Search results for: agriculture yield prediction
4926 Commodity Factory or Food Farms an Irrational Dilemma: Reflections on the Brazilian Scenario
Authors: Monica Dantas
Abstract:
At what socio-economic costs can the food industry offer products at low prices? This research seeks to understand and to explore how we attribute competence and meaning, what enables the outcomes of agriculture and what institutions provides validation regarding food production. This study objective is to explain and interpret conditions of the present state of agriculture in Brazil centring on two distinct segments, agribusiness and family farming, as the Brazilian, rapidly changing political environment unfolds. The approach is grounded in multidisciplinary literature drawing from the politics of development, the sociology of food, the sustainability framework and the conceptual differences between agribusiness and family farming regarding the innate purpose of the two segments. In addition, a quantitative portion of the research includes secondary data analysis from statistical measurements, economic indicators, federal budget information, and census data to compare the two segments, conveying a general snapshot of the conditions investigated. The results raised questions about the perceived image of the success of agribusiness, against some contradicting economic checks and balances. Analyzing how public funds are invested in agriculture shed light on what can enable or undermine the development of food systems in Brazil. It also revealed how politics, ideology, and corporations might influence the Brazilian Federal. In the 2000-2018 observed timeline of annual federal spending on agriculture in Brazil, there is variation in the amount invested in family farming that seems to 'coincide' with the ideological direction of the federal government in power. It was also observed that significant changes in the institutional framework and financial support either promoted or purposely undermined family farming importance using public institutions to validate support for agribusiness.Keywords: food politics, sustainability, family farming, food system, public budget
Procedia PDF Downloads 1324925 Studies on the Applicability of Artificial Neural Network (ANN) in Prediction of Thermodynamic Behavior of Sodium Chloride Aqueous System Containing a Non-Electrolytes
Authors: Dariush Jafari, S. Mostafa Nowee
Abstract:
In this study a ternary system containing sodium chloride as solute, water as primary solvent and ethanol as the antisolvent was considered to investigate the application of artificial neural network (ANN) in prediction of sodium solubility in the mixture of water as the solvent and ethanol as the antisolvent. The system was previously studied using by Extended UNIQUAC model by the authors of this study. The comparison between the results of the two models shows an excellent agreement between them (R2=0.99), and also approves the capability of ANN to predict the thermodynamic behavior of ternary electrolyte systems which are difficult to model.Keywords: thermodynamic modeling, ANN, solubility, ternary electrolyte system
Procedia PDF Downloads 3844924 The Effect of Zeolite and Fertilizers on Yield and Qualitative Characteristics of Cabbage in the Southeast of Kazakhstan
Authors: Tursunay Vassilina, Aigerim Shibikeyeva, Adilet Sakhbek
Abstract:
Research has been carried out to study the influence of modified zeolite fertilizers on the quantitative and qualitative indicators of cabbage variety Nezhenka. The use of zeolite and mineral fertilizers had a positive effect on both the yield and quality indicators of the studied crop. The maximum increase in yield from fertilizers was 16.5 t/ha. Application of both zeolite and fertilizer increased the dry matter, sugar and vitamin C content of cabbage heads. It was established that the cabbage contains an amount of nitrates that is safe for human health. Among vegetable crops, cabbage has both food and feed value. One of the limiting factors in the sale of vegetable crops is the degradation of soil fertility due to depletion of nutrient reserves and erosion processes, and non-compliance with fertilizer application technologies. Natural zeolites are used as additives to mineral fertilizers for application in the field, which makes it possible to reduce their doses to minimal quantities. Zeolites improve the agrophysical and agrochemical properties of the soil and the quality of plant products. The research was carried out in a field experiment, carried out in 3 repetitions, on dark chestnut soil in 2023. The soil (pH = 7.2-7.3) of the experimental plot is dark chestnut, the humus content in the arable layer is 2.15%, gross nitrogen 0.098%, phosphorus, potassium 0.225 and 2.4%, respectively. The object of the study was the late cabbage variety Nezhenka. Scheme for applying fertilizers to cabbage: 1. Control (without fertilizers); 2. Zeolite 2t/ha; 3. N45P45K45; 4. N90P90K90; 5. Zeolite, 2 t/ha + N45P45K45; 6. Zeolite, 2 t/ha + N90P90K90. Yield accounting was carried out on a plot-by-plot basis manually. In plant samples, the following was determined: dry matter content by thermostatic method (at 105ºC); sugar content by Bertrand titration method, nitrate content by 1% diphenylamine solution, vitamin C by titrimetric method with acid solution. According to the results, it was established that the yield of cabbage was high – 42.2 t/ha in the treatment Zeolite, 2 t/ha + N90P90K90. When determining the biochemical composition of white cabbage, it was found that the dry matter content was 9.5% and increased with fertilized treatments. The total sugar content increased slightly with the use of zeolite (5.1%) and modified zeolite fertilizer (5.5%), the vitamin C content ranged from 17.5 to 18.16%, while in the control, it was 17.21%. The amount of nitrates in products also increased with increasing doses of nitrogen fertilizers and decreased with the use of zeolite and modified zeolite fertilizer but did not exceed the maximum permissible concentration. Based on the research conducted, it can be concluded that the application of zeolite and fertilizers leads to a significant increase in yield compared to the unfertilized treatment; contribute to the production of cabbage with good and high quality indicators.Keywords: cabbage, dry matter, nitrates, total sugar, yield, vitamin C
Procedia PDF Downloads 714923 Electrical Machine Winding Temperature Estimation Using Stateful Long Short-Term Memory Networks (LSTM) and Truncated Backpropagation Through Time (TBPTT)
Authors: Yujiang Wu
Abstract:
As electrical machine (e-machine) power density re-querulents become more stringent in vehicle electrification, mounting a temperature sensor for e-machine stator windings becomes increasingly difficult. This can lead to higher manufacturing costs, complicated harnesses, and reduced reliability. In this paper, we propose a deep-learning method for predicting electric machine winding temperature, which can either replace the sensor entirely or serve as a backup to the existing sensor. We compare the performance of our method, the stateful long short-term memory networks (LSTM) with truncated backpropagation through time (TBTT), with that of linear regression, as well as stateless LSTM with/without residual connection. Our results demonstrate the strength of combining stateful LSTM and TBTT in tackling nonlinear time series prediction problems with long sequence lengths. Additionally, in industrial applications, high-temperature region prediction accuracy is more important because winding temperature sensing is typically used for derating machine power when the temperature is high. To evaluate the performance of our algorithm, we developed a temperature-stratified MSE. We propose a simple but effective data preprocessing trick to improve the high-temperature region prediction accuracy. Our experimental results demonstrate the effectiveness of our proposed method in accurately predicting winding temperature, particularly in high-temperature regions, while also reducing manufacturing costs and improving reliability.Keywords: deep learning, electrical machine, functional safety, long short-term memory networks (LSTM), thermal management, time series prediction
Procedia PDF Downloads 984922 Novel GPU Approach in Predicting the Directional Trend of the S&P500
Authors: A. J. Regan, F. J. Lidgey, M. Betteridge, P. Georgiou, C. Toumazou, K. Hayatleh, J. R. Dibble
Abstract:
Our goal is development of an algorithm capable of predicting the directional trend of the Standard and Poor’s 500 index (S&P 500). Extensive research has been published attempting to predict different financial markets using historical data testing on an in-sample and trend basis, with many authors employing excessively complex mathematical techniques. In reviewing and evaluating these in-sample methodologies, it became evident that this approach was unable to achieve sufficiently reliable prediction performance for commercial exploitation. For these reasons, we moved to an out-of-sample strategy based on linear regression analysis of an extensive set of financial data correlated with historical closing prices of the S&P 500. We are pleased to report a directional trend accuracy of greater than 55% for tomorrow (t+1) in predicting the S&P 500.Keywords: financial algorithm, GPU, S&P 500, stock market prediction
Procedia PDF Downloads 3494921 The Influence of Zinc Applications from Soil and Foliar at Different Levels on Some Quality Characteristics of Sultana Raisins
Authors: Harun Çoban, Aydın Akın
Abstract:
In this study, the effects of different dose zinc application from soil and foliar on drying yield and some quality characters of raisins ‘Sultana’ were investigated. The experiment was conducted in randomized blocks with four replications, zinc treatment was used at one time (before pre- bloom) and from foliar in three times (pre-bloom, fruit set, and veraison). At harvest, both soil and foliar zinc sulphate applications increased the amount of fresh grapes per vine. Fresh grapes were dried on the drying place. However, the most efficient applications for drying yield and quality of raisins were observed from foliar. Therefore, it was preferred that foliar application dosage level at 0.10 %.Keywords: zinc, raisins, soil application, foliar application, sultana, expertise value
Procedia PDF Downloads 3114920 Evaluation of Dry Matter Yield of Panicum maximum Intercropped with Pigeonpea and Sesbania Sesban
Authors: Misheck Musokwa, Paramu Mafongoya, Simon Lorentz
Abstract:
Seasonal shortages of fodder during the dry season is a major constraint to smallholder livestock farmers in South Africa. To mitigate the shortage of fodder, legume trees can be intercropped with pastures which can diversify the sources of feed and increase the amount of protein for grazing animals. The objective was to evaluate dry matter yield of Panicum maximum and land productivity under different fodder production systems during 2016/17-2017/18 seasons at Empangeni (28.6391° S and 31.9400° E). A randomized complete block design, replicated three times was used, the treatments were sole Panicum maximum, Panicum maximum + Sesbania sesban, Panicum maximum + pigeonpea, sole Sesbania sesban, Sole pigeonpea. Three months S.sesbania seedlings were transplanted whilst pigeonpea was direct seeded at spacing of 1m x 1m. P. maximum seeds were drilled at a respective rate of 7.5 kg/ha having an inter-row spacing of 0.25 m apart. In between rows of trees P. maximum seeds were drilled. The dry matter yield harvesting times were separated by six months’ timeframe. A 0.25 m² quadrant randomly placed on 3 points on the plot was used as sampling area during harvesting P. maximum. There was significant difference P < 0.05 across 3 harvests and total dry matter. P. maximum had higher dry matter yield as compared to both intercrops at first harvest and total. The second and third harvest had no significant difference with pigeonpea intercrop. The results was in this order for all 3 harvest: P. maximum (541.2c, 1209.3b and 1557b) kg ha¹ ≥ P. maximum + pigeonpea (157.2b, 926.7b and 1129b) kg ha¹ > P. maximum + S. sesban (36.3a, 282a and 555a) kg ha¹. Total accumulation of dry matter yield of P. maximum (3307c kg ha¹) > P. maximum + pigeonpea (2212 kg ha¹) ≥ P. maximum + S. sesban (874 kg ha¹). There was a significant difference (P< 0.05) on seed yield for trees. Pigeonpea (1240.3 kg ha¹) ≥ Pigeonpea + P. maximum (862.7 kg ha¹) > S.sesbania (391.9 kg ha¹) ≥ S.sesbania + P. maximum. The Land Equivalent Ratio (LER) was in the following order P. maximum + pigeonpea (1.37) > P. maximum + S. sesban (0.84) > Pigeonpea (0.59) ≥ S. Sesbania (0.57) > P. maximum (0.26). Results indicates that it is beneficial to have P. maximum intercropped with pigeonpea because of higher land productivity. Planting grass with pigeonpea was more beneficial than S. sesban with grass or sole cropping in terms of saving the shortage of arable land. P. maximum + pigeonpea saves a substantial (37%) land which can be subsequently be used for other crop production. Pigeonpea is recommended as an intercrop with P. maximum due to its higher LER and combined production of livestock feed, human food, and firewood. Panicum grass is low in crude protein though high in carbohydrates, there is a need for intercropping it with legume trees. A farmer who buys concentrates can reduce costs by combining P. maximum with pigeonpea this will provide a balanced diet at low cost.Keywords: fodder, livestock, productivity, smallholder farmers
Procedia PDF Downloads 1474919 Modern Agriculture and Employment Generation in Nigeria: A Recursive Model Approach
Authors: Ese Urhie, Olabisi Popoola, Obindah Gershon
Abstract:
Several policies and programs initiated to address the challenge of unemployment in Nigeria seem to be inadequate. The desired structural transformation which is expected to absorb the excess labour in the economy is yet to be achieved. The agricultural sector accounts for almost half of the labour force with very low productivity. This could partly explain why the much anticipated structural transformation has not been achieved. A major reason for the low productivity is the fact that the production process is predominantly based on the use of traditional tools. In view of the underdeveloped nature of the agricultural sector, Nigeria still has huge potentials for productivity enhancement through modern technology. Aside from productivity enhancement, modern agriculture also stimulates both backward and forward linkages that promote investment and thus generate employment. Contrary to the apprehension usually expressed by many stake-holders about the adoption of modern technology by labour-abundant less-developed countries, this study showed that though there will be job loss initially, the reverse will be the case in the long-run. The outcome of this study will enhance the understanding of all stakeholders in the sector and also encourage them to adopt modern techniques of farming. It will also aid policy formulation at both sectoral and national levels. The recursive model and analysis adopted in the study is useful because it exhibits a unilateral cause-and-effect relationship which most simultaneous equation models do not. It enables the structural equations to be ordered in such a way that the first equation includes only predetermined variables on the right-hand side, while the solution for the final endogenous variable is completely determined by all equations of the system. The study examines the transmission channels and effect of modern agriculture on agricultural productivity and employment growth in Nigeria, via its forward and backward linkages. Using time series data spanning 1980 to 2014, the result of the analyses shows that: (i) a significant and positive relationship between agricultural productivity growth and modern agriculture; (ii) a significant and negative relationship between export price index and agricultural productivity growth; (iii) a significant and positive relationship between export and investment; and (iv) a significant and positive relationship between investment and employment growth. The unbalanced growth theory will be a good strategy to adopt by developing countries such as Nigeria.Keywords: employment, modern agriculture, productivity, recursive model
Procedia PDF Downloads 2644918 A Study on the Life Prediction Performance Degradation Analysis of the Hydraulic Breaker
Authors: Jong Won, Park, Sung Hyun, Kim
Abstract:
The kinetic energy to pass subjected to shock and chisel reciprocating piston hydraulic power supplied by the excavator using for the purpose of crushing the rock, and roads, buildings, etc., hydraulic breakers blow. Impact frequency, efficiency measurement of the impact energy, hydraulic breakers, to demonstrate the ability of hydraulic breaker manufacturers and users to a very important item. And difficult in order to confirm the initial performance degradation in the life of the hydraulic breaker has been thought to be a problem.In this study, we measure the efficiency of hydraulic breaker, Impact energy and Impact frequency, the degradation analysis of research to predict the life.Keywords: impact energy, impact frequency, hydraulic breaker, life prediction
Procedia PDF Downloads 4394917 A Regression Model for Residual-State Creep Failure
Authors: Deepak Raj Bhat, Ryuichi Yatabe
Abstract:
In this study, a residual-state creep failure model was developed based on the residual-state creep test results of clayey soils. To develop the proposed model, the regression analyses were done by using the R. The model results of the failure time (tf) and critical displacement (δc) were compared with experimental results and found in close agreements to each others. It is expected that the proposed regression model for residual-state creep failure will be more useful for the prediction of displacement of different clayey soils in the future.Keywords: regression model, residual-state creep failure, displacement prediction, clayey soils
Procedia PDF Downloads 4064916 Design and Development of an Algorithm to Predict Fluctuations of Currency Rates
Authors: Nuwan Kuruwitaarachchi, M. K. M. Peiris, C. N. Madawala, K. M. A. R. Perera, V. U. N Perera
Abstract:
Dealing with businesses with the foreign market always took a special place in a country’s economy. Political and social factors came into play making currency rate changes fluctuate rapidly. Currency rate prediction has become an important factor for larger international businesses since large amounts of money exchanged between countries. This research focuses on comparing the accuracy of mainly three models; Autoregressive Integrated Moving Average (ARIMA), Artificial Neural Networks(ANN) and Support Vector Machines(SVM). series of data import, export, USD currency exchange rate respect to LKR has been selected for training using above mentioned algorithms. After training the data set and comparing each algorithm, it was able to see that prediction in SVM performed better than other models. It was improved more by combining SVM and SVR models together.Keywords: ARIMA, ANN, FFNN, RMSE, SVM, SVR
Procedia PDF Downloads 2114915 Investigation of the Effect of Anaerobic Digestate on Antifungal Activity and in Different Parameters of Maize
Authors: Nazia Zaffar, Alam Khan, Abdul Haq, Malik Badshah
Abstract:
Pakistan is an agricultural country. The increasing population leads to an increase in demand for food. A large number of crops are infected by different microbes, and nutrient deficiency of soil adversely affects the yield of crops. Furthermore, the use of chemical fertilizers like Nitrogen, Phosphorus, Potassium (NPK) Urea, and Diammonium phosphate (DAP) and pesticides have environmental consequences. Therefore, there is an urgent need to explore alternative renewable and sustainable biofertilizers. Maize is one of the top growing crops in Pakistan, but it has low yield compared to other countries due to deficiency of organic matter, widespread nutrients deficiency (phosphorus and nitrogen), unbalanced use of fertilizers and various fungal diseases. In order to get rid of all these disadvantages, Digestate emerged as a win-win opportunity for the control of a few plant diseases and a replacement for the chemical fertilizers. The present study was designed to investigate the effect of Anerobic digestate on Antifungal Activity and in different parameters of Maize. The antifungal activity, minimum inhibitory concentration (MIC), and minimum fungicidal concentration (MFC) against selected phytopathogens (Colletotrichum coccodis, Pythium ultimum, Phytophthora capsci, Rhizoctonia solani, Bipolaris oryzae and Fusarium Fujikuroi) were determined by microtiter plate method. The effect of various fertilizers in different growth parameters height, diameter, chlorophyll, leaf area, biomass, and yield were studied in field experiments. The extracts from anaerobic digestate have shown antifungal activity against selected phytopathogens, the highest activity was noted against P. ultimum, the MIC activity was high in case of P. ultimum and B. oryzae. The present study concludes that anaerobic digestate have a positive effect on maize growth and yield as well as an antifungal activity which can be potentially a good biofertilizer.Keywords: anaerobic digestate, antifungal activity, MIC, phytopathogens
Procedia PDF Downloads 1234914 Service Life Prediction of Tunnel Structures Subjected to Water Seepage
Authors: Hassan Baji, Chun-Qing Li, Wei Yang
Abstract:
Water seepage is one of the most common causes of damage in tunnel structures, which can cause direct and indirect e.g. reinforcement corrosion and calcium leaching damages. Estimation of water seepage or inflow is one of the main challenges in probabilistic assessment of tunnels. The methodology proposed in this study is an attempt for mathematically modeling the water seepage in tunnel structures and further predicting its service life. Using the time-dependent reliability, water seepage is formulated as a failure mode, which can be used for prediction of service life. Application of the formulated seepage failure mode to a case study tunnel is presented.Keywords: water seepage, tunnels, time-dependent reliability, service life
Procedia PDF Downloads 4804913 Demographic Bomb or Bonus in All Provinces in 100 Years after Indonesian Independence
Authors: Fitri CaturLestari
Abstract:
According to National Population and Family Planning Board (BKKBN), demographic bonus will occur in 2025-2035, when the number of people within the productive age bracket is higher than the number of elderly people and children. This time will be a gold moment for Indonesia to achieve maximum productivity and prosperity. But it will be a demographic bomb if it isn’t balanced by economic and social aspect considerations. Therefore it is important to make a prediction mapping of all provinces in Indonesia whether in demographic bomb or bonus condition after 100 years Indonesian independence. The purpose of this research were to make the demographic mapping based on the economic and social aspects of the provinces in Indonesia and categorizing them into demographic bomb and bonus condition. The research data are gained from Statistics Indonesia (BPS) as the secondary data. The multiregional component method, regression and quadrant analysis were used to predict the number of people, economic growth, Human Development Index (HDI), and gender equality in education and employment. There were different characteristic of provinces in Indonesia from economic aspect and social aspect. The west Indonesia was already better developed than the east one. The prediction result, many provinces in Indonesia will get demographic bonus but the others will get demographic bomb. It is important to prepare particular strategy to particular provinces with all of their characteristic based on the prediction result so the demographic bomb can be minimalized.Keywords: demography, economic growth, gender, HDI
Procedia PDF Downloads 3334912 Breeding Cotton for Annual Growth Habit: Remobilizing End-of-season Perennial Reserves for Increased Yield
Authors: Salman Naveed, Nitant Gandhi, Grant Billings, Zachary Jones, B. Todd Campbell, Michael Jones, Sachin Rustgi
Abstract:
Cotton (Gossypium spp.) is the primary source of natural fiber in the U.S. and a major crop in the Southeastern U.S. Despite constant efforts to increase the cotton fiber yield, the yield gain has stagnated. Therefore, we undertook a novel approach to improve the cotton fiber yield by altering its growth habit from perennial to annual. In this effort, we identified genotypes with high-expression alleles of five floral induction and meristem identity genes (FT, SOC1, FUL, LFY, and AP1) from an upland cotton mini-core collection and crossed them in various combinations to develop cotton lines with annual growth habit, optimal flowering time and enhanced productivity. To facilitate the characterization of genotypes with the desired combinations of stacked alleles, we identified markers associated with the gene expression traits via genome-wide association analysis using a 63K SNP Array (Hulse-Kemp et al. 2015 G3 5:1187). Over 14,500 SNPs showed polymorphism and were used for association analysis. A total of 396 markers showed association with expression traits. Out of these 396 markers, 159 mapped to genes, 50 to untranslated regions, and 187 to random genomic regions. Biased genomic distribution of associated markers was observed where more trait-associated markers mapped to the cotton D sub-genome. Many quantitative trait loci coincided at specific genomic regions. This observation has implications as these traits could be bred together. The analysis also allowed the identification of candidate regulators of the expression patterns of these floral induction and meristem identity genes whose functions will be validated via virus-induced gene silencing.Keywords: cotton, GWAS, QTL, expression traits
Procedia PDF Downloads 1514911 Prediction of Bariatric Surgery Publications by Using Different Machine Learning Algorithms
Authors: Senol Dogan, Gunay Karli
Abstract:
Identification of relevant publications based on a Medline query is time-consuming and error-prone. An all based process has the potential to solve this problem without any manual work. To the best of our knowledge, our study is the first to investigate the ability of machine learning to identify relevant articles accurately. 5 different machine learning algorithms were tested using 23 predictors based on several metadata fields attached to publications. We find that the Boosted model is the best-performing algorithm and its overall accuracy is 96%. In addition, specificity and sensitivity of the algorithm is 97 and 93%, respectively. As a result of the work, we understood that we can apply the same procedure to understand cancer gene expression big data.Keywords: prediction of publications, machine learning, algorithms, bariatric surgery, comparison of algorithms, boosted, tree, logistic regression, ANN model
Procedia PDF Downloads 2084910 Air Handling Units Power Consumption Using Generalized Additive Model for Anomaly Detection: A Case Study in a Singapore Campus
Authors: Ju Peng Poh, Jun Yu Charles Lee, Jonathan Chew Hoe Khoo
Abstract:
The emergence of digital twin technology, a digital replica of physical world, has improved the real-time access to data from sensors about the performance of buildings. This digital transformation has opened up many opportunities to improve the management of the building by using the data collected to help monitor consumption patterns and energy leakages. One example is the integration of predictive models for anomaly detection. In this paper, we use the GAM (Generalised Additive Model) for the anomaly detection of Air Handling Units (AHU) power consumption pattern. There is ample research work on the use of GAM for the prediction of power consumption at the office building and nation-wide level. However, there is limited illustration of its anomaly detection capabilities, prescriptive analytics case study, and its integration with the latest development of digital twin technology. In this paper, we applied the general GAM modelling framework on the historical data of the AHU power consumption and cooling load of the building between Jan 2018 to Aug 2019 from an education campus in Singapore to train prediction models that, in turn, yield predicted values and ranges. The historical data are seamlessly extracted from the digital twin for modelling purposes. We enhanced the utility of the GAM model by using it to power a real-time anomaly detection system based on the forward predicted ranges. The magnitude of deviation from the upper and lower bounds of the uncertainty intervals is used to inform and identify anomalous data points, all based on historical data, without explicit intervention from domain experts. Notwithstanding, the domain expert fits in through an optional feedback loop through which iterative data cleansing is performed. After an anomalously high or low level of power consumption detected, a set of rule-based conditions are evaluated in real-time to help determine the next course of action for the facilities manager. The performance of GAM is then compared with other approaches to evaluate its effectiveness. Lastly, we discuss the successfully deployment of this approach for the detection of anomalous power consumption pattern and illustrated with real-world use cases.Keywords: anomaly detection, digital twin, generalised additive model, GAM, power consumption, supervised learning
Procedia PDF Downloads 1524909 Microwave Assisted Extraction (MAE) of Castor Oil from Castor Bean
Authors: Ghazi Faisal Najmuldeen, Rosli Mohd Yunus, Nurfarahin Bt Harun, Mardhiana Binti Ismail
Abstract:
The microwave extraction has attracted great interest among the researchers. The main virtue of the microwave technique is cost-effective, time saving and simple handling procedure. Castor beans was chosen because of its high content in fatty acid, especially ricinoleic acid. The purpose of this research is to extract the castor oil by using the microwave assisted extraction (MAE) using ethanol as solvent and to investigate the influence of extraction time on castor oil yield and to characterize the main composition of the produced castor oil by using the GC-MS. It was found that there is a direct dependence between the oil yield and the time of extraction as it increases from 45% to 58% as the time increase from 10 min to 60 min. The major components of castor oil detected by GC-MS were ricinoleic acid, linoleic acid and oleic acid.Keywords: microwave assisted extraction (MAE), castor oil, ricinoleic acid, linoleic acid
Procedia PDF Downloads 4994908 Transesterification of Refined Palm Oil to Biodiesel in a Continuous Spinning Disc Reactor
Authors: Weerinda Appamana, Jirapong Keawkoon, Yamonporn Pacthong, Jirathiti Chitsanguansuk, Yanyong Sookklay
Abstract:
In the present work, spinning disc reactor has been used for the intensification of synthesis of biodiesel from refined palm oil (RPO) based on the transesterification reaction. Experiments have been performed using different spinning disc surface and under varying operating parameters viz. molar ratio of oil to methanol (over the range of 1:4.5–1:9), rotational speed (over the range of 500–2,000 rpm), total flow rate (over the range of 260-520 ml/min), and KOH catalyst loading of 1.50% by weight of oil. Maximum FAME (fatty acid methyl esters) yield (97.5 %) of biodiesel from RPO was obtained at oil to methanol ratio of 1:6, temperature of 60 °C, and rotational speed of 1500 rpm and flow rate of 520 mL/min using groove disc at KOH catalyst loading of 1.5 wt%. Also, higher yield efficiency (biodiesel produced per unit energy consumed) was obtained for using the spinning disc reactor based approach as compared to the ultrasound hydrodynamic cavitation and conventional mechanical stirrer reactors. It obviously offers a significant reduction in the reaction time for the transesterification, especially when compared with the reaction time of 90 minutes required for the conventional mechanical stirrer. It can be concluded that the spinning disk reactor is a promising alternative method for continuous biodiesel production.Keywords: spinning disc reactor, biodiesel, process intensification, yield efficiency
Procedia PDF Downloads 1544907 Skill-Based or Necessity-Driven Entrepreneurship in Animal Agriculture for Sustainable Job and Wealth Creations
Authors: I. S. R. Butswat, D. Zahraddeen
Abstract:
This study identified and described some skill-based and necessity-driven entrepreneurship in animal agriculture (AA). AA is an integral segment of the world food industry, and provides a good and rapid source of income. The contribution of AA to the Sub-Saharan economy is quite significant, and there are still large opportunities that remain untapped in the sector. However, it is imperative to understand, simplify and package the various components of AA in order to pave way for rapid wealth creation, poverty eradication and women empowerment programmes in sub-Saharan Africa and other developing countries. The entrepreneurial areas of AA highlighted were animal breeding, livestock fattening, dairy production, poultry farming, meat production (beef, mutton, chevon, etc.), rabbit farming, wool/leather production, animal traction, animal feed industry, commercial pasture management, fish farming, sport animals, micro livestock production, private ownership of abattoirs, slaughter slabs, animal parks and zoos, among others. This study concludes that reproductive biotechnology such as oestrous synchronization, super-/multiple ovulation, artificial insemination and embryo transfer can be employed as a tool for improvement of genetic make-up of low-yielding animals in terms of milk, meat, egg, wool, leather production and other economic traits that will necessitate sustainable job and wealth creations.Keywords: animal, agriculture, entreprenurship, wealth
Procedia PDF Downloads 2434906 Morality in Actual Behavior: The Moderation Effect of Identification with the Ingroup and Religion on Norm Compliance
Authors: Shauma L. Tamba
Abstract:
This study examined whether morality is the most important aspect in actual behavior. The prediction was that people tend to behave in line with moral (as compared to competence) norms, especially when such norms are presented by their ingroup. The actual behavior that was tested was support for a military intervention without a mandate from the UN. In addition, this study also examined whether identification with the ingroup and religion moderated the effect of group and norm on support for the norm that was prescribed by their ingroup. The prediction was that those who identified themselves higher with the ingroup moral would show a higher support for the norm. Furthermore, the prediction was also that those who have religion would show a higher support for the norm in the ingroup moral rather than competence. In an online survey, participants were asked to read a scenario in which a military intervention without a mandate was framed as either the moral (but stupid) or smart (but immoral) thing to do by members of their own (ingroup) or another (outgroup) society. This study found that when people identified themselves with the smart (but immoral) norm, they showed a higher support for the norm. However, when people identified themselves with the moral (but stupid) norm, they tend to show a lesser support towards the norm. Most of the results in the study did not support the predictions. Possible explanations and implications are discussed.Keywords: morality, competence, ingroup identification, religion, group norm
Procedia PDF Downloads 4074905 Application of the Electrical Resistivity Tomography and Tunnel Seismic Prediction 303 Methods for Detection Fracture Zones Ahead of Tunnel: A Case Study
Authors: Nima Dastanboo, Xiao-Qing Li, Hamed Gharibdoost
Abstract:
The purpose of this study is to investigate about the geological properties ahead of a tunnel face with using Electrical Resistivity Tomography ERT and Tunnel Seismic Prediction TSP303 methods. In deep tunnels with hydro-geological conditions, it is important to study the geological structures of the region before excavating tunnels. Otherwise, it would lead to unexpected accidents that impose serious damage to the project. For constructing Nosoud tunnel in west of Iran, the ERT and TSP303 methods are employed to predict the geological conditions dynamically during the excavation. In this paper, based on the engineering background of Nosoud tunnel, the important results of applying these methods are discussed. This work demonstrates seismic method and electrical tomography as two geophysical techniques that are able to detect a tunnel. The results of these two methods were being in agreement with each other but the results of TSP303 are more accurate and quality. In this case, the TSP 303 method was a useful tool for predicting unstable geological structures ahead of the tunnel face during excavation. Thus, using another geophysical method together with TSP303 could be helpful as a decision support in excavating, especially in complicated geological conditions.Keywords: tunnel seismic prediction (TSP303), electrical resistivity tomography (ERT), seismic wave, velocity analysis, low-velocity zones
Procedia PDF Downloads 1464904 Effects of Extrusion Conditions on the Cooking Properties of Extruded Rice Vermicelli Using Twin-Screw Extrusion
Authors: Hasika Mith, Hassany Ly, Hengsim Phoung, Rathana Sovann, Pichmony Ek, Sokuntheary Theng
Abstract:
Rice is one of the most important crops used in the production of ready-to-cook (RTC) products such as rice vermicelli, noodles, rice paper, Banh Kanh, wine, snacks, and desserts. Meanwhile, extrusion is the most creative food processing method used for developing products with improved nutritional, functional, and sensory properties. This method authorizes process control such as mixing, cooking, and product shaping. Therefore, the objectives of this study were to produce rice vermicelli using a twin screw extruder, and the cooking properties of extruded rice vermicelli were investigated. Response Surface Methodology (RSM) with Box-Behnken design was applied to optimize extrusion conditions in order to achieve the most desirable product characteristics. The feed moisture rate (30–35%), the barrel temperature (90–110°C), and the screw speed (200–400 rpm) all play a big role and have a significant impact on the water absorption index (WAI), cooking yield (CY), and cooking loss (CL) of extrudate rice vermicelli. Results showed that the WAI of the final extruded rice vermicelli ranged between 216.97% and 571.90%. The CY ranged from 147.94 to 203.19%, while the CL ranged from 8.55 to 25.54%. The findings indicated that at a low screw speed or low temperature, there are likely to be more unbroken polymer chains and more hydrophilic groups, which can bind more water and make WAI values higher. The extruded rice vermicelli's cooking yield value had altered considerably after processing under various conditions, proving that the screw speed had little effect on each extruded rice vermicelli's CY. The increase in barrel temperature tended to increase cooking yield and reduce cooking loss. In conclusion, the extrusion processing by a twin-screw extruder had a significant effect on the cooking quality of the rice vermicelli extrudate.Keywords: cooking loss, cooking quality, cooking yield, extruded rice vermicelli, twin-screw extruder, water absorption index
Procedia PDF Downloads 824903 Production and Application of Organic Waste Compost for Urban Agriculture in Emerging Cities
Authors: Alemayehu Agizew Woldeamanuel, Mekonnen Maschal Tarekegn, Raj Mohan Balakrishina
Abstract:
Composting is one of the conventional techniques adopted for organic waste management, but the practice is very limited in emerging cities despite the most of the waste generated is organic. This paper aims to examine the viability of composting for organic waste management in the emerging city of Addis Ababa, Ethiopia, by addressing the composting practice, quality of compost, and application of compost in urban agriculture. The study collects data using compost laboratory testing and urban farm households’ survey and uses descriptive analysis on the state of compost production and application, physicochemical analysis of the compost samples, and regression analysis on the urban farmer’s willingness to pay for compost. The findings of the study indicated that there is composting practice at a small scale, most of the producers use unsorted feedstock materials, aerobic composting is dominantly used, and the maturation period ranged from four to ten weeks. The carbon content of the compost ranges from 30.8 to 277.1 due to the type of feedstock applied, and this surpasses the ideal proportions for C:N ratio. The total nitrogen, pH, organic matter, and moisture content are relatively optimal. The levels of heavy metals measured for Mn, Cu, Pb, Cd and Cr⁶⁺ in the compost samples are also insignificant. In the urban agriculture sector, chemical fertilizer is the dominant type of soil input in crop productions but vegetable producers use a combination of both fertilizer and other organic inputs, including compost. The willingness to pay for compost depends on income, household size, gender, type of soil inputs, monitoring soil fertility, the main product of the farm, farming method and farm ownership. Finally, this study recommends the need for collaboration among stakeholders’ along the value chain of waste, awareness creation on the benefits of composting and addressing challenges faced by both compost producers and users.Keywords: composting, emerging city, organic waste management, urban agriculture
Procedia PDF Downloads 3064902 Ultrasound Assisted Extraction and Microwave Assisted Extraction of Carotenoids from Melon Shells
Authors: A. Brinda Lakshmi, J. Lakshmi Priya
Abstract:
Cantaloupes (muskmelon and watermelon) contain biologically active molecules such as carotenoids which are natural pigments used as food colorants and afford health benefits. ß-carotene is the major source of carotenoids present in muskmelon and watermelon shell. Carotenoids were extracted using Microwave assisted extraction (MAE) and Ultrasound assisted extraction (UAE) utilising organic lipophilic solvents such as acetone, methanol, and hexane. Extraction conditions feed-solvent ratio, microwave power, ultrasound frequency, temperature and particle size were varied and optimized. It was found that the yield of carotenoids was higher using UAE than MAE, and muskmelon had the highest yield of carotenoids when was ethanol used as a solvent for 0.5 mm particle size.Keywords: carotenoids, extraction, muskmelon shell, watermelon shell
Procedia PDF Downloads 2684901 Machine Learning Approach in Predicting Cracking Performance of Fiber Reinforced Asphalt Concrete Materials
Authors: Behzad Behnia, Noah LaRussa-Trott
Abstract:
In recent years, fibers have been successfully used as an additive to reinforce asphalt concrete materials and to enhance the sustainability and resiliency of transportation infrastructure. Roads covered with fiber-reinforced asphalt concrete (FRAC) require less frequent maintenance and tend to have a longer lifespan. The present work investigates the application of sasobit-coated aramid fibers in asphalt pavements and employs machine learning to develop prediction models to evaluate the cracking performance of FRAC materials. For the experimental part of the study, the effects of several important parameters such as fiber content, fiber length, and testing temperature on fracture characteristics of FRAC mixtures were thoroughly investigated. Two mechanical performance tests, i.e., the disk-shaped compact tension [DC(T)] and indirect tensile [ID(T)] strength tests, as well as the non-destructive acoustic emission test, were utilized to experimentally measure the cracking behavior of the FRAC material in both macro and micro level, respectively. The experimental results were used to train the supervised machine learning approach in order to establish prediction models for fracture performance of the FRAC mixtures in the field. Experimental results demonstrated that adding fibers improved the overall fracture performance of asphalt concrete materials by increasing their fracture energy, tensile strength and lowering their 'embrittlement temperature'. FRAC mixtures containing long-size fibers exhibited better cracking performance than regular-size fiber mixtures. The developed prediction models of this study could be easily employed by pavement engineers in the assessment of the FRAC pavements.Keywords: fiber reinforced asphalt concrete, machine learning, cracking performance tests, prediction model
Procedia PDF Downloads 1394900 Surface Roughness Analysis, Modelling and Prediction in Fused Deposition Modelling Additive Manufacturing Technology
Authors: Yusuf S. Dambatta, Ahmed A. D. Sarhan
Abstract:
Fused deposition modelling (FDM) is one of the most prominent rapid prototyping (RP) technologies which is being used to efficiently fabricate CAD 3D geometric models. However, the process is coupled with many drawbacks, of which the surface quality of the manufactured RP parts is among. Hence, studies relating to improving the surface roughness have been a key issue in the field of RP research. In this work, a technique of modelling the surface roughness in FDM is presented. Using experimentally measured surface roughness response of the FDM parts, an ANFIS prediction model was developed to obtain the surface roughness in the FDM parts using the main critical process parameters that affects the surface quality. The ANFIS model was validated and compared with experimental test results.Keywords: surface roughness, fused deposition modelling (FDM), adaptive neuro fuzzy inference system (ANFIS), orientation
Procedia PDF Downloads 4584899 Optimising the Reservoir Operation Using Water Resources Yield and Planning Model at Inanda Dam, uMngeni Basin
Authors: O. Nkwonta, B. Dzwairo, F. Otieno, J. Adeyemo
Abstract:
The effective management of water resources is of great importance to ensure the supply of water resources to support changing water requirements over a selected planning horizon and in a sustainable and cost-effective way. Essentially, the purpose of the water resources planning process is to balance the available water resources in a system with the water requirements and losses to which the system is subjected. In such situations, water resources yield and planning model can be used to solve those difficulties. It has an advantage over other models by managing model runs, developing a representative system network, modelling incremental sub-catchments, creating a variety of standard system features, special modelling features, and run result output options.Keywords: complex, water resources, planning, cost effective, management
Procedia PDF Downloads 4494898 Examining the Overuse of Cystoscopy in the Evaluation of Lower Urinary Tract Symptoms in Men with Benign Prostatic Hyperplasia: A Prospective Study
Authors: Ilija Kelepurovski, Stefan Lazorovski, Pece Petkovski, Marian Anakievski, Svetlana Petkovska
Abstract:
Introduction: Benign prostatic hyperplasia (BPH) is a common condition that affects men over the age of 50 and is characterized by an enlarged prostate gland that can cause lower urinary tract symptoms (LUTS). Uroflowmetry and cystoscopy are two commonly used diagnostic tests to evaluate LUTS and diagnose BPH. While both tests can be useful, there is a risk of overusing cystoscopy and underusing uroflowmetry in the evaluation of LUTS. The aim of this study was to compare the use of uroflowmetry and cystoscopy in a prospective cohort of 100 patients with suspected BPH or other urinary tract conditions and to assess the diagnostic yield of each test. Materials and Methods: This was a prospective study of 100 male patients over the age of 50 with suspected BPH or other urinary tract conditions who underwent uroflowmetry and cystoscopy for the evaluation of LUTS at a single tertiary care center. Inclusion criteria included male patients over the age of 50 with suspected BPH or other urinary tract conditions, while exclusion criteria included previous urethral or bladder surgery, active urinary tract infection, and significant comorbidities. The primary outcome of the study was the frequency of cystoscopy in the evaluation of LUTS, and the secondary outcome was the diagnostic yield of each test. Results: Of the 100 patients included in the study, 86 (86%) were diagnosed with BPH and 14 (14%) had other urinary tract conditions. The mean age of the study population was 67 years. Uroflowmetry was performed on all 100 patients, while cystoscopy was performed on 70 (70%) of the patients. The diagnostic yield of uroflowmetry was high, with a clear diagnosis made in 92 (92%) of the patients. The diagnostic yield of cystoscopy was also high, with a clear diagnosis made in 63 (90%) of the patients who underwent the procedure. There was no statistically significant difference in the diagnostic yield of uroflowmetry and cystoscopy (p = 0.20). Discussion: Our study found that uroflowmetry is an effective and well-tolerated diagnostic tool for evaluating LUTS and diagnosing BPH, with a high diagnostic yield and low risk of complications. Cystoscopy is also a useful diagnostic tool, but it is more invasive and carries a small risk of complications such as bleeding or urinary tract infection. Both tests had a high diagnostic yield, suggesting that either test can provide useful information in the evaluation of LUTS. However, the fact that 70% of the study population underwent cystoscopy raises concerns about the potential overuse of this test in the evaluation of LUTS. This is especially relevant given the focus on patient-centered care and the need to minimize unnecessary or invasive procedures. Our findings underscore the importance of considering the clinical context and using evidence-based guidelines. Conclusion: In this prospective study of 100 patients with suspected BPH or other urinary tract conditions, we found that uroflowmetry and cystoscopy were both valuable diagnostic tools for the evaluation of LUTS. However, the potential overuse of cystoscopy in this population warrants further investigation and highlights the need for careful consideration of the optimal use of diagnostic tests in the evaluation of LUTS and the diagnosis of BPH. Further research is needed to better understand the relative roles of uroflowmetry and cystoscopy in the diagnostic workup of patients with LUTS, and to develop evidence-based guidelines for their appropriate use.Keywords: uroflowmetry, cystoscopy, LUTS, BPH
Procedia PDF Downloads 764897 Concept of a Pseudo-Lower Bound Solution for Reinforced Concrete Slabs
Authors: M. De Filippo, J. S. Kuang
Abstract:
In construction industry, reinforced concrete (RC) slabs represent fundamental elements of buildings and bridges. Different methods are available for analysing the structural behaviour of slabs. In the early ages of last century, the yield-line method has been proposed to attempt to solve such problem. Simple geometry problems could easily be solved by using traditional hand analyses which include plasticity theories. Nowadays, advanced finite element (FE) analyses have mainly found their way into applications of many engineering fields due to the wide range of geometries to which they can be applied. In such cases, the application of an elastic or a plastic constitutive model would completely change the approach of the analysis itself. Elastic methods are popular due to their easy applicability to automated computations. However, elastic analyses are limited since they do not consider any aspect of the material behaviour beyond its yield limit, which turns to be an essential aspect of RC structural performance. Furthermore, their applicability to non-linear analysis for modeling plastic behaviour gives very reliable results. Per contra, this type of analysis is computationally quite expensive, i.e. not well suited for solving daily engineering problems. In the past years, many researchers have worked on filling this gap between easy-to-implement elastic methods and computationally complex plastic analyses. This paper aims at proposing a numerical procedure, through which a pseudo-lower bound solution, not violating the yield criterion, is achieved. The advantages of moment distribution are taken into account, hence the increase in strength provided by plastic behaviour is considered. The lower bound solution is improved by detecting over-yielded moments, which are used to artificially rule the moment distribution among the rest of the non-yielded elements. The proposed technique obeys Nielsen’s yield criterion. The outcome of this analysis provides a simple, yet accurate, and non-time-consuming tool of predicting the lower-bound solution of the collapse load of RC slabs. By using this method, structural engineers can find the fracture patterns and ultimate load bearing capacity. The collapse triggering mechanism is found by detecting yield-lines. An application to the simple case of a square clamped slab is shown, and a good match was found with the exact values of collapse load.Keywords: computational mechanics, lower bound method, reinforced concrete slabs, yield-line
Procedia PDF Downloads 177