared in greenhouse. Seedlings were transplanted to the experimental field at 50x50 cm intervals in Randomized Complete Blocks Design in 2005. Data were obtained from the observations and measurements of 568 perennial ryegrasses in 2007 and 2008. Perennial ryegrass plants’ in the spring re-growth time, color, density, growth habit, tendency to inflorescences, time of inflorescence, plant height, length of upper internode, spike length, leaf length, leaf width, leaf area, leaf shape, number of spikelets per spike, seed yield per spike, and 1000 grain weight were investigated and correlation analyses were made on the data. Correlation coefficients were estimated between all paired combinations of the traits. The yield components exhibited varying trends of association among themselves. Seed yield per spike showed significant and positive association with number of spikelets per spike, 1000 grain weight, plant height, length of upper internode, spike length, leaf length, leaf width, leaf area and color, but significant and negative association with growth habit and in the spring re-growth time spring.Keywords: correlation, morphological traits, Lolium perenne
Procedia PDF Downloads 45526427 An Approximation of Daily Rainfall by Using a Pixel Value Data Approach
Authors: Sarisa Pinkham, Kanyarat Bussaban
Abstract:
The research aims to approximate the amount of daily rainfall by using a pixel value data approach. The daily rainfall maps from the Thailand Meteorological Department in period of time from January to December 2013 were the data used in this study. The results showed that this approach can approximate the amount of daily rainfall with RMSE=3.343.Keywords: daily rainfall, image processing, approximation, pixel value data
Procedia PDF Downloads 38726426 Does Innovation Impact on Performance of Organizations? An Empirical Discovery
Authors: Zachary Bolo Awino
Abstract:
The need to gain and sustain a competitive advantage is overwhelming for businesses, especially now with cut throat competition. Innovation has been suggested as one way of gaining the advantage sustainably. But innovation can only happen within certain enabling environment and cultures. This study had one hypothesis: that there is no relationship between innovation and performance. This research was a cross sectional survey in which variables of interest are not controlled or manipulated. The cross sectional survey design is also appropriate for this study as it improves accuracy in generalizing findings, since it involves detailed study of a unit. Also known as one shot study, this design enhances uniform data collection and comparison across respondents. The population of the study was the 55 publicly quoted corporations in the Nairobi Securities Exchange (NSE) as at October 2013.The number was initially envisaged to be 60 but 5 firms were delisted or suspended during the year, hence leaving 55 firms as the population of study. The rationale for the choice for these firms is because they cut across the key economic sectors in Kenyan economy which include agriculture, commercial and services, manufacturing, finance and investment. This was a census survey and targeted all the firms listed at the Nairobi Securities Exchange as of October 2013. The primary data for the study was collected through the use of a structured questionnaire. A five point type Likert scale ranging from 1 - denoting to a less event to 5 - denoting to a greater extent was used. Respondents were from senior management of NSE. From the analyses, the study established that there was a strong positive relationship between innovation and performance, and organization innovation significantly contributes to employee engagement. Also there was a moderate positive relationship between innovation and performance. The study drew expressions of interrelations between various variables, offered generalization of understanding and meaning of these relationships, thus expanding the frontiers of knowledge both theoretical and practical with respect to innovation and firm performance. Major conclusion in this study was that there is a positive strong relationship between innovation and major measures of firm performance.Keywords: emperical, innovation, NSE, organizations, performance
Procedia PDF Downloads 27926425 A Next-Generation Blockchain-Based Data Platform: Leveraging Decentralized Storage and Layer 2 Scaling for Secure Data Management
Authors: Kenneth Harper
Abstract:
The rapid growth of data-driven decision-making across various industries necessitates advanced solutions to ensure data integrity, scalability, and security. This study introduces a decentralized data platform built on blockchain technology to improve data management processes in high-volume environments such as healthcare and financial services. The platform integrates blockchain networks using Cosmos SDK and Polkadot Substrate alongside decentralized storage solutions like IPFS and Filecoin, and coupled with decentralized computing infrastructure built on top of Avalanche. By leveraging advanced consensus mechanisms, we create a scalable, tamper-proof architecture that supports both structured and unstructured data. Key features include secure data ingestion, cryptographic hashing for robust data lineage, and Zero-Knowledge Proof mechanisms that enhance privacy while ensuring compliance with regulatory standards. Additionally, we implement performance optimizations through Layer 2 scaling solutions, including ZK-Rollups, which provide low-latency data access and trustless data verification across a distributed ledger. The findings from this exercise demonstrate significant improvements in data accessibility, reduced operational costs, and enhanced data integrity when tested in real-world scenarios. This platform reference architecture offers a decentralized alternative to traditional centralized data storage models, providing scalability, security, and operational efficiency.Keywords: blockchain, cosmos SDK, decentralized data platform, IPFS, ZK-Rollups
Procedia PDF Downloads 2826424 The Effect of Measurement Distribution on System Identification and Detection of Behavior of Nonlinearities of Data
Authors: Mohammad Javad Mollakazemi, Farhad Asadi, Aref Ghafouri
Abstract:
In this paper, we considered and applied parametric modeling for some experimental data of dynamical system. In this study, we investigated the different distribution of output measurement from some dynamical systems. Also, with variance processing in experimental data we obtained the region of nonlinearity in experimental data and then identification of output section is applied in different situation and data distribution. Finally, the effect of the spanning the measurement such as variance to identification and limitation of this approach is explained.Keywords: Gaussian process, nonlinearity distribution, particle filter, system identification
Procedia PDF Downloads 51626423 Building a Scalable Telemetry Based Multiclass Predictive Maintenance Model in R
Authors: Jaya Mathew
Abstract:
Many organizations are faced with the challenge of how to analyze and build Machine Learning models using their sensitive telemetry data. In this paper, we discuss how users can leverage the power of R without having to move their big data around as well as a cloud based solution for organizations willing to host their data in the cloud. By using ScaleR technology to benefit from parallelization and remote computing or R Services on premise or in the cloud, users can leverage the power of R at scale without having to move their data around.Keywords: predictive maintenance, machine learning, big data, cloud based, on premise solution, R
Procedia PDF Downloads 37926422 Trusting the Big Data Analytics Process from the Perspective of Different Stakeholders
Authors: Sven Gehrke, Johannes Ruhland
Abstract:
Data is the oil of our time, without them progress would come to a hold [1]. On the other hand, the mistrust of data mining is increasing [2]. The paper at hand shows different aspects of the concept of trust and describes the information asymmetry of the typical stakeholders of a data mining project using the CRISP-DM phase model. Based on the identified influencing factors in relation to trust, problematic aspects of the current approach are verified using various interviews with the stakeholders. The results of the interviews confirm the theoretically identified weak points of the phase model with regard to trust and show potential research areas.Keywords: trust, data mining, CRISP DM, stakeholder management
Procedia PDF Downloads 9426421 Status of Alien Invasive Trees on the Grassland Plateau in Nyika National Park
Authors: Andrew Kanzunguze, Sopani Sichinga, Paston Simkoko, George Nxumayo, Cosmas, V. B. Dambo
Abstract:
Early detection of plant invasions is a necessary prerequisite for effective invasive plant management in protected areas. This study was conducted to determine the distribution and abundance of alien invasive trees in Nyika National Park (NNP). Data on species' presence and abundance were collected from belt transects (n=31) in a 100 square kilometer area on the central plateau. The data were tested for normality using the Shapiro-Wilk test; Mann-Whitney test was carried out to compare frequencies and abundances between the species, and geographical information systems were used for spatial analyses. Results revealed that Black Wattle (Acacia mearnsii), Mexican Pine (Pinus patula) and Himalayan Raspberry (Rubus ellipticus) were the main alien invasive trees on the plateau. A. mearnsii was localized in the areas where it was first introduced, whereas P. patula and R. ellipticus were spread out beyond original points of introduction. R. ellipticus occurred as dense, extensive (up to 50 meters) thickets on the margins of forest patches and pine stands, whilst P. patula trees were frequent in the valleys, occurring most densely (up to 39 stems per 100 square meters) south-west of Chelinda camp on the central plateau with high variation in tree heights. Additionally, there were no significant differences in abundance between R. ellipticus (48) and P. patula (48) in the study area (p > 0.05) It was concluded that R. ellipticus and P. patula require more attention as compared to A. mearnsii. Howbeit, further studies into the invasion ecology of both P. patula and R. ellipticus on the Nyika plateau are highly recommended so as to assess the threat posed by the species on biodiversity, and recommend appropriate conservation measures in the national park.Keywords: alien-invasive trees, Himalayan raspberry, Nyika National Park, Mexican pine
Procedia PDF Downloads 20526420 Smartphone Photography in Urban China
Authors: Wen Zhang
Abstract:
The smartphone plays a significant role in media convergence, and smartphone photography is reconstructing the way we communicate and think. This article aims to explore the smartphone photography practices of urban Chinese smartphone users and images produced by smartphones from a techno-cultural perspective. The analysis consists of two types of data: One is a semi-structured interview of 21 participants, and the other consists of the images created by the participants. The findings are organised in two parts. The first part summarises the current tendencies of capturing, editing, sharing and archiving digital images via smartphones. The second part shows that food and selfie/anti-selfie are the preferred subjects of smartphone photographic images from a technical and multi-purpose perspective and demonstrates that screenshots and image texts are new genres of non-photographic images that are frequently made by smartphones, which contributes to improving operational efficiency, disseminating information and sharing knowledge. The analyses illustrate the positive impacts between smartphones and photography enthusiasm and practices based on the diffusion of innovation theory, which also makes us rethink the value of photographs and the practice of ‘photographic seeing’ from the screen itself.Keywords: digital photography, image-text, media convergence, photographic- seeing, selfie/anti-selfie, smartphone, technological innovation
Procedia PDF Downloads 35526419 Wireless Transmission of Big Data Using Novel Secure Algorithm
Authors: K. Thiagarajan, K. Saranya, A. Veeraiah, B. Sudha
Abstract:
This paper presents a novel algorithm for secure, reliable and flexible transmission of big data in two hop wireless networks using cooperative jamming scheme. Two hop wireless networks consist of source, relay and destination nodes. Big data has to transmit from source to relay and from relay to destination by deploying security in physical layer. Cooperative jamming scheme determines transmission of big data in more secure manner by protecting it from eavesdroppers and malicious nodes of unknown location. The novel algorithm that ensures secure and energy balance transmission of big data, includes selection of data transmitting region, segmenting the selected region, determining probability ratio for each node (capture node, non-capture and eavesdropper node) in every segment, evaluating the probability using binary based evaluation. If it is secure transmission resume with the two- hop transmission of big data, otherwise prevent the attackers by cooperative jamming scheme and transmit the data in two-hop transmission.Keywords: big data, two-hop transmission, physical layer wireless security, cooperative jamming, energy balance
Procedia PDF Downloads 49026418 A Bayesian Network Approach to Customer Loyalty Analysis: A Case Study of Home Appliances Industry in Iran
Authors: Azam Abkhiz, Abolghasem Nasir
Abstract:
To achieve sustainable competitive advantage in the market, it is necessary to provide and improve customer satisfaction and Loyalty. To reach this objective, companies need to identify and analyze their customers. Thus, it is critical to measure the level of customer satisfaction and Loyalty very carefully. This study attempts to build a conceptual model to provide clear insights of customer loyalty. Using Bayesian networks (BNs), a model is proposed to evaluate customer loyalty and its consequences, such as repurchase and positive word-of-mouth. BN is a probabilistic approach that predicts the behavior of a system based on observed stochastic events. The most relevant determinants of customer loyalty are identified by the literature review. Perceived value, service quality, trust, corporate image, satisfaction, and switching costs are the most important variables that explain customer loyalty. The data are collected by use of a questionnaire-based survey from 1430 customers of a home appliances manufacturer in Iran. Four scenarios and sensitivity analyses are performed to run and analyze the impact of different determinants on customer loyalty. The proposed model allows businesses to not only set their targets but proactively manage their customer behaviors as well.Keywords: customer satisfaction, customer loyalty, Bayesian networks, home appliances industry
Procedia PDF Downloads 14026417 Lie Symmetry of a Nonlinear System Characterizing Endemic Malaria
Authors: Maba Boniface Matadi
Abstract:
This paper analyses the model of Malaria endemic from the point of view of the group theoretic approach. The study identified new independent variables that lead to the transformation of the nonlinear model. Furthermore, corresponding determining equations were constructed, and new symmetries were found. As a result, the findings of the study demonstrate of the integrability of the model to present an invariant solution for the Malaria model.Keywords: group theory, lie symmetry, invariant solutions, malaria
Procedia PDF Downloads 10926416 Kinetics and Adsorption Studies of Tetracycline from Aqueous Solution Using Melon Husk
Authors: Ungwanen John Ahile, Sylvester Obaike Adejo, Simon Terver Ubwa, Raymond Lubem Tyohemba, Pius Utange, Mnena G. Ikyagh
Abstract:
The adsorption of tetracycline from aqueous solution was carried out using melon husk as a low-cost adsorbent. The adsorption was characterized using standard methods and values obtained were; pH = 7.80, bulk density = 0.43 g/mL, ash content = 2.2 %, moisture content = 8.27 %, attrition = 1%, and iodine number = 552 mg/g. Adsorption capacity was found to vary with initial concentration, adsorbent dosage, pH, contact time and temperature, the maximum adsorption capacity in each case was found to be at; 30 mg/L for concentration, 0.8 g for adsorbent dose, 5 for pH, 60 minutes for time and 30 °C for temperature. FTIR analysis was done to analyses the surface functional groups which shows the presence of O-H stretch, at 3743.92 corresponding to alcohol, phenols, C-H stretch at 2923.27 indicative of alkanes, H-C=O: C-H stretch at 2725.76 corresponding to aldehyde, C-C stretch at 1462.72 corresponding to aromatic, SEM analysis carried out revealed a rough and smooth morphology of the uncontacted and contacted adsorbent respectively. The experimental data judging from the R2 values fitted best into the Temkin isotherm. The fitting of tetracycline adsorption into the pseudo second order kinetic model (R2 of 0.9992) is suggestive of chemisorption for the adsorbent.Keywords: adsorption, adsorbent isotherm, antibiotics, tertracycline
Procedia PDF Downloads 26426415 One Step Further: Pull-Process-Push Data Processing
Authors: Romeo Botes, Imelda Smit
Abstract:
In today’s modern age of technology vast amounts of data needs to be processed in real-time to keep users satisfied. This data comes from various sources and in many formats, including electronic and mobile devices such as GPRS modems and GPS devices. They make use of different protocols including TCP, UDP, and HTTP/s for data communication to web servers and eventually to users. The data obtained from these devices may provide valuable information to users, but are mostly in an unreadable format which needs to be processed to provide information and business intelligence. This data is not always current, it is mostly historical data. The data is not subject to implementation of consistency and redundancy measures as most other data usually is. Most important to the users is that the data are to be pre-processed in a readable format when it is entered into the database. To accomplish this, programmers build processing programs and scripts to decode and process the information stored in databases. Programmers make use of various techniques in such programs to accomplish this, but sometimes neglect the effect some of these techniques may have on database performance. One of the techniques generally used,is to pull data from the database server, process it and push it back to the database server in one single step. Since the processing of the data usually takes some time, it keeps the database busy and locked for the period of time that the processing takes place. Because of this, it decreases the overall performance of the database server and therefore the system’s performance. This paper follows on a paper discussing the performance increase that may be achieved by utilizing array lists along with a pull-process-push data processing technique split in three steps. The purpose of this paper is to expand the number of clients when comparing the two techniques to establish the impact it may have on performance of the CPU storage and processing time.Keywords: performance measures, algorithm techniques, data processing, push data, process data, array list
Procedia PDF Downloads 24426414 Extreme Temperature Forecast in Mbonge, Cameroon Through Return Level Analysis of the Generalized Extreme Value (GEV) Distribution
Authors: Nkongho Ayuketang Arreyndip, Ebobenow Joseph
Abstract:
In this paper, temperature extremes are forecast by employing the block maxima method of the generalized extreme value (GEV) distribution to analyse temperature data from the Cameroon Development Corporation (CDC). By considering two sets of data (raw data and simulated data) and two (stationary and non-stationary) models of the GEV distribution, return levels analysis is carried out and it was found that in the stationary model, the return values are constant over time with the raw data, while in the simulated data the return values show an increasing trend with an upper bound. In the non-stationary model, the return levels of both the raw data and simulated data show an increasing trend with an upper bound. This clearly shows that although temperatures in the tropics show a sign of increase in the future, there is a maximum temperature at which there is no exceedance. The results of this paper are very vital in agricultural and environmental research.Keywords: forecasting, generalized extreme value (GEV), meteorology, return level
Procedia PDF Downloads 47826413 Impact of Stack Caches: Locality Awareness and Cost Effectiveness
Authors: Abdulrahman K. Alshegaifi, Chun-Hsi Huang
Abstract:
Treating data based on its location in memory has received much attention in recent years due to its different properties, which offer important aspects for cache utilization. Stack data and non-stack data may interfere with each other’s locality in the data cache. One of the important aspects of stack data is that it has high spatial and temporal locality. In this work, we simulate non-unified cache design that split data cache into stack and non-stack caches in order to maintain stack data and non-stack data separate in different caches. We observe that the overall hit rate of non-unified cache design is sensitive to the size of non-stack cache. Then, we investigate the appropriate size and associativity for stack cache to achieve high hit ratio especially when over 99% of accesses are directed to stack cache. The result shows that on average more than 99% of stack cache accuracy is achieved by using 2KB of capacity and 1-way associativity. Further, we analyze the improvement in hit rate when adding small, fixed, size of stack cache at level1 to unified cache architecture. The result shows that the overall hit rate of unified cache design with adding 1KB of stack cache is improved by approximately, on average, 3.9% for Rijndael benchmark. The stack cache is simulated by using SimpleScalar toolset.Keywords: hit rate, locality of program, stack cache, stack data
Procedia PDF Downloads 30326412 The Importance of a Coating and Architecture of the Surface Metal on the Survival of Uncemented Total Knee Arthroplasty
Authors: Raymond Puijk, Rachid Rassir, Inger N. Sierevelt, Anneke Spekenbrink-Sporen, Bart G. C. W. Pijls, Rob G. H. H. Nelissen, Peter A. Nolte
Abstract:
Background: Among uncemented total knee arthroplasty (TKA), a wide variety of metal surface structures (MSS) and coatings exist to enhance implants' biological properties (i.e., bone ingrowth). This study explores the variety of MSS-coating combinations and compares their mid-long-term survivorships with cemented TKAs, by using data from the Dutch Arthroplasty Register. Methods: A total of 235,500 cemented and 11,132 uncemented primary TKAs with a median follow-up of 5.1 years were included. MSS-coating combinations were (1) Porous-uncoated (n=8986), (2) Beaded-hydroxyapatite (HA)(n=1093), (3) Matte-uncoated (n=846), (4) Matte-Titanium-nitride (TiN) (n=207). Five- and 10-year revision-free survival for all-cause revisions, and aseptic loosening of the tibial component, were calculated and compared by using Kaplan-Meier, Log-rank tests, and multivariable Cox proportional hazard regression analyses. Results: Ten-year survival rates with all-cause revisions as an endpoint, were 94.2% for cement, and 94.7%, 96.3%, 92.1%, and 79.0% for porous-uncoated, beaded-HA, matte-uncoated, and Matte-TiN, respectively (p<0.01). Rates for aseptic loosening were 98.8% for cemented, and 98.7%, 99.8%, 97.2%, and 94.9% for the uncemented, respectively (p<0.01).The beaded-HA implants were half the risk for an all-cause revision compared to cemented implants (p<0.01). Matte-uncoated and matte-TiN implants were at more risk of an all-cause revision than cemented implants (p=0.01, p<0.01). Proportions of revisions for aseptic loosening were comparable among most groups. Conclusion: Based on Dutch registry data, four main MSS-coating combinations among uncemented TKAs were found. survivorships for all-cause revisions and aseptic release differed widely between groups. Beaded-HA and porous-uncoated implants had the best survival rates among the uncemented TKAs and were non-inferior to the cemented TKAs.Keywords: total knee arthroplasty, cement, uncemented, cementless;, metal surface structure, coating
Procedia PDF Downloads 15226411 Autonomic Threat Avoidance and Self-Healing in Database Management System
Authors: Wajahat Munir, Muhammad Haseeb, Adeel Anjum, Basit Raza, Ahmad Kamran Malik
Abstract:
Databases are the key components of the software systems. Due to the exponential growth of data, it is the concern that the data should be accurate and available. The data in databases is vulnerable to internal and external threats, especially when it contains sensitive data like medical or military applications. Whenever the data is changed by malicious intent, data analysis result may lead to disastrous decisions. Autonomic self-healing is molded toward computer system after inspiring from the autonomic system of human body. In order to guarantee the accuracy and availability of data, we propose a technique which on a priority basis, tries to avoid any malicious transaction from execution and in case a malicious transaction affects the system, it heals the system in an isolated mode in such a way that the availability of system would not be compromised. Using this autonomic system, the management cost and time of DBAs can be minimized. In the end, we test our model and present the findings.Keywords: autonomic computing, self-healing, threat avoidance, security
Procedia PDF Downloads 504