Search results for: HVOF (High Velocity Oxygen Fuel)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 22932

Search results for: HVOF (High Velocity Oxygen Fuel)

21972 Driving Environmental Quality through Fuel Subsidy Reform in Nigeria

Authors: O. E. Akinyemi, P. O. Alege, O. O. Ajayi, L. A. Amaghionyediwe, A. A. Ogundipe

Abstract:

Nigeria as an oil-producing developing country in Africa is one of the many countries that had been subsidizing consumption of fossil fuel. Despite the numerous advantage of this policy ranging from increased energy access, fostering economic and industrial development, protecting the poor households from oil price shocks, political considerations, among others; they have been found to impose economic cost, wasteful, inefficient, create price distortions discourage investment in the energy sector and contribute to environmental pollution. These negative consequences coupled with the fact that the policy had not been very successful at achieving some of its stated objectives, led to a number of organisations and countries such as the Group of 7 (G7), World Bank, International Monetary Fund (IMF), International Energy Agency (IEA), Organisation for Economic Co-operation and Development (OECD), among others call for global effort towards reforming fossil fuel subsidies. This call became necessary in view of seeking ways to harmonise certain existing policies which may by design hamper current effort at tackling environmental concerns such as climate change. This is in addition to driving a green growth strategy and low carbon development in achieving sustainable development. The energy sector is identified to play a vital role. This study thus investigates the prospects of using fuel subsidy reform as a viable tool in driving an economy that de-emphasizes carbon growth in Nigeria. The method used is the Johansen and Engle-Granger two-step Co-integration procedure in order to investigate the existence or otherwise of a long-run equilibrium relationship for the period 1971 to 2011. Its theoretical framework is rooted in the Environmental Kuznet Curve (EKC) hypothesis. In developing three case scenarios (case of subsidy payment, no subsidy payment and effective subsidy), findings from the study supported evidence of a long run sustainable equilibrium model. Also, estimation results reflected that the first and the second scenario do not significantly influence the indicator of environmental quality. The implication of this is that in reforming fuel subsidy to drive environmental quality for an economy like Nigeria, strong and effective regulatory framework (measure that was interacted with fuel subsidy to yield effective subsidy) is essential.

Keywords: environmental quality, fuel subsidy, green growth, low carbon growth strategy

Procedia PDF Downloads 326
21971 A Comparative Study on Primary Productivity in Fish Cage Culture Unit and Fish Pond in Relation to Different Level of Water Depth

Authors: Pawan Kumar Sharma, J. Stephan Sampath Kumar, D. Manikandavelu, V. Senthil Kumar

Abstract:

The total amount of productivity in the system is the gross primary productivity. The present study was carried out to understand the relationship between productivity in the cages and water depth. The experiment was conducted in the fish cages installed in the pond at the Directorate of Sustainable Aquaculture, Thanjavur, Tamil Nadu Dr. J. Jayalalithaa Fisheries University, Tamil Nadu (10° 47' 13.1964'' N; 79° 8' 16.1700''E). Primary productivity was estimated by light and dark bottle method. The measurement of primary productivity was done at different depths viz., 20 cm, 40 cm, and 60 cm. Six Biological Oxygen Demand bottles of 300 ml capacity were collected and tagged. The productivity was obtained in mg O2/l/hr. The maximum dissolved oxygen level at 20 cm depth was observed 5.62 ± 0.22 mg/l/hr in the light bottle in pond water while the minimum dissolved oxygen level at 20 cm depth in a cage was observed 3.62 ± 0.18 mg/l/hr in dark bottle. In the same way, the maximum and minimum value of dissolved oxygen was observed at 40, and 60 cm depth and results were compared. A slight change in pH was observed in the cage and pond. The maximum gross primary productivity observed was 1.97 mg/l/hr in pond at 20 cm depth while minimum gross primary productivity observed was 0.82±0.16 mg/l/hr in a cage at 60 cm depth. The community respiration was also variable with the depth in both cage and pond. Maximum community respiration was found 1.50±0.19 mg/l/hr in pond at 20 cm depth. A strong positive linear relationship was observed between primary productivity and fish yields in ponds. The pond primary productivity can contribute substantially to the nutrition of farm-raised aquaculture species, including shrimp. The growth of phytoplankton’s is dependent on the sun light, availability of primary nutrients (N, P, and K) in the water body and transparency, so to increase the primary productivity fertilization through organic manure may be done that will clean to the pond environment also.

Keywords: cage aquaculture, water depth, net primary productivity, gross primary productivity, community respiration

Procedia PDF Downloads 205
21970 Magneto-Hydrodynamic Mixed Convective Fluid Flow through Two Parallel Vertical Plates Channel with Hall, Chemical Reaction, and Thermal Radiation Effects

Authors: Okuyade Ighoroje Wilson Ata

Abstract:

Magneto-hydrodynamic mixed convective chemically reacting fluid flow through two parallel vertical plates channel with Hall, radiation, and chemical reaction effects are examined. The fluid is assumed to be chemically reactive, electrically conducting, magnetically susceptible, viscous, incompressible, and Newtonian; the plates are porous, electrically conductive, and heated to a high-temperature regime to generate thermal rays. The flow system is highly interactive, such that cross/double diffusion is present. The governing equations are partial differential equations transformed into ordinary differential equations using similarity transformation and solved by the method of Homotopy Perturbation. Expressions for the concentration, temperature, velocity, Nusselt number, Sherwood number, and Wall shear stress are obtained, computed, and presented graphically and tabularly. The analysis of results shows, amongst others, that an increase in the Raleigh number increases the main velocity and temperature but decreases the concentration. More so, an increase in chemical reaction rate increases the main velocity, temperature, rate of heat transfer from the terminal plate, the rate of mass transfer from the induced plate, and Wall shear stress on both the induced and terminal plates, decreasing the concentration, and the mass transfer rate from the terminal plate. Some of the obtained results are benchmarked with those of existing literature and are in consonance.

Keywords: chemical reaction, hall effect, magneto-hydrodynamic, radiation, vertical plates channel

Procedia PDF Downloads 77
21969 Electrochemical Study of Prepared Cubic Fluorite Structured Titanium Doped Lanthanum Gallium Cerate Electrolyte for Low Temperature Solid Oxide Fuel Cell

Authors: Rida Batool, Faizah Altaf, Saba Nadeem, Afifa Aslam, Faisal Alamgir, Ghazanfar Abbas

Abstract:

Today, the need of the hour is to find out alternative renewable energy resources in order to reduce the burden on fossil fuels and prevent alarming environmental degradation. Solid oxide fuel cell (SOFC) is considered a good alternative energy conversion device because it is environmentally benign and supplies energy on demand. The only drawback associated with SOFC is its high operating temperature. In order to reduce operating temperature, different types of composite material are prepared. In this work, titanium doped lanthanum gallium cerate (LGCT) composite is prepared through the co-precipitation method as electrolyte and examined for low temperature SOFCs (LTSOFCs). The structural properties are analyzed by X-Ray Diffractometry (XRD) and Fourier Transform Infrared (FTIR) Spectrometry. The surface properties are investigated by Scanning Electron Microscopy (SEM). The electrolyte LGCT has the formula LGCTO₃ because it showed two phases La.GaO and Ti.CeO₂. The average particle size is found to be (32 ± 0.9311) nm. The ionic conductivity is achieved to be 0.073S/cm at 650°C. Arrhenius plots are drawn to calculate activation energy and found 2.96 eV. The maximum power density and current density are achieved at 68.25mW/cm² and 357mA/cm², respectively, at 650°C with hydrogen. The prepared material shows excellent ionic conductivity at comparatively low temperature, that makes it a potentially good candidate for LTSOFCs.

Keywords: solid oxide fuel cell, LGCTO₃, cerium composite oxide, ionic conductivity, low temperature electrolyte

Procedia PDF Downloads 108
21968 Conversion of Tropical Wood to Bio-oil and Charcoal by Using the Process of Pyrolysis

Authors: Kittiphop Promdee, Somruedee Satitkune, Chakkrich Boonmee, Tharapong Vitidsant

Abstract:

Conversion of tropical wood using the process of pyrolysis, which converts tropical wood into fuel products, i.e. bio-oil and charcoal. The results showed the high thermal in the reactor core was thermally controlled between 0-600°C within 60 minutes. The products yield calculation showed that the liquid yield obtained from tropical wood was at its highest at 39.42 %, at 600°C, indicating that the tropical wood had received good yields because of a low gas yield average and high solid and liquid yield average. This research is not only concerned with the controlled temperatures, but also with the controlled screw rotating and feeding rate of biomass.

Keywords: pyrolysis, tropical wood, bio-oil, charcoal, heating value, SEM

Procedia PDF Downloads 480
21967 Catalytic Activity of CU(II) Complex on C(SP3)-H Oxidation Reactions

Authors: Yalçın Kılıç, İbrahim Kani

Abstract:

In recent years, interest in the synthesis of coordination compounds has greatly increased due to various application areas (such as catalysis, gas storage, luminescence). Dicarboxylic acids are often used in the synthesis of metal complexes. Bis-thiosalicylate derivative ligands contribute to the synthesis of structures of crystal engineering interest, as they can have both rigid and flexible properties. In addition, these ligands have great potential in terms of catalytic applications with the sulfur and oxygen donor atoms in their structures. In this study, we synthesized a Cu(II) complex [Cu(tsaxyl)(phen)2]•CH3OH (where tsaxyl = 2,2'-(1,2-phylenebis(methylene))bis(sulfanedyl)dibenzoate, phen = 1,10-phenantroline) and characterized through X-ray crystallography. The catalytic activities of Cu(II) complex on oxidation of ethylbenzene, cyclohexane, diphenylmethane, p-xylene were performed in acetonitrile with t-BuOOH as the source of oxygen.

Keywords: complex, crystallography, catalysis, oxidation

Procedia PDF Downloads 107
21966 Monte Carlo Risk Analysis of a Carbon Abatement Technology

Authors: Hameed Rukayat Opeyemi, Pericles Pilidis, Pagone Emanuele

Abstract:

Climate change represents one of the single most challenging problems facing the world today. According to the National Oceanic and Administrative Association, Atmospheric temperature rose almost 25% since 1958, Artic sea ice has shrunk 40% since 1959 and global sea levels have risen more than 5.5 cm since 1990. Power plants are the major culprits of GHG emission to the atmosphere. Several technologies have been proposed to reduce the amount of GHG emitted to the atmosphere from power plant, one of which is the less researched Advanced zero emission power plant. The advanced zero emission power plants make use of mixed conductive membrane (MCM) reactor also known as oxygen transfer membrane (OTM) for oxygen transfer. The MCM employs membrane separation process. The membrane separation process was first introduced in 1899 when Walter Hermann Nernst investigated electric current between metals and solutions. He found that when a dense ceramic is heated, current of oxygen molecules move through it. In the bid to curb the amount of GHG emitted to the atmosphere, the membrane separation process was applied to the field of power engineering in the low carbon cycle known as the Advanced zero emission power plant (AZEP cycle). The AZEP cycle was originally invented by Norsk Hydro, Norway and ABB Alstom power (now known as Demag Delaval Industrial turbo machinery AB), Sweden. The AZEP drew a lot of attention because its ability to capture ~100% CO2 and also boasts of about 30-50 % cost reduction compared to other carbon abatement technologies, the penalty in efficiency is also not as much as its counterparts and crowns it with almost zero NOx emissions due to very low nitrogen concentrations in the working fluid. The advanced zero emission power plants differ from a conventional gas turbine in the sense that its combustor is substituted with the mixed conductive membrane (MCM-reactor). The MCM-reactor is made up of the combustor, low temperature heat exchanger LTHX (referred to by some authors as air pre-heater the mixed conductive membrane responsible for oxygen transfer and the high temperature heat exchanger and in some layouts, the bleed gas heat exchanger. Air is taken in by the compressor and compressed to a temperature of about 723 Kelvin and pressure of 2 Mega-Pascals. The membrane area needed for oxygen transfer is reduced by increasing the temperature of 90% of the air using the LTHX; the temperature is also increased to facilitate oxygen transfer through the membrane. The air stream enters the LTHX through the transition duct leading to inlet of the LTHX. The temperature of the air stream is then increased to about 1150 K depending on the design point specification of the plant and the efficiency of the heat exchanging system. The amount of oxygen transported through the membrane is directly proportional to the temperature of air going through the membrane. The AZEP cycle was developed using the Fortran software and economic analysis was conducted using excel and Matlab followed by optimization case study. This paper discusses techno-economic analysis of four possible layouts of the AZEP cycle. The Simple bleed gas heat exchange layout (100 % CO2 capture), Bleed gas heat exchanger layout with flue gas turbine (100 % CO2 capture), Pre-expansion reheating layout (Sequential burning layout) – AZEP 85 % (85 % CO2 capture) and Pre-expansion reheating layout (Sequential burning layout) with flue gas turbine– AZEP 85 % (85 % CO2 capture). This paper discusses Montecarlo risk analysis of four possible layouts of the AZEP cycle.

Keywords: gas turbine, global warming, green house gases, power plants

Procedia PDF Downloads 471
21965 Hydrodynamic Study of Laminar Flow in Agitated Vessel by a Curved Blade Agitator

Authors: A. Benmoussa, M. Bouanini, M. Rebhi

Abstract:

The mixing and agitation of fluid in stirred tank is one of the most important unit operations for many industries such as chemical, biotechnological, pharmaceutical, petrochemical, cosmetic, and food processing. Therefore, determining the level of mixing and overall behaviour and performance of the mixing tanks are crucial from the product quality and process economics point of views. The most fundamental needs for the analysis of these processes from both a theoretical and industrial perspective is the knowledge of the hydrodynamic behaviour and the flow structure in such tanks. Depending on the purpose of the operation carried out in mixer, the best choice for geometry of the tank and agitator type can vary widely. Initially, a local and global study namely the velocity and power number on a typical agitation system agitated by a mobile-type two-blade straight (d/D=0.5) allowed us to test the reliability of the CFD, the result were compared with those of experimental literature, a very good concordance was observed. The stream function, the velocity profile, the velocity fields and power number are analyzed. It was shown that the hydrodynamics is modified by the curvature of the mobile which plays a key role.

Keywords: agitated tanks, curved blade agitator, laminar flow, CFD modelling

Procedia PDF Downloads 414
21964 The Catalytic Properties of PtSn/Al2O3 for Acetic Acid Hydrogenation

Authors: Mingchuan Zhou, Haitao Zhang, Hongfang Ma, Weiyong Ying

Abstract:

Alumina supported platinum and tin catalysts with different loadings of Pt and Sn were prepared and characterized by low temperature N2 adsorption/desorption, H2-temperature programed reduction and CO pulse chemisorption. Pt and Sn below 1% loading were suitable for acetic acid hydrogenation. The best performance over 0.75Pt1Sn/Al2O3 can reach 87.55% conversion of acetic acid and 47.39% selectivity of ethanol. The operating conditions of acetic acid hydrogenation over 1Pt1Sn/Al2O3 were investigated. High reaction temperature can enhance the conversion of acetic acid, but it decreased total selectivity of ethanol and acetyl acetate. High pressure and low weight hourly space velocity were beneficial to both conversion of acetic acid and selectivity to ethanol.

Keywords: acetic acid, hydrogenation, operating condition, PtSn

Procedia PDF Downloads 355
21963 Experimental Investigation Of Membrane Performance

Authors: Ali Serhat Ersoyoğlu, Kevser Dincer, Salih Yayla, Derya Saygılı

Abstract:

In this study, performance of membrane was experimentally investigated. A solution having 1,5 gr Yttria-Stabilized Zirconia (YSZ)+ 10 mL methanol was prepared. This solution was taken out and filled into a spinning syringe. 6 grill-shaped wires having the sizes of 2x2 cm2’were cladded with YSZ + methanol solution by using the spinning method. After coating, the grill-shaped wires were left to dry. The dry wires were then weighed on a precision scale to determine the amount of coating imposed. The grill-shaped wires were mounted on the anode side of the PEM fuel cell membrane. Effects of the coating on the wires on current, power and resistance performances in the PEM fuel cells were determined experimentally and compared for every case. The highest current occurred at the 1st second on current #1, while the lowest current occurred at the 1171th second on current #6. The highest resistance was recorded at the 1171th second on resistance # 6, the lowest occurred at the 1st second on resistance # 1, whereas the highest power took place at the 1st second on power #1, the lowest power appeared at the 1171th second on power #5.

Keywords: membrane, electro-spinning method, Yttria-Stabilized Zirconia, fuel cells

Procedia PDF Downloads 369
21962 Subcutan Isosulfan Blue Administration May Interfere with Pulse Oximetry

Authors: Esra Yuksel, Dilek Duman, Levent Yeniay, Sezgin Ulukaya

Abstract:

Sentinel lymph node biopsy (SLNB) is a minimal invasive technique with lower morbidity in axillary staging of breast cancer. Isosulfan blue stain is frequently used in SLNB and regarded as safe. The present case report aimed to report severe decrement in SpO2 following isosulfan blue administration, as well as skin and urine signs and inconsistency with clinical picture in a 67-year-old ,77 kg, ASA II female case that underwent SLNB under general anesthesia. Ten minutes after subcutaneous administration of 10 ml 1% isosulfan blue by the surgeons into the patient, who were hemodynamically stable, SpO2 first reduced to 87% from 99%, and then to 75% in minutes despite 100% oxygen support. Meanwhile, blood pressure and EtCO2 monitoring was unremarkable. After specifying that anesthesia device worked normally, airway pressure did not increase and the endotracheal tube has been placed accurately, the blood sample was taken from the patient for arterial gas analysis. A severe increase was thought in MetHb concentration since SpO2 persisted to be 75% although the concentration of inspired oxygen was 100%, and solution of 2500 mg ascorbic acid in 500 ml 5% Dextrose was given to the patient via intravenous route until the results of arterial blood gas were obtained. However, arterial blood gas results were as follows: pH: 7.54, PaCO2: 23.3 mmHg, PaO2: 281 mmHg, SaO2: %99, and MetHb: %2.7. Biochemical analysis revealed a blood MetHb concentration of 2%.However, since arterial blood gas parameters were good, hemodynamics of the patient was stable and methemoglobin concentration was not so high, the patient was extubated after surgery when she was relaxed, cooperated and had adequate respiration. Despite the absence of respiratory or neurological distress, SpO2 value was increased only up to 85% within 2 hours with 5 L/min oxygen support via face mask in the surgery room as the patient was extubated. At that time, the skin of particularly the upper part of her body has turned into blue, more remarkable on the face. The color of plasma of the blood taken from the patient for biochemical analysis was blue. The color of urine coming throughout the urinary catheter placed in intensive care unit was also blue. Twelve hours after 5 L/min. oxygen inhalation via a mask, the SpO2 reached to 90%. During monitoring in intensive care unit on the postoperative 1st day, facial color and urine color of the patient was still blue, SpO2 was 92%, and arterial blood gas levels were as follows: pH: 7.44, PaO2: 76.1 mmHg, PaCO2: 38.2 mmHg, SaO2: 99%, and MetHb 1%. During monitoring in clinic on the postoperative 2nd day, SpO2 was 95% without oxygen support and her facial and urine color turned into normal. The patient was discharged on the 3rd day without any problem.In conclusion, SLNB is a less invasive alternative to axillary dissection. However, false pulse oximeter reading due to pigment interference is a rare complication of this procedure. Arterial blood gas analysis should be used to confirm any fall in SpO2 reading during monitoring.

Keywords: isosulfan blue, pulse oximetry, SLNB, methemoglobinemia

Procedia PDF Downloads 315
21961 A Project in the Framework “Nextgenerationeu”: Sustainable Photoelectrochemical Hydrogen Evolution - SERGIO

Authors: Patrizia Frontera, Anastasia Macario, Simona Crispi, Angela Malara, Pierantonio De Luca, Stefano Trocino

Abstract:

The exploration of solar energy for the photoelectrochemical splitting of water into hydrogen and oxygen has been extensively researched as a means of generating sustainable H₂ fuel. However, despite these efforts, commercialization of this technology has not yet materialized. Presently, the primary impediments to commercialization include low solar-to-hydrogen efficiency (2-3% in PEC with an active area of up to 10-15 cm²), the utilization of costly and critical raw materials (e.g., BiVO₄), and energy losses during the separation of H₂ from O₂ and H₂O vapours in the output stream. The SERGIO partners have identified an advanced approach to fabricate photoelectrode materials, coupled with an appropriate scientific direction to achieve cost-effective solar-driven H₂ production in a tandem photoelectrochemical cell. This project is designed to reach Technology Readiness Level (TRL) 4 by validating the technology in the laboratory using a cell with an active area of up to 10 cm², boasting a solar-to-hydrogen efficiency of 5%, and ensuring acceptable hydrogen purity (99.99%). Our objectives include breakthroughs in cost efficiency, conversion efficiency, and H₂ purity.

Keywords: photoelectrolysis, green hydrogen, photoelectrochemical cell, semiconductors

Procedia PDF Downloads 67
21960 Investigation of the Technological Demonstrator 14x B in Different Angle of Attack in Hypersonic Velocity

Authors: Victor Alves Barros Galvão, Israel Da Silveira Rego, Antonio Carlos Oliveira, Paulo Gilberto De Paula Toro

Abstract:

The Brazilian hypersonic aerospace vehicle 14-X B, VHA 14-X B, is a vehicle integrated with the hypersonic airbreathing propulsion system based on supersonic combustion (scramjet), developing in Aerothermodynamics and hypersonic Prof. Henry T. Nagamatsu Laboratory, to conduct demonstration in atmospheric flight at the speed corresponding to Mach number 7 at an altitude of 30km. In the experimental procedure the hypersonic shock tunnel T3 was used, installed in that laboratory. This device simulates the flow over a model is fixed in the test section and can also simulate different atmospheric conditions. The scramjet technology offers substantial advantages to improve aerospace vehicle performance which flies at a hypersonic speed through the Earth's atmosphere by reducing fuel consumption on board. Basically, the scramjet is an aspirated aircraft engine fully integrated that uses oblique/conic shock waves generated during hypersonic flight, to promote the deceleration and compression of atmospheric air in scramjet inlet. During the hypersonic flight, the vehicle VHA 14-X will suffer atmospheric influences, promoting changes in the vehicle's angles of attack (angle that the mean line of vehicle makes with respect to the direction of the flow). Based on this information, a study is conducted to analyze the influences of changes in the vehicle's angle of attack during the atmospheric flight. Analytical theoretical analysis, simulation computational fluid dynamics and experimental investigation are the methodologies used to design a technological demonstrator prior to the flight in the atmosphere. This paper considers analysis of the thermodynamic properties (pressure, temperature, density, sound velocity) in lower surface of the VHA 14-X B. Also, it considers air as an ideal gas and chemical equilibrium, with and without boundary layer, considering changes in the vehicle's angle of attack (positive and negative in relation to the flow) and bi-dimensional expansion wave theory at the expansion section (Theory of Prandtl-Meyer).

Keywords: angle of attack, experimental hypersonic, hypersonic airbreathing propulsion, Scramjet

Procedia PDF Downloads 409
21959 Ultrasonic Studies of Polyurea Elastomer Composites with Inorganic Nanoparticles

Authors: V. Samulionis, J. Banys, A. Sánchez-Ferrer

Abstract:

Inorganic nanoparticles are used for fabrication of various composites based on polymer materials because they exhibit a good homogeneity and solubility of the composite material. Multifunctional materials based on composites of a polymer containing inorganic nanotubes are expected to have a great impact on industrial applications in the future. An emerging family of such composites are polyurea elastomers with inorganic MoS2 nanotubes or MoSI nanowires. Polyurea elastomers are a new kind of materials with higher performance than polyurethanes. The improvement of mechanical, chemical and thermal properties is due to the presence of hydrogen bonds between the urea motives which can be erased at high temperature softening the elastomeric network. Such materials are the combination of amorphous polymers above glass transition and crosslinkers which keep the chains into a single macromolecule. Polyurea exhibits a phase separated structure with rigid urea domains (hard domains) embedded in a matrix of flexible polymer chains (soft domains). The elastic properties of polyurea can be tuned over a broad range by varying the molecular weight of the components, the relative amount of hard and soft domains, and concentration of nanoparticles. Ultrasonic methods as non-destructive techniques can be used for elastomer composites characterization. In this manner, we have studied the temperature dependencies of the longitudinal ultrasonic velocity and ultrasonic attenuation of these new polyurea elastomers and composites with inorganic nanoparticles. It was shown that in these polyurea elastomers large ultrasonic attenuation peak and corresponding velocity dispersion exists at 10 MHz frequency below room temperature and this behaviour is related to glass transition Tg of the soft segments in the polymer matrix. The relaxation parameters and Tg depend on the segmental molecular weight of the polymer chains between crosslinking points, the nature of the crosslinkers in the network and content of MoS2 nanotubes or MoSI nanowires. The increase of ultrasonic velocity in composites modified by nanoparticles has been observed, showing the reinforcement of the elastomer. In semicrystalline polyurea elastomer matrices, above glass transition, the first order phase transition from quasi-crystalline to the amorphous state has been observed. In this case, the sharp ultrasonic velocity and attenuation anomalies were observed near the transition temperature TC. Ultrasonic attenuation maximum related to glass transition was reduced in quasicrystalline polyureas indicating less influence of soft domains below TC. The first order phase transition in semicrystalline polyurea elastomer samples has large temperature hysteresis (> 10 K). The impact of inorganic MoS2 nanotubes resulted in the decrease of the first order phase transition temperature in semicrystalline composites.

Keywords: inorganic nanotubes, polyurea elastomer composites, ultrasonic velocity, ultrasonic attenuation

Procedia PDF Downloads 300
21958 Experiment-Based Teaching Method for the Varying Frictional Coefficient

Authors: Mihaly Homostrei, Tamas Simon, Dorottya Schnider

Abstract:

The topic of oscillation in physics is one of the key ideas which is usually taught based on the concept of harmonic oscillation. It can be an interesting activity to deal with a frictional oscillator in advanced high school classes or in university courses. Its mechanics are investigated in this research, which shows that the motion of the frictional oscillator is more complicated than a simple harmonic oscillator. The physics of the applied model in this study seems to be interesting and useful for undergraduate students. The study presents a well-known physical system, which is mostly discussed theoretically in high school and at the university. The ideal frictional oscillator is normally used as an example of harmonic oscillatory motion, as its theory relies on the constant coefficient of sliding friction. The structure of the system is simple: a rod with a homogeneous mass distribution is placed on two rotating identical cylinders placed at the same height so that they are horizontally aligned, and they rotate at the same angular velocity, however in opposite directions. Based on this setup, one could easily show that the equation of motion describes a harmonic oscillation considering the magnitudes of the normal forces in the system as the function of the position and the frictional forces with a constant coefficient of frictions are related to them. Therefore, the whole description of the model relies on simple Newtonian mechanics, which is available for students even in high school. On the other hand, the phenomenon of the described frictional oscillator does not seem to be so straightforward after all; experiments show that the simple harmonic oscillation cannot be observed in all cases, and the system performs a much more complex movement, whereby the rod adjusts itself to a non-harmonic oscillation with a nonzero stable amplitude after an unconventional damping effect. The stable amplitude, in this case, means that the position function of the rod converges to a harmonic oscillation with a constant amplitude. This leads to the idea of a more complex model which can describe the motion of the rod in a more accurate way. The main difference to the original equation of motion is the concept that the frictional coefficient varies with the relative velocity. This dependence on the velocity was investigated in many different research articles as well; however, this specific problem could demonstrate the key concept of the varying friction coefficient and its importance in an interesting and demonstrative way. The position function of the rod is described by a more complicated and non-trivial, yet more precise equation than the usual harmonic oscillation description of the movement. The study discusses the structure of the measurements related to the frictional oscillator, the qualitative and quantitative derivation of the theory, and the comparison of the final theoretical function as well as the measured position-function in time. The project provides useful materials and knowledge for undergraduate students and a new perspective in university physics education.

Keywords: friction, frictional coefficient, non-harmonic oscillator, physics education

Procedia PDF Downloads 192
21957 Comparative Performance and Emission Analysis of Diesel Engine Fueled with Diesel and Bitter Apricot Kernal Oil Biodiesel Blends

Authors: Virender Singh Gurau, Akash Deep, Sarbjot S. Sandhu

Abstract:

Vegetable oils are produced from numerous oil seed crops. While all vegetable oils have high energy content, most require some processing to assure safe use in internal combustion engines. Some of these oils already have been evaluated as substitutes for diesel fuels. In the present research work Bitter Apricot kernel oil was employed as a feedstock for the production of biodiesel. The physicochemical properties of the Bitter Apricot kernel oil methyl ester were investigated as per ASTM D6751. From the series of engine testing, it is concluded that the brake thermal efficiency (BTE) with biodiesel blend was little lower than that of diesel. BSEC is slightly higher for Bitter apricot kernel oil methyl ester blends than neat diesel. For biodiesel blends, CO emission was lower than diesel fuel as B 20 reduced CO emissions by 18.75%. Approximately 11% increase in NOx emission was observed with 20% biodiesel blend. It is observed that HC emissions tend to decrease for biodiesel based fuels and Smoke opacity was found lower for biodiesel blends in comparison to diesel fuel.

Keywords: biodiesel, transesterification, bitter apricot kernel oil, performance and emission testing

Procedia PDF Downloads 335
21956 A Comparison of Design and Off-Design Performances of a Centrifugal Compressor

Authors: Zeynep Aytaç, Nuri Yücel

Abstract:

Today, as the need for high efficiency and fuel-efficient engines have increased, centrifugal compressor designs are expected to be high-efficient and have high-pressure ratios than ever. The present study represents a design methodology of centrifugal compressor placed in a mini jet engine for the design and off-design points with the utilization of computational fluid dynamics (CFD) and compares the performance characteristics at the mentioned two points. Although the compressor is expected to provide the required specifications at the design point, it is known that it is important for the design to deliver the required parameters at the off-design point also as it will not operate at the design point always. It was observed that the obtained mass flow rate, pressure ratio, and efficiency values are within the limits of the design specifications for the design and off-design points. Despite having different design inputs for the mentioned two points, they reveal similar flow characteristics in the general frame.

Keywords: centrifugal compressor, computational fluid dynamics, design point, off-design point

Procedia PDF Downloads 144
21955 Mechanical Contribution of Silica Fume and Hydrated Lime Addition in Mortars Assessed by Ultrasonic Pulse Velocity Tests

Authors: Nacim Khelil, Amar Kahil, Said Boukais

Abstract:

The aim of the present study is to investigate the changes in the mechanical properties of mortars including additions of Condensed Silica Fume (CSF), Hydrated Lime (CH) or both at various amounts (5% to 15% of cement replacement) and high water ratios (w/b) (0.4 to 0.7). The physical and mechanical changes in the mixes were evaluated using non-destructive tests (Ultrasonic Pulse Velocity (UPV)) and destructive tests (crushing tests) on 28 day-long specimens consecutively, in order to assess CSF and CH replacement rate influence on the mechanical and physical properties of the mortars, as well as CSF-CH pre-mixing on the improvement of these properties. A significant improvement of the mechanical properties of the CSF, CSF-CH mortars, has been noted. CSF-CH mixes showed the best improvements exceeding 50% improvement, showing the sizable pozzolanic reaction contribution to the specimen strength development. UPV tests have shown increased velocities for CSF and CSH mixes, however no proportional evolution with compressive strengths could be noted. The results of the study show that CSF-CH addition could represent a suitable solution to significantly increase the mechanical properties of mortars.

Keywords: compressive strength, condensed silica fume, hydrated lime, pozzolanic reaction, UPV testing

Procedia PDF Downloads 148
21954 Comparative Numerical Simulations of Reaction-Coupled Annular and Free-Bubbling Fluidized Beds Performance

Authors: Adefarati Oloruntoba, Yongmin Zhang, Hongliang Xiao

Abstract:

An annular fluidized bed (AFB) is gaining extensive application in the process industry due to its efficient gas-solids contacting. But a direct evaluation of its reaction performance is still lacking. In this paper, comparative 3D Euler–Lagrange multiphase-particle-in-cell (MP-PIC) computations are performed to assess the reaction performance of AFB relative to a bubbling fluidized bed (BFB) in an FCC regeneration process. By using the energy-minimization multi-scale (EMMS) drag model with a suitable heterogeneity index, the MP-PIC simulation predicts the typical fountain region in AFB and solids holdup of BFB, which is consistent with an experiment. Coke combustion rate, flue gas and temperature profile are utilized as the performance indicators, while related bed hydrodynamics are explored to account for the different performance under varying superficial gas velocities (0.5 m/s, 0.6 m/s, and 0.7 m/s). Simulation results indicate that the burning rates of coke and its species are relatively the same in both beds, albeit marginal increase in BFB. Similarly, the shape and evolution time of flue gas (CO, CO₂, H₂O and O₂) curves are indistinguishable but match the coke combustion rates. However, AFB has high proclivity to high temperature-gradient as higher gas and solids temperatures are predicted in the freeboard. Moreover, for both beds, the effect of superficial gas velocity is only conspicuous on the temperature but negligible on combustion efficiency and effluent gas emissions due to constant gas volumetric flow rate and bed loading criteria. Cross-flow of solids from the annulus to the spout region as well as the high primary gas in the AFB directly assume the underlying mechanisms for its unique gas-solids hydrodynamics (pressure, solids holdup, velocity, mass flux) and local spatial homogeneity, which in turn influence the reactor performance. Overall, the study portrays AFB as a cheap alternative reactor to BFB for catalyst regeneration.

Keywords: annular fluidized bed, bubbling fluidized bed, coke combustion, flue gas, fountaining, CFD, MP-PIC, hydrodynamics, FCC regeneration

Procedia PDF Downloads 163
21953 A Study of Kinematical Parameters I9N Instep Kicking in Soccer

Authors: Abdolrasoul Daneshjoo

Abstract:

Introduction: Soccer is a game which draws more attention in different countries especially in Brazil. Kicking among different skills in soccer and soccer players is an excellent role for the success and preference of a team. The way of point gaining in this game is passing the ball over the goal lines which are gained by shoot skill in attack time and or during the penalty kicks.Regarding the above assumption, identifying the effective factors in instep kicking in different distances shoot with maximum force and high accuracy or pass and penalty kick, may assist the coaches and players in raising qualitative level of performing the skill. Purpose: The aim of the present study was to study of a few kinematical parameters in instep kicking from 3 and 5 meter distance among the male and female elite soccer players. Methods: 24 right dominant lower limb subjects (12 males and 12 females) among Tehran elite soccer players with average and the standard deviation (22.5 ± 1.5) & (22.08± 1.31) years, height of (179.5 ± 5.81) & (164.3 ± 4.09) cm, weight of (69.66 ± 4.09) & (53.16 ± 3.51) kg, %BMI (21.06 ± .731) & (19.67 ± .709), having playing history of (4 ± .73) & (3.08 ± .66) years respectively participated in this study. They had at least two years of continuous playing experience in Tehran soccer league.For sampling player's kick; Kinemetrix Motion analysis with three cameras with 500 Hz was used. Five reflective markers were placed laterally on the kicking leg over anatomical points (the iliac crest, major trochanter, lateral epicondyle of femur, lateral malleolus, and lateral aspect of distal head of the fifth metatarsus). Instep kick was filmed, with one step approach and 30 to 45 degrees angle from stationary ball. Three kicks were filmed, one kick selected for further analyses. Using Kinemetrix 3D motion analysis software, the position of the markers was analyzed. Descriptive statistics were used to describe the mean and standard deviation, while the analysis of variance, and independent t-test (P < 0.05) were used to compare the kinematic parameters between two genders. Results and Discussion: Among the evaluated parameters, the knee acceleration, the thigh angular velocity, the angle of knee proportionately showed significant relationship with consequence of kick. While company performance on 5m in 2 genders, significant differences were observed in internal – external displacement of toe, ankle, hip and the velocity of toe, ankle and the acceleration of toe and the angular velocity of pelvic, thigh and before time contact. Significant differences showed the internal – external displacement of toe, the ankle, the knee and the hip, the iliac crest and the velocity of toe, the ankle and acceleration of ankle and angular velocity of the pelvic and the knee.

Keywords: biomechanics, kinematics, soccer, instep kick, male, female

Procedia PDF Downloads 415
21952 Integration of a Microbial Electrolysis Cell and an Oxy-Combustion Boiler

Authors: Ruth Diego, Luis M. Romeo, Antonio Morán

Abstract:

In the present work, a study of the coupling of a Bioelectrochemical System together with an oxy-combustion boiler is carried out; specifically, it proposes to connect the combustion gas outlet of a boiler with a microbial electrolysis cell (MEC) where the CO2 from the gases are transformed into methane in the cathode chamber, and the oxygen produced in the anode chamber is recirculated to the oxy-combustion boiler. The MEC mainly consists of two electrodes (anode and cathode) immersed in an aqueous electrolyte; these electrodes are separated by a proton exchange membrane (PEM). In this case, the anode is abiotic (where oxygen is produced), and it is at the cathode that an electroactive biofilm is formed with microorganisms that catalyze the CO2 reduction reactions. Real data from an oxy-combustion process in a boiler of around 20 thermal MW have been used for this study and are combined with data obtained on a smaller scale (laboratory-pilot scale) to determine the yields that could be obtained considering the system as environmentally sustainable energy storage. In this way, an attempt is made to integrate a relatively conventional energy production system (oxy-combustion) with a biological system (microbial electrolysis cell), which is a challenge to be addressed in this type of new hybrid scheme. In this way, a novel concept is presented with the basic dimensioning of the necessary equipment and the efficiency of the global process. In this work, it has been calculated that the efficiency of this power-to-gas system based on MEC cells when coupled to industrial processes is of the same order of magnitude as the most promising equivalent routes. The proposed process has two main limitations, the overpotentials in the electrodes that penalize the overall efficiency and the need for storage tanks for the process gases. The results of the calculations carried out in this work show that certain real potentials achieve an acceptable performance. Regarding the tanks, with adequate dimensioning, it is possible to achieve complete autonomy. The proposed system called OxyMES provides energy storage without energetically penalizing the process when compared to an oxy-combustion plant with conventional CO2 capture. According to the results obtained, this system can be applied as a measure to decarbonize an industry, changing the original fuel of the oxy-combustion boiler to the biogas generated in the MEC cell. It could also be used to neutralize CO2 emissions from industry by converting it to methane and then injecting it into the natural gas grid.

Keywords: microbial electrolysis cells, oxy-combustion, co2, power-to-gas

Procedia PDF Downloads 107
21951 Failure Analysis of Fuel Pressure Supply from an Aircraft Engine

Authors: M. Pilar Valles-gonzalez, Alejandro Gonzalez Meije, Ana Pastor Muro, Maria Garcia-Martinez, Beatriz Gonzalez Caballero

Abstract:

This paper studies a failure case of a fuel pressure supply tube from an aircraft engine. Multiple fracture cases of the fuel pressure control tube from aircraft engines have been reported. The studied set was composed of the mentioned tube, a welded connecting pipe, where the fracture has been produced, and a union nut. The fracture has been produced in one most critical zones of the tube, in a region next to the supporting body of the union nut to the connector. The tube material was X6CrNiTi18-10, an austenitic stainless steel. Chemical composition was determined using an X-Ray fluorescence spectrometer (XRF) and combustion equipment. Furthermore, the material has been mechanical, by hardness test, and microstructural characterized using a stereomicroscope and an optical microscope. The results confirmed that it is within specifications. To determine the macrofractographic features, a visual examination and a stereo microscope of the tube fracture surface have been carried out. The results revealed a tube plastic macrodeformation, surface damaged, and signs of a possible corrosion process. Fracture surface was also inspected by scanning electron microscopy (FE-SEM), equipped with a microanalysis system by X-ray dispersive energy (EDX), to determine the microfractographic features in order to find out the failure mechanism involved in the fracture. Fatigue striations, which are typical from a progressive fracture by a fatigue mechanism, have been observed. The origin of the fracture has been placed in defects located on the outer wall of the tube, leading to a final overload fracture.

Keywords: aircraft engine, fatigue, FE-SEM, fractography, fracture, fuel tube, microstructure, stainless steel

Procedia PDF Downloads 153
21950 A Case Study of Assessment of Fire Affected Concrete Structure by NDT

Authors: Nikhil Gopalkrishnan, Praveen Bhaskaran, Aditya Bhargava, Gyandeep Bhumarkar

Abstract:

The present paper is an attempt to perform various Non-Destructive Tests on concrete structure as NDT is gaining a wide importance in the branch of civil engineering these days. Various tests that are performed under NDT not only enable us to determine the strength of concrete structure, but also provide us in-hand information regarding the durability, in-situ properties of the concrete structure. Keeping these points in our mind, we have focused our views on performing a case study to show the comparison between the NDT test results performed on a particular concrete structure and another structure at the same site which is subjected to a continuous fire of say 48-72 hours. The mix design and concrete grade of both the structures were same before the one was affected by fire. The variations in the compressive strength, concrete quality and in-situ properties of the two structures have been discussed in this paper. NDT tests namely Ultrasonic Pulse Velocity Test, Rebound Hammer Test, Core-Cutter Test was performed at both the sites. The main objective of this research is to analyze the variations in the strength and quality of the concrete structure which is subjected to a high temperature fire and the one which isn’t exposed to it.

Keywords: core-cutter test, non-destructive test, rebound hammer test, ultrasonic pulse velocity test

Procedia PDF Downloads 349
21949 Use of Treated Municipal Wastewater on Artichoke Crop

Authors: G. Disciglio, G. Gatta, A. Libutti, A. Tarantino, L. Frabboni, E. Tarantino

Abstract:

Results of a field study carried out at Trinitapoli (Puglia region, southern Italy) on the irrigation of an artichoke crop with three types of water (secondary-treated wastewater, SW; tertiary-treated wastewater, TW; and freshwater, FW) are reported. Physical, chemical and microbiological analyses were performed on the irrigation water, and on soil and yield samples. The levels of most of the chemical parameters, such as electrical conductivity, total suspended solids, Na+, Ca2+, Mg+2, K+, sodium adsorption ratio, chemical oxygen demand, biological oxygen demand over 5 days, NO3 –N, total N, CO32, HCO3, phenols and chlorides of the applied irrigation water were significantly higher in SW compared to GW and TW. No differences were found for Mg2+, PO4-P, K+ only between SW and TW. Although the chemical parameters of the three irrigation water sources were different, few effects on the soil were observed. Even though monitoring of Escherichia coli showed high SW levels, which were above the limits allowed under Italian law (DM 152/2006), contamination of the soil and the marketable yield were never observed. Moreover, no Salmonella spp. were detected in these irrigation waters; consequently, they were absent in the plants. Finally, the data on the quantitative-qualitative parameters of the artichoke yield with the various treatments show no significant differences between the three irrigation water sources. Therefore, if adequately treated, municipal wastewater can be used for irrigation and represents a sound alternative to conventional water resources.

Keywords: artichoke, soil chemical characteristics, fecal indicators, treated municipal wastewater, water recycling

Procedia PDF Downloads 427
21948 Contribution to Experiments of a Free Surface Supercritical Flow over an Uneven Bottom

Authors: M. Bougamouza, M. Bouhadef, T. Zitoun

Abstract:

The aim of this study is to examine, through experimentation in the laboratory, the supercritical flow in the presence of an obstacle in a rectangular channel. The supercritical regime in the whole hydraulic channel is achieved by adding a convergent. We will observe the influence of the obstacle shape and dimension on the characteristics of the supercritical flow, mainly the free-surface elevation and the velocity profile. The velocity measurements have been conducted with the one dimension laser anemometry technique.

Keywords: experiments, free-surface flow, hydraulic channel, uneven bottom, laser anemometry, supercritical regime

Procedia PDF Downloads 251
21947 Establishment and Validation of Correlation Equations to Estimate Volumetric Oxygen Mass Transfer Coefficient (KLa) from Process Parameters in Stirred-Tank Bioreactors Using Response Surface Methodology

Authors: Jantakan Jullawateelert, Korakod Haonoo, Sutipong Sananseang, Sarun Torpaiboon, Thanunthon Bowornsakulwong, Lalintip Hocharoen

Abstract:

Process scale-up is essential for the biological process to increase production capacity from bench-scale bioreactors to either pilot or commercial production. Scale-up based on constant volumetric oxygen mass transfer coefficient (KLa) is mostly used as a scale-up factor since oxygen supply is one of the key limiting factors for cell growth. However, to estimate KLa of culture vessels operated with different conditions are time-consuming since it is considerably influenced by a lot of factors. To overcome the issue, this study aimed to establish correlation equations of KLa and operating parameters in 0.5 L and 5 L bioreactor employed with pitched-blade impeller and gas sparger. Temperature, gas flow rate, agitation speed, and impeller position were selected as process parameters and equations were created using response surface methodology (RSM) based on central composite design (CCD). In addition, the effects of these parameters on KLa were also investigated. Based on RSM, second-order polynomial models for 0.5 L and 5 L bioreactor were obtained with an acceptable determination coefficient (R²) as 0.9736 and 0.9190, respectively. These models were validated, and experimental values showed differences less than 10% from the predicted values. Moreover, RSM revealed that gas flow rate is the most significant parameter while temperature and agitation speed were also found to greatly affect the KLa in both bioreactors. Nevertheless, impeller position was shown to influence KLa in only 5L system. To sum up, these modeled correlations can be used to accurately predict KLa within the specified range of process parameters of two different sizes of bioreactors for further scale-up application.

Keywords: response surface methodology, scale-up, stirred-tank bioreactor, volumetric oxygen mass transfer coefficient

Procedia PDF Downloads 206
21946 Unsteady and Steady State in Natural Convection

Authors: Syukri Himran, Erwin Eka Putra, Nanang Roni

Abstract:

This study explains the natural convection of viscous fluid flowing on semi-infinite vertical plate. A set of the governing equations describing the continuity, momentum and energy, have been reduced to dimensionless forms by introducing the references variables. To solve the problems, the equations are formulated by explicit finite-difference in time dependent form and computations are performed by Fortran program. The results describe velocity, temperature profiles both in transient and steady state conditions. An approximate value of heat transfer coefficient and the effects of Pr on convection flow are also presented.

Keywords: natural convection, vertical plate, velocity and temperature profiles, steady and unsteady

Procedia PDF Downloads 489
21945 Texture and Twinning in Selective Laser Melting Ti-6Al-4V Alloys

Authors: N. Kazantseva, P. Krakhmalev, I. Yadroitsev, A. Fefelov, N. Vinogradova, I. Ezhov, T. Kurennykh

Abstract:

Martensitic texture-phase transition in Selective Laser Melting (SLM) Ti-6Al-4V (ELI) alloys was found. Electron Backscatter Diffraction (EBSD) analysis showed the initial cubic beta < 100 > (001) BCC texture. Such kind of texture is observed in BCC metals with flat rolling texture when axis is in the direction of rolling and the texture plane coincides with the plane of rolling. It was found that the texture of the parent BCC beta-phase determined the texture of low-temperature HCP alpha-phase limited the choice of its orientation variants. The {10-12} < -1011 > twinning system in titanium alloys after SLM was determined. Analysis of the oxygen contamination in SLM alloys was done. Comparison of the obtained results with the conventional titanium alloys is also provided.

Keywords: additive technology, texture, twins, Ti-6Al-4V, oxygen content

Procedia PDF Downloads 637
21944 Application of Thermal Dimensioning Tools to Consider Different Strategies for the Disposal of High-Heat-Generating Waste

Authors: David Holton, Michelle Dickinson, Giovanni Carta

Abstract:

The principle of geological disposal is to isolate higher-activity radioactive wastes deep inside a suitable rock formation to ensure that no harmful quantities of radioactivity reach the surface environment. To achieve this, wastes will be placed in an engineered underground containment facility – the geological disposal facility (GDF) – which will be designed so that natural and man-made barriers work together to minimise the escape of radioactivity. Internationally, various multi-barrier concepts have been developed for the disposal of higher-activity radioactive wastes. High-heat-generating wastes (HLW, spent fuel and Pu) provide a number of different technical challenges to those associated with the disposal of low-heat-generating waste. Thermal management of the disposal system must be taken into consideration in GDF design; temperature constraints might apply to the wasteform, container, buffer and host rock. Of these, the temperature limit placed on the buffer component of the engineered barrier system (EBS) can be the most constraining factor. The heat must therefore be managed such that the properties of the buffer are not compromised to the extent that it cannot deliver the required level of safety. The maximum temperature of a buffer surrounding a container at the centre of a fixed array of heat-generating sources, arises due to heat diffusing from neighbouring heat-generating wastes, incrementally contributing to the temperature of the EBS. A range of strategies can be employed for managing heat in a GDF, including the spatial arrangements or patterns of those containers; different geometrical configurations can influence the overall thermal density in a disposal facility (or area within a facility) and therefore the maximum buffer temperature. A semi-analytical thermal dimensioning tool and methodology have been applied at a generic stage to explore a range of strategies to manage the disposal of high-heat-generating waste. A number of examples, including different geometrical layouts and chequer-boarding, have been illustrated to demonstrate how these tools can be used to consider safety margins and inform strategic disposal options when faced with uncertainty, at a generic stage of the development of a GDF.

Keywords: buffer, geological disposal facility, high-heat-generating waste, spent fuel

Procedia PDF Downloads 285
21943 Evaluation of Quality of Rhumel Wadi Waters by Physico-Chemical and Biological Parameters

Authors: Djeddi Hamssa, Kherief Necereddine Saliha, Mehennaoui Fatima Zohra

Abstract:

The objectives of this study are to use different parameters to assess the current pollution status of sediments in Rhumel wadi located in the North-East of Algeria (Constantine), two stations were selected in strategic points and sampled at three occasions on Sptember 2014, Junary 2015 and April 2015. Parameters used in this study were a physico-chimical analysis of water (pH, CE, Dissolved O2), sediments (pH, CE, CaCo3, MO) and contamination level of sediments by cadmium, completed by biological testing and analysis of existing benthic community. The results of the physico-chemical parameters show that the water temperature is average and seasonal, the pH value is acidic, does not exceed 6.64. The amplitude variation may be important from upstream to downstream. The generally high electrical conductivity, for the carbonate nature of the watershed increases from upstream to downstream. The waters of the Rhumel wadi are excessively mineralized, dissolved oxygen, a vital factor for benthic community wildlife downstream decreases with increasing organic loading; oxygen is consumed by the microorganisms to its degradation. Analysis of the benthic fauna and calculating the biotic index show a clear excessive pollution for both upstream and downstream stations.

Keywords: biological analysis, benthic fauna, sediments contamination, cadmium

Procedia PDF Downloads 250