Search results for: optimal soldering temperature profile
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11443

Search results for: optimal soldering temperature profile

1723 Fighting the Crisis with 4.0 Competences: Higher Education Projects in the Times of Pandemic

Authors: Jadwiga Fila, Mateusz Jezowski, Pawel Poszytek

Abstract:

The outbreak of the global COVID-19 pandemic started the times of crisis full of uncertainty, especially in the field of transnational cooperation projects based on the international mobility of their participants. This is notably the case of Erasmus+ Program for higher education, which is the flagship European initiative boosting cooperation between educational institutions, businesses, and other actors, enabling students and staff mobility, as well as strategic partnerships between different parties. The aim of this abstract is to study whether competences 4.0 are able to empower Erasmus+ project leaders in sustaining their international cooperation in times of global crisis, widespread online learning, and common project disruption or cancellation. The concept of competences 4.0 emerged from the notion of the industry 4.0, and it relates to skills that are fundamental for the current labor market. For the aim of the study presented in this abstract, four main 4.0 competences were distinguished: digital, managerial, social, and cognitive competence. The hypothesis for the study stipulated that the above-mentioned highly-developed competences may act as a protective shield against the pandemic challenges in terms of projects’ sustainability and continuation. The objective of the research was to assess to what extent individual competences are useful in managing projects in times of crisis. For this purpose, the study was conducted, involving, among others, 141 Polish higher education project leaders who were running their cooperation projects during the peak of the COVID-19 pandemic (Mar-Nov 2020). The research explored the self-perception of the above-mentioned competences among Erasmus+ project leaders and the contextual data regarding the sustainability of the projects. The quantitative character of data permitted validation of scales (Cronbach’s Alfa measure), and the use of factor analysis made it possible to create a distinctive variable for each competence and its dimensions. Finally, logistic regression was used to examine the association of competences and other factors on project status. The study shows that the project leaders’ competence profile attributed the highest score to digital competence (4.36 on the 1-5 scale). Slightly lower values were obtained for cognitive competence (3.96) and managerial competence (3.82). The lowest score was accorded to one specific dimension of social competence: adaptability and ability to manage stress (1.74), which proves that the pandemic was a real challenge which had to be faced by project coordinators. For higher education projects, 10% were suspended or prolonged because of the COVID-19 pandemic, whereas 90% were undisrupted (continued or already successfully finished). The quantitative analysis showed a positive relationship between the leaders’ levels of competences and the projects status. In the case of all competences, the scores were higher for project leaders who finished projects successfully than for leaders who suspended or prolonged their projects. The research demonstrated that, in the demanding times of the COVID-19 pandemic, competences 4.0, to a certain extent, do play a significant role in the successful management of Erasmus+ projects. The implementation and sustainability of international educational projects, despite mobility and sanitary obstacles, depended, among other factors, on the level of leaders’ competences.

Keywords: Competences 4.0, COVID-19 pandemic, Erasmus+ Program, international education, project sustainability

Procedia PDF Downloads 89
1722 The Algerian Experience in Developing Higher Education in the Country in Light of Modern Technology: Challenges and Prospects

Authors: Mohammed Messaoudi

Abstract:

The higher education sector in Algeria has witnessed in recent years a remarkable transformation, as it witnessed the integration of institutions within the modern technological environment and harnessing all appropriate mechanisms to raise the level of education and the level of training. Observers and those interested that it is necessary for the Algerian university to enter this field, especially with the efforts that seek to employ modern technology in the sector and encourage investment in this field, in addition to the state’s keenness to move towards building a path to benefit from modern technology, and to encourage energies in light of a reality that carries many Aspirations and challenges by achieving openness to the new digital environment and keeping pace with the ranks of international universities. Higher education is one of the engines of development for societies, as it is a vital field for the transfer of knowledge and scientific expertise, and the university is at the top of the comprehensive educational system for various disciplines in light of the achievement of a multi-dimensional educational system, and amid the integration of three basic axes that establish the sound educational process (teaching, research, relevant outputs efficiency), and according to a clear strategy that monitors the advancement of academic work, and works on developing its future directions to achieve development in this field. The Algerian University is considered one of the service institutions that seeks to find the optimal mechanisms to keep pace with the changes of the times, as it has become necessary for the university to enter the technological space and thus ensure the quality of education in it and achieve the required empowerment by dedicating a structure that matches the requirements of the challenges on which the sector is based, amid unremitting efforts to develop the capabilities. He sought to harness the mechanisms of communication and information technology and achieve transformation at the level of the higher education sector with what is called higher education technology. The conceptual framework of information and communication technology at the level of higher education institutions in Algeria is determined through the factors of organization, factors of higher education institutions, characteristics of the professor, characteristics of students, the outcomes of the educational process, and there is a relentless pursuit to achieve a positive interaction between these axes as they are basic components on which the success and achievement of higher education are based for his goals.

Keywords: Information and communication technology, Algerian university, scientific and cognitive development, challenges

Procedia PDF Downloads 81
1721 Intensity Modulated Radiotherapy of Nasopharyngeal Carcinomas: Patterns of Loco Regional Relapse

Authors: Omar Nouri, Wafa Mnejja, Nejla Fourati, Fatma Dhouib, Wicem Siala, Ilhem Charfeddine, Afef Khanfir, Jamel Daoud

Abstract:

Background and objective: Induction chemotherapy (IC) followed by concomitant chemo radiotherapy with intensity modulated radiation (IMRT) technique is actually the recommended treatment modality for locally advanced nasopharyngeal carcinomas (NPC). The aim of this study was to evaluate the prognostic factors predicting loco regional relapse with this new treatment protocol. Patients and methods: A retrospective study of 52 patients with NPC treated between June 2016 and July 2019. All patients received IC according to the protocol of the Head and Neck Radiotherapy Oncology Group (Gortec) NPC 2006 (3 TPF courses) followed by concomitant chemo radiotherapy with weekly cisplatin (40 mg / m2). Patients received IMRT with integrated simultaneous boost (SIB) of 33 daily fractions at a dose of 69.96 Gy for high-risk volume, 60 Gy for intermediate risk volume and 54 Gy for low-risk volume. Median age was 49 years (19-69) with a sex ratio of 3.3. Forty five tumors (86.5%) were classified as stages III - IV according to the 2017 UICC TNM classification. Loco regional relapse (LRR) was defined as a local and/or regional progression that occurs at least 6 months after the end of treatment. Survival analysis was performed according to Kaplan-Meier method and Log-rank test was used to compare anatomy clinical and therapeutic factors that may influence loco regional free survival (LRFS). Results: After a median follow up of 42 months, 6 patients (11.5%) experienced LRR. A metastatic relapse was also noted for 3 of these patients (50%). Target volumes coverage was optimal for all patient with LRR. Four relapses (66.6%) were in high-risk target volume and two (33.3%) were borderline. Three years LRFS was 85,9%. Four factors predicted loco regional relapses: histologic type other than undifferentiated (UCNT) (p=0.027), a macroscopic pre chemotherapy tumor volume exceeding 100 cm³ (p=0.005), a reduction in IC doses exceeding 20% (p=0.016) and a total cumulative cisplatin dose less than 380 mg/m² (p=0.0.34). TNM classification and response to IC did not impact loco regional relapses. Conclusion: For nasopharyngeal carcinoma, tumors with initial high volume and/or histologic type other than UCNT, have a higher risk of loco regional relapse. Therefore, they require a more aggressive therapeutic approaches and a suitable monitoring protocol.

Keywords: loco regional relapse, modulation intensity radiotherapy, nasopharyngeal carcinoma, prognostic factors

Procedia PDF Downloads 122
1720 Land Suitability Prediction Modelling for Agricultural Crops Using Machine Learning Approach: A Case Study of Khuzestan Province, Iran

Authors: Saba Gachpaz, Hamid Reza Heidari

Abstract:

The sharp increase in population growth leads to more pressure on agricultural areas to satisfy the food supply. To achieve this, more resources should be consumed and, besides other environmental concerns, highlight sustainable agricultural development. Land-use management is a crucial factor in obtaining optimum productivity. Machine learning is a widely used technique in the agricultural sector, from yield prediction to customer behavior. This method focuses on learning and provides patterns and correlations from our data set. In this study, nine physical control factors, namely, soil classification, electrical conductivity, normalized difference water index (NDWI), groundwater level, elevation, annual precipitation, pH of water, annual mean temperature, and slope in the alluvial plain in Khuzestan (an agricultural hotspot in Iran) are used to decide the best agricultural land use for both rainfed and irrigated agriculture for ten different crops. For this purpose, each variable was imported into Arc GIS, and a raster layer was obtained. In the next level, by using training samples, all layers were imported into the python environment. A random forest model was applied, and the weight of each variable was specified. In the final step, results were visualized using a digital elevation model, and the importance of all factors for each one of the crops was obtained. Our results show that despite 62% of the study area being allocated to agricultural purposes, only 42.9% of these areas can be defined as a suitable class for cultivation purposes.

Keywords: land suitability, machine learning, random forest, sustainable agriculture

Procedia PDF Downloads 78
1719 Vibration Damping Properties of Electrorheological Materials Based on Chitosan/Perlite Composite

Authors: M. Cabuk, M. Yavuz, T. A. Yesil, H. I. Unal

Abstract:

Electrorheological (ER) fluids are a class of smart materials exhibiting reversible changes in their rheological and mechanical properties under an applied electric field (E). ER fluids generally are composed of polarisable solid particles dispersed in non-conducting oil. ER fluids are fluids which exhibit. The resistance to motion of the ER fluid can be controlled by adjusting the applied E, due to their fast and reversible changes in their rheological properties presence of E. In this study, a series of chitosan/expanded perlite (CS/EP) composites with different chitosan mass fractions (10%, 20%, and 50%) was used. Characterizations of the composites were carried out by Fourier Transform Infrared (FTIR), X-ray diffraction (XRD) and Scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDX) techniques. Antisedimentation stability and dielectric properties of the composites were also determined. The effects of volume fraction, electric field strength, shear rate, shear stress, and temperature onto ER properties of the CS/EP composite particles dispersed in silicone oil (SO) were investigated in detail. Vibration damping behavior of the CS/EP composites were determined as a function of frequence, storage (Gʹ) and loss (Gʹ ʹ) moduli. It was observed that ER response of the CS/EP/SO ER fluids increased with increasing electric field strength and exhibited the typical shear thinning non-Newtonian viscoelastic behaviors with increasing shear rate. The maximum yield stress was obtained with 1250 Pa under E = 3 kV/mm. Further, the CS/EP/SO ER fluids were observed to sensitive to vibration control by showing reversible viscosity enhancements (Gʹ > Gʹ ʹ). Acknowledgements: The authors thank the TÜBİTAK (214Z199) for the financial support of this work.

Keywords: chitosan, electrorheology, perlite, vibration control

Procedia PDF Downloads 234
1718 Teaching Accounting through Critical Accounting Research: The Origin and Its Relevance to the South African Curriculum

Authors: Rosy Makeresemese Qhosola

Abstract:

South Africa has maintained the effort to uphold its guiding principles in terms of its constitution. The constitution upholds principles such as equity, social justice, peace, freedom and hope, to mention but a few. So, such principles are made to form the basis for any legislation and policies that are in place to guide all fields/departments of government. Education is one of those departments or fields and is expected to abide by such principles as outlined in their policies. Therefore, as expected education policies and legislation outline their intentions to ensure the development of students’ clear critical thinking capacity as well as their creative capacities by creating learning contexts and opportunities that accommodate the effective teaching and learning strategies, that are learner centered and are compatible with the prescripts of a democratic constitution of the country. The paper aims at exploring and analyzing the progress of conventional accounting in terms of its adherence to the effective use of principles of good teaching, as per policy expectations in South Africa. The progress is traced by comparing conventional accounting to Critical Accounting Research (CAR), where the history of accounting as intended in the curriculum of SA and CAR are highlighted. Critical Accounting Research framework is used as a lens and mode of teaching in this paper, since it can create a space for the learning of accounting that is optimal marked by the use of more learner-centred methods of teaching. The Curriculum of South Africa also emphasises the use of more learner-centred methods of teaching that encourage an active and critical approach to learning, rather than rote and uncritical learning of given truths. The study seeks to maintain that conventional accounting is in contrast with principles of good teaching as per South African policy expectations. The paper further maintains that, the possible move beyond it and the adherence to the effective use of good teaching, could be when CAR forms the basis of teaching. Data is generated through Participatory Action Research where the meetings, dialogues and discussions with the focused groups are conducted, which consists of lecturers, students, subject heads, coordinators and NGO’s as well as departmental officials. The results are analysed through Critical Discourse Analysis since it allows for the use of text by participants. The study concludes that any teacher who aspires to achieve in the teaching and learning of accounting should first meet the minimum requirements as stated in the NQF level 4, which forms the basic principles of good teaching and are in line with Critical Accounting Research.

Keywords: critical accounting research, critical discourse analysis, participatory action research, principles of good teaching

Procedia PDF Downloads 303
1717 Diversification of Productivity of the Oxfordian Subtidal Carbonate Factory in the Holy Cross Mountains

Authors: Radoslaw Lukasz Staniszewski

Abstract:

The aim of the research was to verify lateral extent and thickness variability of individual limestone layers within early-Jurassic medium- and thick-bedded limestone interbedded with marlstones. Location: The main research area is located in the south-central part of Poland in the south-western part of Permo-Mesozoic margin of the Holy Cross Mountains. It includes outcroppings located on the line between Mieczyn and Wola Morawicka. The analyses were carried out on six profiles (Mieczyn, Gniezdziska, Tokarnia, Wola Morawicka, Morawica and Wolica) representing three early-Jurassic links: Jasna Gora layers, grey limestone, Morawica limestone. Additionally, an attempt was made to correlate the thickness sequence from the Holy Cross Mountains to the profile from the quarry in Zawodzie located 3 km east of Czestochowa. The distance between the outermost profiles is 122 km in a straight line. Methodology of research: The Callovian-Oxfordian border was taken as the reference point during the correlation. At the same time, ammonite-based stratigraphic studies were carried out, which allowed to identify individual packages in the remote outcroppings. The analysis of data collected during fieldwork was mainly devoted to the correlation of thickness sequences of limestone layers in subsequent profiles. In order to check the objectivity of the subsequent outcroppings, the profiles have been presented in the form of the thickness functions of the subsequent layers. The generated functions were auto-correlated, and the Pearson correlation coefficient was calculated. The next step in the research was to statistically determine the percentage increment of the individual layers thickness in the subsequent profiles, and on this basis to plot the function of relative carbonate productivity. Results: The result of the above-mentioned procedures consists in illustrating the extent of 34 rock layers across the examined area in demonstrating the repeatability of their success in subsequent outcroppings. It can also be observed that the thickness of individual layers in the Holy Cross Mountains is increasing from north-west towards south-east. Despite changes in the thickness of the layers in the profiles, their relations within the sequence remain constant. The lowest matching ratio of thickness sequence calculated using the Pearson correlation coefficient formula is 0.67, while the highest is 0.84. The thickness of individual layers changes between 4% and 230% over the examined area. Interpretation: Layers in the outcroppings covered by the research show continuity throughout the examined area and it is possible to precisely correlate them, which means that the process determining the formation of the layers was regional and probably included both the fringe of the Holy Cross Mountains and the north-eastern part of the Krakow-Czestochowa Jura Upland. Local changes in the sedimentation environment affecting the productivity of the subtidal carbonate factory only cause the thickness of the layers to change without altering the thickness proportions of the profiles. Based on the percentage of changes in the thickness of individual layers in the subsequent profiles, it can be concluded that the local productivity of the subtidal carbonate factory is increasing logarithmically.

Keywords: Oxfordian, Holy Cross Mountains, carbonate factory, Limestone

Procedia PDF Downloads 113
1716 Analyzing the Impact of Spatio-Temporal Climate Variations on the Rice Crop Calendar in Pakistan

Authors: Muhammad Imran, Iqra Basit, Mobushir Riaz Khan, Sajid Rasheed Ahmad

Abstract:

The present study investigates the space-time impact of climate change on the rice crop calendar in tropical Gujranwala, Pakistan. The climate change impact was quantified through the climatic variables, whereas the existing calendar of the rice crop was compared with the phonological stages of the crop, depicted through the time series of the Normalized Difference Vegetation Index (NDVI) derived from Landsat data for the decade 2005-2015. Local maxima were applied on the time series of NDVI to compute the rice phonological stages. Panel models with fixed and cross-section fixed effects were used to establish the relation between the climatic parameters and the time-series of NDVI across villages and across rice growing periods. Results show that the climatic parameters have significant impact on the rice crop calendar. Moreover, the fixed effect model is a significant improvement over cross-sectional fixed effect models (R-squared equal to 0.673 vs. 0.0338). We conclude that high inter-annual variability of climatic variables cause high variability of NDVI, and thus, a shift in the rice crop calendar. Moreover, inter-annual (temporal) variability of the rice crop calendar is high compared to the inter-village (spatial) variability. We suggest the local rice farmers to adapt this change in the rice crop calendar.

Keywords: Landsat NDVI, panel models, temperature, rainfall

Procedia PDF Downloads 201
1715 Quantification of Effect of Linear Anionic Polyacrylamide on Seepage in Irrigation Channels

Authors: Hamil Uribe, Cristian Arancibia

Abstract:

In Chile, the water for irrigation and hydropower generation is delivery essentially through unlined channels on earth, which have high seepage losses. Traditional seepage-abatement technologies are very expensive. The goals of this work were to quantify water loss in unlined channels and select reaches to evaluate the use of linear anionic polyacrylamide (LA-PAM) to reduce seepage losses. The study was carried out in Maule Region, central area of Chile. Water users indicated reaches with potential seepage losses, 45 km of channels in total, whose flow varied between 1.07 and 23.6 m³ s⁻¹. According to seepage measurements, 4 reaches of channels, 4.5 km in total, were selected for LA-PAM application. One to 4 LA-PAM applications were performed at rates of 11 kg ha⁻¹, considering wet perimeter area as basis of calculation. Large channels were used to allow motorboat moving against the current to carry-out LA-PAM application. For applications, a seeder machine was used to evenly distribute granulated polymer on water surface. Water flow was measured (StreamPro ADCP) upstream and downstream in selected reaches, to estimate seepage losses before and after LA-PAM application. Weekly measurements were made to quantify treatment effect and duration. In each case, water turbidity and temperature were measured. Channels showed variable losses up to 13.5%. Channels showing water gains were not treated with PAM. In all cases, LA-PAM effect was positive, achieving average loss reductions of 8% to 3.1%. Water loss was confirmed and it was possible to reduce seepage through LA-PAM applications provided that losses were known and correctly determined when applying the polymer. This could allow increasing irrigation security in critical periods, especially under drought conditions.

Keywords: canal seepage, irrigation, polyacrylamide, water management

Procedia PDF Downloads 172
1714 The Impact of a Sustainable Solar Heating System on the Growth of ‎Strawberry Plants in an Agricultural Greenhouse

Authors: Ilham Ihoume, Rachid Tadili, Nora Arbaoui

Abstract:

The use of solar energy is a crucial tactic in the agricultural industry's plan ‎‎to decrease greenhouse gas emissions. This clean source of energy can ‎greatly lower the sector's carbon footprint and make a significant impact in ‎the ‎fight against climate change. In this regard, this study examines the ‎effects ‎of a solar-based heating system, in a north-south oriented agricultural ‎green‎house on the development of strawberry plants during winter. This ‎system ‎relies on the circulation of water as a heat transfer fluid in a closed ‎circuit ‎installed on the greenhouse roof to store heat during the day and ‎release it ‎inside at night. A comparative experimental study was conducted ‎in two ‎greenhouses, one experimental with the solar heating system and the ‎other ‎for control without any heating system. Both greenhouses are located ‎on the ‎terrace of the Solar Energy and Environment Laboratory of the ‎Mohammed ‎V University in Rabat, Morocco. The developed heating system ‎consists of a ‎copper coil inserted in double glazing and placed on the roof of ‎the greenhouse, a water pump circulator, a battery, and a photovoltaic solar ‎panel to ‎power the electrical components. This inexpensive and ‎environmentally ‎friendly system allows the greenhouse to be heated during ‎the winter and ‎improves its microclimate system. This improvement resulted ‎in an increase ‎in the air temperature inside the experimental greenhouse by 6 ‎‎°C and 8 °C, ‎and a reduction in its relative humidity by 23% and 35% ‎compared to the ‎control greenhouse and the ambient air, respectively, ‎throughout the winter. ‎For the agronomic performance, it was observed that ‎the production was 17 ‎days earlier than in the control greenhouse‎.‎

Keywords: sustainability, thermal energy storage, solar energy, agriculture greenhouse

Procedia PDF Downloads 84
1713 Assessment of On-Site Solar and Wind Energy at a Manufacturing Facility in Ireland

Authors: A. Sgobba, C. Meskell

Abstract:

The feasibility of on-site electricity production from solar and wind and the resulting load management for a specific manufacturing plant in Ireland are assessed. The industry sector accounts directly and indirectly for a high percentage of electricity consumption and global greenhouse gas emissions; therefore, it will play a key role in emission reduction and control. Manufacturing plants, in particular, are often located in non-residential areas since they require open spaces for production machinery, parking facilities for the employees, appropriate routes for supply and delivery, special connections to the national grid and other environmental impacts. Since they have larger spaces compared to commercial sites in urban areas, they represent an appropriate case study for evaluating the technical and economic viability of energy system integration with low power density technologies, such as solar and wind, for on-site electricity generation. The available open space surrounding the analysed manufacturing plant can be efficiently used to produce a discrete quantity of energy, instantaneously and locally consumed. Therefore, transmission and distribution losses can be reduced. The usage of storage is not required due to the high and almost constant electricity consumption profile. The energy load of the plant is identified through the analysis of gas and electricity consumption, both internally monitored and reported on the bills. These data are not often recorded and available to third parties since manufacturing companies usually keep track only of the overall energy expenditures. The solar potential is modelled for a period of 21 years based on global horizontal irradiation data; the hourly direct and diffuse radiation and the energy produced by the system at the optimum pitch angle are calculated. The model is validated using PVWatts and SAM tools. Wind speed data are available for the same period within one-hour step at a height of 10m. Since the hub of a typical wind turbine reaches a higher altitude, complementary data for a different location at 50m have been compared, and a model for the estimate of wind speed at the required height in the right location is defined. Weibull Statistical Distribution is used to evaluate the wind energy potential of the site. The results show that solar and wind energy are, as expected, generally decoupled. Based on the real case study, the percentage of load covered every hour by on-site generation (Level of Autonomy LA) and the resulting electricity bought from the grid (Expected Energy Not Supplied EENS) are calculated. The economic viability of the project is assessed through Net Present Value, and the influence the main technical and economic parameters have on NPV is presented. Since the results show that the analysed renewable sources can not provide enough electricity, the integration with a cogeneration technology is studied. Finally, the benefit to energy system integration of wind, solar and a cogeneration technology is evaluated and discussed.

Keywords: demand, energy system integration, load, manufacturing, national grid, renewable energy sources

Procedia PDF Downloads 128
1712 Enhancing Fault Detection in Rotating Machinery Using Wiener-CNN Method

Authors: Mohamad R. Moshtagh, Ahmad Bagheri

Abstract:

Accurate fault detection in rotating machinery is of utmost importance to ensure optimal performance and prevent costly downtime in industrial applications. This study presents a robust fault detection system based on vibration data collected from rotating gears under various operating conditions. The considered scenarios include: (1) both gears being healthy, (2) one healthy gear and one faulty gear, and (3) introducing an imbalanced condition to a healthy gear. Vibration data was acquired using a Hentek 1008 device and stored in a CSV file. Python code implemented in the Spider environment was used for data preprocessing and analysis. Winner features were extracted using the Wiener feature selection method. These features were then employed in multiple machine learning algorithms, including Convolutional Neural Networks (CNN), Multilayer Perceptron (MLP), K-Nearest Neighbors (KNN), and Random Forest, to evaluate their performance in detecting and classifying faults in both the training and validation datasets. The comparative analysis of the methods revealed the superior performance of the Wiener-CNN approach. The Wiener-CNN method achieved a remarkable accuracy of 100% for both the two-class (healthy gear and faulty gear) and three-class (healthy gear, faulty gear, and imbalanced) scenarios in the training and validation datasets. In contrast, the other methods exhibited varying levels of accuracy. The Wiener-MLP method attained 100% accuracy for the two-class training dataset and 100% for the validation dataset. For the three-class scenario, the Wiener-MLP method demonstrated 100% accuracy in the training dataset and 95.3% accuracy in the validation dataset. The Wiener-KNN method yielded 96.3% accuracy for the two-class training dataset and 94.5% for the validation dataset. In the three-class scenario, it achieved 85.3% accuracy in the training dataset and 77.2% in the validation dataset. The Wiener-Random Forest method achieved 100% accuracy for the two-class training dataset and 85% for the validation dataset, while in the three-class training dataset, it attained 100% accuracy and 90.8% accuracy for the validation dataset. The exceptional accuracy demonstrated by the Wiener-CNN method underscores its effectiveness in accurately identifying and classifying fault conditions in rotating machinery. The proposed fault detection system utilizes vibration data analysis and advanced machine learning techniques to improve operational reliability and productivity. By adopting the Wiener-CNN method, industrial systems can benefit from enhanced fault detection capabilities, facilitating proactive maintenance and reducing equipment downtime.

Keywords: fault detection, gearbox, machine learning, wiener method

Procedia PDF Downloads 78
1711 Enhancing Solar Fuel Production by CO₂ Photoreduction Using Transition Metal Oxide Catalysts in Reactors Prepared by Additive Manufacturing

Authors: Renata De Toledo Cintra, Bruno Ramos, Douglas Gouvêa

Abstract:

There is a huge global concern due to the emission of greenhouse gases, consequent environmental problems, and the increase in the average temperature of the planet, caused mainly by fossil fuels, petroleum derivatives represent a big part. One of the main greenhouse gases, in terms of volume, is CO₂. Recovering a part of this product through chemical reactions that use sunlight as an energy source and even producing renewable fuel (such as ethane, methane, ethanol, among others) is a great opportunity. The process of artificial photosynthesis, through the conversion of CO₂ and H₂O into organic products and oxygen using a metallic oxide catalyst, and incidence of sunlight, is one of the promising solutions. Therefore, this research is of great relevance. To this reaction take place efficiently, an optimized reactor was developed through simulation and prior analysis so that the geometry of the internal channel is an efficient route and allows the reaction to happen, in a controlled and optimized way, in flow continuously and offering the least possible resistance. The design of this reactor prototype can be made in different materials, such as polymers, ceramics and metals, and made through different processes, such as additive manufacturing (3D printer), CNC, among others. To carry out the photocatalysis in the reactors, different types of catalysts will be used, such as ZnO deposited by spray pyrolysis in the lighting window, probably modified ZnO, TiO₂ and modified TiO₂, among others, aiming to increase the production of organic molecules, with the lowest possible energy.

Keywords: artificial photosynthesis, CO₂ reduction, photocatalysis, photoreactor design, 3D printed reactors, solar fuels

Procedia PDF Downloads 80
1710 The New Waterfront: Examining the Impact of Planning on Waterfront Regeneration in Da Nang

Authors: Ngoc Thao Linh Dang

Abstract:

Urban waterfront redevelopment is a global phenomenon, and thousands of schemes are being carried out in large metropoles, medium-sized cities, and even small towns all over the world. This opportunity brings the city back to the river and rediscovers waterfront revitalization as a unique opportunity for cities to reconnect with their unique historical and cultural image. The redevelopment can encourage economic investments, serve as a social platform for public interactions, and allow dwellers to express their rights to the city. Many coastal cities have effectively transformed the perception of their waterfront area through years of redevelopment initiatives, having been neglected for over a century. However, this process has never been easy due to the particular complexity of the space: local culture, history, and market-led development. Moreover, municipal governments work out the balance of diverse stakeholder interests, especially when repurposing high-profile and redundant spaces that form the core of urban economic investment while also accommodating the present and future generations in sustainable environments. Urban critics consistently grapple with the effectiveness of the planning process on the new waterfront, where public spaces are criticized for presenting a lack of opportunities for actual public participation due to privatization and authoritarian governance while no longer doing what they are ‘meant to’: all arise in reaction to the perceived failure of these places to meet expectations. The planning culture and the decision-making context determine the level of public involvement in the planning process; however, in the context of competing market forces and commercial interests dominating cities’ planning agendas, planning for public space in urban waterfronts tends to be for economic gain rather than supporting residents' social needs. These newly pleasing settings satisfied the cluster of middle-class individuals, new communities living along the waterfront, and tourists. A trend of public participatory exclusion is primarily determined by the nature of the planning being undertaken and the decision-making context in which it is embedded. Starting from this context, the research investigates the influence of planning on waterfront regeneration and the role of participation in this process. The research aims to look specifically at the characteristics of the planning process of the waterfront in Da Nang and its impact on the regeneration of the place to regain the city’s historical value and enhance local cultural identity and images. Vietnam runs a top-down planning system where municipal governments have control or power over what happens in their city following the approved planning from the national government. The community has never been excluded from development; however, their participation is still marginalized. In order to ensure social equality, a proposed approach called "bottom-up" should be considered and implemented alongside the traditional "top-down" process and provide a balance of perspectives, as it allows for the voices of the most underprivileged social group involved in a planning project to be heard, rather than ignored. The research provides new insights into the influence of the planning process on the waterfront regeneration in the context of Da Nang.

Keywords: planning process, public participation, top-down planning, waterfront regeneration

Procedia PDF Downloads 67
1709 Synthesis, Characterization, and Application of Novel Trihexyltetradecyl Phosphonium Chloride for Extractive Desulfurization of Liquid Fuel

Authors: Swapnil A. Dharaskar, Kailas L. Wasewar, Mahesh N. Varma, Diwakar Z. Shende

Abstract:

Owing to the stringent environmental regulations in many countries for production of ultra low sulfur petroleum fractions intending to reduce sulfur emissions results in enormous interest in this area among the scientific community. The requirement of zero sulfur emissions enhances the prominence for more advanced techniques in desulfurization. Desulfurization by extraction is a promising approach having several advantages over conventional hydrodesulphurization. Present work is dealt with various new approaches for desulfurization of ultra clean gasoline, diesel and other liquid fuels by extraction with ionic liquids. In present paper experimental data on extractive desulfurization of liquid fuel using trihexyl tetradecyl phosphonium chloride has been presented. The FTIR, 1H-NMR, and 13C-NMR have been discussed for the molecular confirmation of synthesized ionic liquid. Further, conductivity, solubility, and viscosity analysis of ionic liquids were carried out. The effects of reaction time, reaction temperature, sulfur compounds, ultrasonication, and recycling of ionic liquid without regeneration on removal of dibenzothiphene from liquid fuel were also investigated. In extractive desulfurization process, the removal of dibenzothiophene in n-dodecane was 84.5% for mass ratio of 1:1 in 30 min at 30OC under the mild reaction conditions. Phosphonium ionic liquids could be reused five times without a significant decrease in activity. Also, the desulfurization of real fuels, multistage extraction was examined. The data and results provided in present paper explore the significant insights of phosphonium based ionic liquids as novel extractant for extractive desulfurization of liquid fuels.

Keywords: ionic liquid, PPIL, desulfurization, liquid fuel, extraction

Procedia PDF Downloads 605
1708 Model-Based Fault Diagnosis in Carbon Fiber Reinforced Composites Using Particle Filtering

Authors: Hong Yu, Ion Matei

Abstract:

Carbon fiber reinforced composites (CFRP) used as aircraft structure are subject to lightning strike, putting structural integrity under risk. Indirect damage may occur after a lightning strike where the internal structure can be damaged due to excessive heat induced by lightning current, while the surface of the structures remains intact. Three damage modes may be observed after a lightning strike: fiber breakage, inter-ply delamination and intra-ply cracks. The assessment of internal damage states in composite is challenging due to complicated microstructure, inherent uncertainties, and existence of multiple damage modes. In this work, a model based approach is adopted to diagnose faults in carbon composites after lighting strikes. A resistor network model is implemented to relate the overall electrical and thermal conduction behavior under simulated lightning current waveform to the intrinsic temperature dependent material properties, microstructure and degradation of materials. A fault detection and identification (FDI) module utilizes the physics based model and a particle filtering algorithm to identify damage mode as well as calculate the probability of structural failure. Extensive simulation results are provided to substantiate the proposed fault diagnosis methodology with both single fault and multiple faults cases. The approach is also demonstrated on transient resistance data collected from a IM7/Epoxy laminate under simulated lightning strike.

Keywords: carbon composite, fault detection, fault identification, particle filter

Procedia PDF Downloads 190
1707 A Mixed 3D Finite Element for Highly Deformable Thermoviscoplastic Materials Under Ductile Damage

Authors: João Paulo Pascon

Abstract:

In this work, a mixed 3D finite element formulation is proposed in order to analyze thermoviscoplastic materials under large strain levels and ductile damage. To this end, a tetrahedral element of linear order is employed, considering a thermoviscoplastic constitutive law together with the neo-Hookean hyperelastic relationship and a nonlocal Gurson`s porous plasticity theory The material model is capable of reproducing finite deformations, elastoplastic behavior, void growth, nucleation and coalescence, thermal effects such as plastic work heating and conductivity, strain hardening and strain-rate dependence. The nonlocal character is introduced by means of a nonlocal parameter applied to the Laplacian of the porosity field. The element degrees of freedom are the nodal values of the deformed position, the temperature and the nonlocal porosity field. The internal variables are updated at the Gauss points according to the yield criterion and the evolution laws, including the yield stress of matrix, the equivalent plastic strain, the local porosity and the plastic components of the Cauchy-Green stretch tensor. Two problems involving 3D specimens and ductile damage are numerically analyzed with the developed computational code: the necking problem and a notched sample. The effect of the nonlocal parameter and the mesh refinement is investigated in detail. Results indicate the need of a proper nonlocal parameter. In addition, the numerical formulation can predict ductile fracture, based on the evolution of the fully damaged zone.

Keywords: mixed finite element, large strains, ductile damage, thermoviscoplasticity

Procedia PDF Downloads 88
1706 Enhanced Solar-Driven Evaporation Process via F-Mwcnts/Pvdf Photothermal Membrane for Forward Osmosis Draw Solution Recovery

Authors: Ayat N. El-Shazly, Dina Magdy Abdo, Hamdy Maamoun Abdel-Ghafar, Xiangju Song, Heqing Jiang

Abstract:

Product water recovery and draw solution (DS) reuse is the most energy-intensive stage in forwarding osmosis (FO) technology. Sucrose solution is the most suitable DS for FO application in food and beverages. However, sucrose DS recovery by conventional pressure-driven or thermal-driven concentration techniques consumes high energy. Herein, we developed a spontaneous and sustainable solar-driven evaporation process based on a photothermal membrane for the concentration and recovery of sucrose solution. The photothermal membrane is composed of multi-walled carbon nanotubes (f-MWCNTs)photothermal layer on a hydrophilic polyvinylidene fluoride (PVDF) substrate. The f-MWCNTs photothermal layer with a rough surface and interconnected network structures not only improves the light-harvesting and light-to-heat conversion performance but also facilitates the transport of water molecules. The hydrophilic PVDF substrate can promote the rapid transport of water for adequate water supply to the photothermal layer. As a result, the optimized f-MWCNTs/PVDF photothermal membrane exhibits an excellent light absorption of 95%, and a high surface temperature of 74 °C at 1 kW m−2 . Besides, it realizes an evaporation rate of 1.17 kg m−2 h−1 for 5% (w/v) of sucrose solution, which is about 5 times higher than that of the natural evaporation. The designed photothermal evaporation process is capable of concentrating sucrose solution efficiently from 5% to 75% (w/v), which has great potential in FO process and juice concentration.

Keywords: solar, pothothermal, membrane, MWCNT

Procedia PDF Downloads 98
1705 Examining the Links between Fish Behaviour and Physiology for Resilience in the Anthropocene

Authors: Lauren A. Bailey, Amber R. Childs, Nicola C. James, Murray I. Duncan, Alexander Winkler, Warren M. Potts

Abstract:

Changes in behaviour and physiology are the most important responses of marine life to anthropogenic impacts such as climate change and over-fishing. Behavioural changes (such as a shift in distribution or changes in phenology) can ensure that a species remains in an environment suited for its optimal physiological performance. However, if marine life is unable to shift their distribution, they are reliant on physiological adaptation (either by broadening their metabolic curves to tolerate a range of stressors or by shifting their metabolic curves to maximize their performance at extreme stressors). However, since there are links between fish physiology and behaviour, changes to either of these traits may have reciprocal interactions. This paper reviews the current knowledge of the links between the behaviour and physiology of fishes, discusses these in the context of exploitation and climate change, and makes recommendations for future research needs. The review revealed that our understanding of the links between fish behaviour and physiology is rudimentary. However, both are hypothesized to be linked to stress responses along the hypothalamic pituitary axis. The link between physiological capacity and behaviour is particularly important as both determine the response of an individual to a changing climate and are under selection by fisheries. While it appears that all types of capture fisheries are likely to reduce the adaptive potential of fished populations to climate stressors, angling, which is primarily associated with recreational fishing, may induce fission of natural populations by removing individuals with bold behavioural traits and potentially the physiological traits required to facilitate behavioural change. Future research should focus on assessing how the links between physiological capacity and behaviour influence catchability, the response to climate change drivers, and post-release recovery. The plasticity of phenotypic traits should be examined under a range of stressors of differing intensity in several species and life history stages. Future studies should also assess plasticity (fission or fusion) in the phenotypic structuring of social hierarchy and how this influences habitat selection. Ultimately, to fully understand how physiology is influenced by the selective processes driven by fisheries, long-term monitoring of the physiological and behavioural structure of fished populations, their fitness, and catch rates are required.

Keywords: climate change, metabolic shifts, over-fishing, phenotypic plasticity, stress response

Procedia PDF Downloads 114
1704 Microstructure and Hardness Changes on T91 Weld Joint after Heating at 560°C

Authors: Suraya Mohamad Nadzir, Badrol Ahmad, Norlia Berahim

Abstract:

T91 steel has been used as construction material for superheater tubes in sub-critical and super critical boiler. This steel was developed with higher creep strength property as compared to conventional low alloy steel. However, this steel is also susceptible to materials degradation due to its sensitivity to heat treatment especially Post Weld Heat Treatment (PWHT) after weld repair process. Review of PWHT process shows that the holding temperature may different from one batch to other batch of samples depending on the material composition. This issue was reviewed by many researchers and one of the potential solutions is the development of weld repair process without PWHT. This process is possible with the use of temper bead welding technique. However, study has shown the hardness value across the weld joint with exception of PWHT is much higher compare to recommended hardness value. Based on the above findings, a study to evaluate the microstructure and hardness changes of T91 weld joint after heating at 560°C at varying duration was carried out. This study was carried out to evaluate the possibility of self-tempering process during in-service period. In this study, the T91 weld joint was heat-up in air furnace at 560°C for duration of 50 and 150 hours. The heating process was controlled with heating rate of 200°C/hours, and cooling rate about 100°C/hours. Following this process, samples were prepared for the microstructure examination and hardness evaluation. Results have shown full tempered martensite structure and acceptance hardness value was achieved after 50 hours heating. This result shows that the thin component such as T91 superheater tubes is able to self-tempering during service hour.

Keywords: T91, weld-joint, tempered martensite, self-tempering

Procedia PDF Downloads 374
1703 Toxicological Validation during the Development of New Catalytic Systems Using Air/Liquid Interface Cell Exposure

Authors: M. Al Zallouha, Y. Landkocz, J. Brunet, R. Cousin, J. M. Halket, E. Genty, P. J. Martin, A. Verdin, D. Courcot, S. Siffert, P. Shirali, S. Billet

Abstract:

Toluene is one of the most used Volatile Organic Compounds (VOCs) in the industry. Amongst VOCs, Benzene, Toluene, Ethylbenzene and Xylenes (BTEX) emitted into the atmosphere have a major and direct impact on human health. It is, therefore, necessary to minimize emissions directly at source. Catalytic oxidation is an industrial technique which provides remediation efficiency in the treatment of these organic compounds. However, during operation, the catalysts can release some compounds, called byproducts, more toxic than the original VOCs. The catalytic oxidation of a gas stream containing 1000ppm of toluene on Pd/α-Al2O3 can release a few ppm of benzene, according to the operating temperature of the catalyst. The development of new catalysts must, therefore, include chemical and toxicological validation phases. In this project, A549 human lung cells were exposed in air/liquid interface (Vitrocell®) to gas mixtures derived from the oxidation of toluene with a catalyst of Pd/α-Al2O3. Both exposure concentrations (i.e. 10 and 100% of catalytic emission) resulted in increased gene expression of Xenobiotics Metabolising Enzymes (XME) (CYP2E1 CYP2S1, CYP1A1, CYP1B1, EPHX1, and NQO1). Some of these XMEs are known to be induced by polycyclic organic compounds conventionally not searched during the development of catalysts for VOCs degradation. The increase in gene expression suggests the presence of undetected compounds whose toxicity must be assessed before the adoption of new catalyst. This enhances the relevance of toxicological validation of such systems before scaling-up and marketing.

Keywords: BTEX toxicity, air/liquid interface cell exposure, Vitrocell®, catalytic oxidation

Procedia PDF Downloads 408
1702 Unveiling the Self-Assembly Behavior and Salt-Induced Morphological Transition of Double PEG-Tailed Unconventional Amphiphiles

Authors: Rita Ghosh, Joykrishna Dey

Abstract:

PEG-based amphiphiles are of tremendous importance for its widespread applications in pharmaceutics, household purposes, and drug delivery. Previously, a number of single PEG-tailed amphiphiles having significant applications have been reported from our group. Therefore, it was of immense interest to explore the properties and application potential of PEG-based double tailed amphiphiles. Herein, for the first time, two novel double PEG-tailed amphiphiles having different PEG chain lengths have been developed. The self-assembly behavior of the newly developed amphiphiles in aqueous buffer (pH 7.0) was thoroughly investigated at 25 oC by a number of techniques including, 1H-NMR, and steady-state and time-dependent fluorescence spectroscopy, dynamic light scattering, transmission electron microscopy, atomic force microscopy, and isothermal titration calorimetry. Despite having two polar PEG chains both molecules were found to have strong tendency to self-assemble in aqueous buffered solution above a very low concentration. Surprisingly, the amphiphiles were shown to form stable vesicles spontaneously at room temperature without any external stimuli. The results of calorimetric measurements showed that the vesicle formation is driven by the hydrophobic effect (positive entropy change) of the system, which is associated with the helix-to-random coil transition of the PEG chain. The spectroscopic data confirmed that the bilayer membrane of the vesicles is constituted by the PEG chains of the amphiphilic molecule. Interestingly, the vesicles were also found to exhibit structural transitions upon addition of salts in solution. These properties of the vesicles enable them as potential candidate for drug delivery.

Keywords: double-tailed amphiphiles, fluorescence, microscopy, PEG, vesicles

Procedia PDF Downloads 116
1701 Double Wishbone Pushrod Suspension Systems Co-Simulation for Racing Applications

Authors: Suleyman Ogul Ertugrul, Mustafa Turgut, Serkan Inandı, Mustafa Gorkem Coban, Mustafa Kıgılı, Ali Mert, Oguzhan Kesmez, Murat Ozancı, Caglar Uyulan

Abstract:

In high-performance automotive engineering, the realistic simulation of suspension systems is crucial for enhancing vehicle dynamics and handling. This study focuses on the double wishbone suspension system, prevalent in racing vehicles due to its superior control and stability characteristics. Utilizing MATLAB and Adams Car simulation software, we conduct a comprehensive analysis of displacement behaviors and damper sizing under various dynamic conditions. The initial phase involves using MATLAB to simulate the entire suspension system, allowing for the preliminary determination of damper size based on the system's response under simulated conditions. Following this, manual calculations of wheel loads are performed to assess the forces acting on the front and rear suspensions during scenarios such as braking, cornering, maximum vertical loads, and acceleration. Further dynamic force analysis is carried out using MATLAB Simulink, focusing on the interactions between suspension components during key movements such as bumps and rebounds. This simulation helps in formulating precise force equations and in calculating the stiffness of the suspension springs. To enhance the accuracy of our findings, we focus on a detailed kinematic and dynamic analysis. This includes the creation of kinematic loops, derivation of relevant equations, and computation of Jacobian matrices to accurately determine damper travel and compression metrics. The calculated spring stiffness is crucial in selecting appropriate springs to ensure optimal suspension performance. To validate and refine our results, we replicate the analyses using the Adams Car software, renowned for its detailed handling of vehicular dynamics. The goal is to achieve a robust, reliable suspension setup that maximizes performance under the extreme conditions encountered in racing scenarios. This study exemplifies the integration of theoretical mechanics with advanced simulation tools to achieve a high-performance suspension setup that can significantly improve race car performance, providing a methodology that can be adapted for different types of racing vehicles.

Keywords: FSAE, suspension system, Adams Car, kinematic

Procedia PDF Downloads 46
1700 A Bayesian Parameter Identification Method for Thermorheological Complex Materials

Authors: Michael Anton Kraus, Miriam Schuster, Geralt Siebert, Jens Schneider

Abstract:

Polymers increasingly gained interest in construction materials over the last years in civil engineering applications. As polymeric materials typically show time- and temperature dependent material behavior, which is accounted for in the context of the theory of linear viscoelasticity. Within the context of this paper, the authors show, that some polymeric interlayers for laminated glass can not be considered as thermorheologically simple as they do not follow a simple TTSP, thus a methodology of identifying the thermorheologically complex constitutive bahavioir is needed. ‘Dynamical-Mechanical-Thermal-Analysis’ (DMTA) in tensile and shear mode as well as ‘Differential Scanning Caliometry’ (DSC) tests are carried out on the interlayer material ‘Ethylene-vinyl acetate’ (EVA). A navoel Bayesian framework for the Master Curving Process as well as the detection and parameter identification of the TTSPs along with their associated Prony-series is derived and applied to the EVA material data. To our best knowledge, this is the first time, an uncertainty quantification of the Prony-series in a Bayesian context is shown. Within this paper, we could successfully apply the derived Bayesian methodology to the EVA material data to gather meaningful Master Curves and TTSPs. Uncertainties occurring in this process can be well quantified. We found, that EVA needs two TTSPs with two associated Generalized Maxwell Models. As the methodology is kept general, the derived framework could be also applied to other thermorheologically complex polymers for parameter identification purposes.

Keywords: bayesian parameter identification, generalized Maxwell model, linear viscoelasticity, thermorheological complex

Procedia PDF Downloads 261
1699 Triple Intercell Bar for Electrometallurgical Processes: A Design to Increase PV Energy Utilization

Authors: Eduardo P. Wiechmann, Jorge A. Henríquez, Pablo E. Aqueveque, Luis G. Muñoz

Abstract:

PV energy prices are declining rapidly. To take advantage of the benefits of those prices and lower the carbon footprint, operational practices must be modified. Undoubtedly, it challenges the electrowinning practice to operate at constant current throughout the day. This work presents a technology that contributes in providing modulation capacity to the electrode current distribution system. This is to raise the day time dc current and lower it at night. The system is a triple intercell bar that operates in current-source mode. The design is a capping board free dogbone type of bar that ensures an operation free of short circuits, hot swapability repairs and improved current balance. This current-source system eliminates the resetting currents circulating in equipotential bars. Twin auxiliary connectors are added to the main connectors providing secure current paths to bypass faulty or impaired contacts. All system conductive elements are positioned over a baseboard offering a large heat sink area to the ventilation of a facility. The system works with lower temperature than a conventional busbar. Of these attributes, the cathode current balance property stands out and is paramount for day/night modulation and the use of photovoltaic energy. A design based on a 3D finite element method model predicting electric and thermal performance under various industrial scenarios is presented. Preliminary results obtained in an electrowinning facility with industrial prototypes are included.

Keywords: electrowinning, intercell bars, PV energy, current modulation

Procedia PDF Downloads 152
1698 Mechanisms Underlying Comprehension of Visualized Personal Health Information: An Eye Tracking Study

Authors: Da Tao, Mingfu Qin, Wenkai Li, Tieyan Wang

Abstract:

While the use of electronic personal health portals has gained increasing popularity in the healthcare industry, users usually experience difficulty in comprehending and correctly responding to personal health information, partly due to inappropriate or poor presentation of the information. The way personal health information is visualized may affect how users perceive and assess their personal health information. This study was conducted to examine the effects of information visualization format and visualization mode on the comprehension and perceptions of personal health information among personal health information users with eye tracking techniques. A two-factor within-subjects experimental design was employed, where participants were instructed to complete a series of personal health information comprehension tasks under varied types of visualization mode (i.e., whether the information visualization is static or dynamic) and three visualization formats (i.e., bar graph, instrument-like graph, and text-only format). Data on a set of measures, including comprehension performance, perceptions, and eye movement indicators, were collected during the task completion in the experiment. Repeated measure analysis of variance analyses (RM-ANOVAs) was used for data analysis. The results showed that while the visualization format yielded no effects on comprehension performance, it significantly affected users’ perceptions (such as perceived ease of use and satisfaction). The two graphic visualizations yielded significantly higher favorable scores on subjective evaluations than that of the text format. While visualization mode showed no effects on users’ perception measures, it significantly affected users' comprehension performance in that dynamic visualization significantly reduced users' information search time. Both visualization format and visualization mode had significant main effects on eye movement behaviors, and their interaction effects were also significant. While the bar graph format and text format had similar time to first fixation across dynamic and static visualizations, instrument-like graph format had a larger time to first fixation for dynamic visualization than for static visualization. The two graphic visualization formats yielded shorter total fixation duration compared with the text-only format, indicating their ability to improve information comprehension efficiency. The results suggest that dynamic visualization can improve efficiency in comprehending important health information, and graphic visualization formats were favored more by users. The findings are helpful in the underlying comprehension mechanism of visualized personal health information and provide important implications for optimal design and visualization of personal health information.

Keywords: eye tracking, information comprehension, personal health information, visualization

Procedia PDF Downloads 103
1697 Mg and MgN₃ Cluster in Diamond: Quantum Mechanical Studies

Authors: T. S. Almutairi, Paul May, Neil Allan

Abstract:

The geometrical, electronic and magnetic properties of the neutral Mg center and MgN₃ cluster in diamond have been studied theoretically in detail by means of an HSE06 Hamiltonian that includes a fraction of the exact exchange term; this is important for a satisfactory picture of the electronic states of open-shell systems. Another batch of the calculations by GGA functionals have also been included for comparison, and these support the results from HSE06. The local perturbations in the lattice by introduced Mg defect are restricted in the first and second shell of atoms before eliminated. The formation energy calculated with HSE06 and GGA of single Mg agrees with the previous result. We found the triplet state with C₃ᵥ is the ground state of Mg center with energy lower than the singlet with C₂ᵥ by ~ 0.1 eV. The recent experimental ZPL (557.4 nm) of Mg center in diamond has been discussed in the view of present work. The analysis of the band-structure of the MgN₃ cluster confirms that the MgN₃ defect introduces a shallow donor level in the gap lying within the conduction band edge. This observation is supported by the EMM that produces n-type levels shallower than the P donor level. The formation energy of MgN₂ calculated from a 2NV defect (~ 3.6 eV) is a promising value from which to engineer MgN₃ defects inside the diamond. Ion-implantation followed by heating to about 1200-1600°C might induce migration of N related defects to the localized Mg center. Temperature control is needed for this process to restore the damage and ensure the mobilities of V and N, which demands a more precise experimental study.

Keywords: empirical marker method, generalised gradient approximation, Heyd–Scuseria–Ernzerhof screened hybrid functional, zero phono line

Procedia PDF Downloads 113
1696 Effect of Dissolved Oxygen Concentration on Iron Dissolution by Liquid Sodium

Authors: Sami Meddeb, M. L Giorgi, J. L. Courouau

Abstract:

This work presents the progress of studies aiming to guarantee the lifetime of 316L(N) steel in a sodium-cooled fast reactor by determining the elementary corrosion mechanism, which is akin to an accelerated dissolution by dissolved oxygen. The mechanism involving iron, the main element of steel, is particularly studied in detail, from the viewpoint of the data available in the literature, the modeling of the various mechanisms hypothesized. Experiments performed in the CORRONa facility at controlled temperature and dissolved oxygen content are used to test both literature data and hypotheses. Current tests, performed at various temperatures and oxygen content, focus on specifying the chemical reaction at play, determining its free enthalpy, as well as kinetics rate constants. Specific test configuration allows measuring the reaction kinetics and the chemical equilibrium state in the same test. In the current state of progress of these tests, the dissolution of iron accelerated by dissolved oxygen appears as directly related to a chemical complexation reaction of mixed iron-sodium oxide (Na-Fe-O), a compound that is soluble in the liquid sodium solution. Results obtained demonstrate the presence in the solution of this corrosion product, whose kinetics is the limiting step under the conditions of the test. This compound, the object of hypotheses dating back more than 50 years, is predominant in solution compared to atomic iron, presumably even for the low oxygen concentration, and cannot be neglected for the long-term corrosion modeling of any heat transfer system.

Keywords: corrosion, sodium fast reactors, iron, oxygen

Procedia PDF Downloads 176
1695 Perception Differences in Children Learning to Golf with Traditional versus Modified (Scaled) Equipment

Authors: Lindsey D. Sams, Dean R. Gorman, Cathy D. Lirgg, Steve W. Dittmore, Jack C. Kern

Abstract:

Golf is a lifetime sport that provides numerous physical and psychological benefits. The game has struggled with attrition and retention within minority groups and this has exposed the lack of a modified introduction to the game that is uniformly accessible and developmentally appropriate. Factors that have been related to sport participatory behaviors include perceived competence, enjoyment and intention. The purpose of this study was to examine self-reported perception differences in competence and enjoyment between learners using modified and traditional equipment as well as the potential effects these factors could have on intent for future participation. For this study, SNAG Golf was chosen to serve as the scaled equipment used by the modified equipment group. The participants in this study were 99 children (24 traditional equipment users/ 75 modified equipment users) located across the U.S. with ages ranging from 7 to 12 years (2nd-5th grade). Utilizing a convenience sampling method, data was obtained on a voluntary basis through surveys measuring children’s golf participation and self-perceptions concerning perceived competence, enjoyment and intention to continue participation. The scales used for perceived competence and enjoyment included Susan Harter’s Self-Perception Profile for Children (SPPC) along with the Physical Activity Enjoyment Scale (PACES). Analysis revealed no significant differences for enjoyment, perceived competence or intention between children learning with traditional golf equipment and modified golf equipment. This was true even though traditional equipment users reported significantly higher experience levels than that of modified users. Intention was regressed on the enjoyment and perceived competence variables. Congruent with current literature, enjoyment was a strong predictor of intention to continue participation, for both groups. Modified equipment users demonstrated significantly lower experience levels but reported similar levels of competence, enjoyment and intent to continue participation as reported by the more experienced, and potentially more skilled, traditional users. The ability to immediately generate these positive affects suggests the potential adoption of a more effective way to learn golf and a method that is conducive to participatory behaviors related to attrition and retention. These implications in turn, highlight an equipment candidate ideal for inception into physical education programs where new learners are introduced to various sports in safe and developmentally appropriate environments. A major goal of this study was to provide foundational research that instigates the further examination of golf’s introductory teaching methodologies, as there is a lack of its presence in current literature. Future research recommendations range from improvements in the current research design to expansive approaches related to the topic, such as progressive skill development, knowledge of the game’s tactical and strategic concepts, playing ability and teaching effectiveness when utilizing modified versus traditional equipment.

Keywords: adaptive sports, enjoyment, golf participation, modified equipment, perceived competence, SNAG golf

Procedia PDF Downloads 337
1694 Empirical Decomposition of Time Series of Power Consumption

Authors: Noura Al Akkari, Aurélie Foucquier, Sylvain Lespinats

Abstract:

Load monitoring is a management process for energy consumption towards energy savings and energy efficiency. Non Intrusive Load Monitoring (NILM) is one method of load monitoring used for disaggregation purposes. NILM is a technique for identifying individual appliances based on the analysis of the whole residence data retrieved from the main power meter of the house. Our NILM framework starts with data acquisition, followed by data preprocessing, then event detection, feature extraction, then general appliance modeling and identification at the final stage. The event detection stage is a core component of NILM process since event detection techniques lead to the extraction of appliance features. Appliance features are required for the accurate identification of the household devices. In this research work, we aim at developing a new event detection methodology with accurate load disaggregation to extract appliance features. Time-domain features extracted are used for tuning general appliance models for appliance identification and classification steps. We use unsupervised algorithms such as Dynamic Time Warping (DTW). The proposed method relies on detecting areas of operation of each residential appliance based on the power demand. Then, detecting the time at which each selected appliance changes its states. In order to fit with practical existing smart meters capabilities, we work on low sampling data with a frequency of (1/60) Hz. The data is simulated on Load Profile Generator software (LPG), which was not previously taken into consideration for NILM purposes in the literature. LPG is a numerical software that uses behaviour simulation of people inside the house to generate residential energy consumption data. The proposed event detection method targets low consumption loads that are difficult to detect. Also, it facilitates the extraction of specific features used for general appliance modeling. In addition to this, the identification process includes unsupervised techniques such as DTW. To our best knowledge, there exist few unsupervised techniques employed with low sampling data in comparison to the many supervised techniques used for such cases. We extract a power interval at which falls the operation of the selected appliance along with a time vector for the values delimiting the state transitions of the appliance. After this, appliance signatures are formed from extracted power, geometrical and statistical features. Afterwards, those formed signatures are used to tune general model types for appliances identification using unsupervised algorithms. This method is evaluated using both simulated data on LPG and real-time Reference Energy Disaggregation Dataset (REDD). For that, we compute performance metrics using confusion matrix based metrics, considering accuracy, precision, recall and error-rate. The performance analysis of our methodology is then compared with other detection techniques previously used in the literature review, such as detection techniques based on statistical variations and abrupt changes (Variance Sliding Window and Cumulative Sum).

Keywords: general appliance model, non intrusive load monitoring, events detection, unsupervised techniques;

Procedia PDF Downloads 78