Search results for: wall thermal insulation efficacy
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6601

Search results for: wall thermal insulation efficacy

5671 Analysis of the Reaction to the Fire of a Composite Material the Base of Scrapes of Tires and Latex for Thermal Isolation in Vehicles

Authors: Elmo Thiao Lins Cöuras Ford, Valentina Alessandra Carvalho do Vale, R. M. Nascimento, J. U. L. Mendes

Abstract:

Now the great majority of the applications of thermal isolation in the strip of drops and averages temperatures (up to 200ºC), it is made being used from aggressive materials to the nature such an as: glass wool, rock wool, polystyrene, EPS among others. Such materials, in spite of the effectiveness in the retention of the flow of heat, possess considerable cost and when discarded they are long years to be to decompose. In that context, trying to adapt the world politics the about of the preservation of the environment, a study began with intention of developing a material composite, with properties of thermal, originating from insulating industrial residues. In this research, the behavior of the composite was analyzed, as submitted the fire. For this, the reaction rehearsals were accomplished to the fire for the composites 2:1; 1:1; 1:2 and for the latex, based in the "con" experiment in agreement with the norm ASTM–E 1334-90. As consequence, in function of the answers of the system, was possible to observe to the acting of each mixture proportion.

Keywords: composite, Latex, reacion to the fire, thermal isolation

Procedia PDF Downloads 433
5670 Coupling Heat Transfer by Natural Convection and Thermal Radiation in a Storage Tank of LNG

Authors: R. Hariti, M. Saighi, H. Saidani-Scott

Abstract:

A numerical simulation of natural convection double diffusion, coupled with thermal radiation in unsteady laminar regime in a storage tank is carried out. The storage tank contains a liquefied natural gas (LNG) in its gaseous phase. Fluent, a commercial CFD package, based on the numerical finite volume method, is used to simulate the flow. The radiative transfer equation is solved using the discrete coordinate method. This numerical simulation is used to determine the temperature profiles, stream function, velocity vectors and variation of the heat flux density for unsteady laminar natural convection. Furthermore, the influence of thermal radiation on the heat transfer has been investigated and the results obtained were compared to those found in the literature. Good agreement between the results obtained by the numerical method and those taken on site for the temperature values.

Keywords: tank, storage, liquefied natural gas, natural convection, thermal radiation, numerical simulation

Procedia PDF Downloads 535
5669 Defining and Measuring the Success of the Hospitality-Based Social Enterprise Ringelblum Café

Authors: Nitzan Winograd, Nada Kakabadse

Abstract:

This study examines whether the hospitality-based social enterprise Ringelblum Café is achieving its stated social goals of developing a sense of self-efficacy among at-risk youth who work in this enterprise and raising levels of recruitment to the Israel Defence Forces (IDF) and National Service (NS) among these young adults. Ringelblum Café was founded in 2009 in Be'er-Sheva in order to provide employment solutions for at-risk youth in the southern district of Israel. Each year, 10 at-risk young adults aged 16–18 are referred to the programme by various welfare agencies. The training programme is approximately a year in duration and includes professional training in the art of cooking. Each young adult is also supported by a social worker. This study is based on the participation of 31 youths who graduated from the Ringelblum Café’s training programme. A convenience sampling model was used with the assistance of the programme's social worker. This study is quantitative in its approach. Data was collected by means of three separate self-reported questionnaires: a personal information questionnaire collected general demographics data; a self-efficacy questionnaire consisted of two parts: general self-efficacy and social self-efficacy; and an IDS/NS recruitment questionnaire. The study uses the theory of change in order to find out whether at-risk youth in the Ringelblum Café programme are taught a profession with future prospects, as well as whether they develop a sense of self-efficacy and raise their chances of recruitment into the IDF/NS. The study found that the sense of self-efficacy of the graduates is relatively high. In addition, there was a significant difference between the importance of recruitment to the IDF/NS among these youth prior to the beginning of the programme and after its completion, indicating that the training programme had a positive effect on motivation for recruitment to the IDF/NS. The study also found that the percentage of recruits to the IDF/NS among youth who graduated from the training programme were not significantly higher than the general recruitment figures in Israel. In conclusion, Ringelblum Café is making sound progress towards achieving its social goals regarding recruitment to the IDF/NS. Moreover, the sense of self-efficacy among the graduates is relatively high, and it can be assumed that the training programme has a positive effect on these young adults, although there is no clear connection between the two. This study is among a few that have been conducted in the field of hospitality-based social enterprises in Israel and can serve as a basis for further research. Moreover, the study results may help improve the perception of at-risk youth and their contribution to society and could increase awareness of the growing trend of social enterprises promoting social goals.

Keywords: at-risk youth, Israel Defence Forces (IDF), national service, recruitment, self-efficacy, social enterprise

Procedia PDF Downloads 212
5668 Investigation on Phase Change Device for Satellite Thermal Control

Authors: Meng-Hao Chen, Jeng-Der Huang, Chia-Ray Chen

Abstract:

With the new space mission need of high power dissipation, low thermal inertia and cyclical operation unit, such as high power amplifier (HPA) for synthetic aperture radar (SAR) satellite, the development of phase change material (PCM) technology seems to be a proper solution. Generally, the expected benefit of PCM solution is to eliminate temperature variation and maintain the stability of electronic units by using the latent heat during phase change process. It can also result in advantages of decreased radiator area and heater power. However, the PCMs have a drawback of low thermal conductivity that leads to large temperature gradient between the heat source and PCM. This paper thus presents both experimental and simplified numerical investigations on configuration design of PCM’s container. A comparison was carried out between the container with and without internal pin-fins structure. The results showed the benefit of pin-fins that act as the heat transfer enhancer to improve the temperature uniformity during phase transition. Furthermore, thermal testing and measurements were presented for four PCM candidates (i.e. n-octadecane, n-eicosane, glycerin and gallium). The solidification and supercooling behaviors on different PCMs were compared with available literature data and discussed in this study

Keywords: phase change material (PCM), thermal control, solidification, supercooling

Procedia PDF Downloads 384
5667 Numerical Analysis of Laminar Mixed Convection within a Complex Geometry

Authors: Y. Lasbet, A. L. Boukhalkhal, K. Loubar

Abstract:

The study of mixed convection is, usually, focused on the straight channels in which the onset of the mixed convection is well defined as function of the ratio between Grashof number and Reynolds number, Gr/Re. This is not the case for a complex channel wherein the mixed convection is not sufficiently examined in the literature. Our paper focuses on the study of the mixed convection in a complex geometry in which our main contribution reveals that the critical value of the ratio Gr/Re for the onset of the mixed convection increases highly in the type of geometry contrary to the straight channel. Furthermore, the accentuated secondary flow in this geometry prevents the thermal stratification in the flow and consequently the buoyancy driven becomes negligible. To perform these objectives, a numerical study in complex geometry for several values of the ratio Gr/Re with prescribed wall heat flux (H2), was realized by using the CFD code.

Keywords: complex geometry, heat transfer, laminar flow, mixed convection, Nusselt number

Procedia PDF Downloads 490
5666 Design and Thermal Analysis of a Concrete House in Libya Using BEopt

Authors: Gamal Alamri, Tariq Iqbal

Abstract:

This paper presents an optimum designs and thermal analysis of concrete house in the hot climate of Libya. For this goal we have used BEopt software (building energy optimization) that provides capabilities for estimating residential building design and thermal analysis. The most area of the house that is exposed to the sunlight’s is the roof leading to heat gain. Therefore, house cooling consumes high energy. The cooling energy consumption is three times the heating energy consumption. In order to maintain comfortable indoor conditions in a low-energy house, the entire building envelope needs to be perfectly insulated and prevented from air leakages. Insulated roof is selected to reduce cooling demand, and the paper presents details and BEopt simulation results. Designed house needs 12.02mmbtus/year. Furthermore, the modeling indicates that the designed house is close to achieving the Passive standard.

Keywords: concrete house design, thermal analysis, hot climate, BEopt software

Procedia PDF Downloads 407
5665 A Unified Model for Predicting Particle Settling Velocity in Pipe, Annulus and Fracture

Authors: Zhaopeng Zhu, Xianzhi Song, Gensheng Li

Abstract:

Transports of solid particles through the drill pipe, drill string-hole annulus and hydraulically generated fractures are important dynamic processes encountered in oil and gas well drilling and completion operations. Different from particle transport in infinite space, the transports of cuttings, proppants and formation sand are hindered by a finite boundary. Therefore, an accurate description of the particle transport behavior under the bounded wall conditions encountered in drilling and hydraulic fracturing operations is needed to improve drilling safety and efficiency. In this study, the particle settling experiments were carried out to investigate the particle settling behavior in the pipe, annulus and between the parallel plates filled with power-law fluids. Experimental conditions simulated the particle Reynolds number ranges of 0.01-123.87, the dimensionless diameter ranges of 0.20-0.80 and the fluid flow behavior index ranges of 0.48-0.69. Firstly, the wall effect of the annulus is revealed by analyzing the settling process of the particles in the annular geometry with variable inner pipe diameter. Then, the geometric continuity among the pipe, annulus and parallel plates was determined by introducing the ratio of inner diameter to an outer diameter of the annulus. Further, a unified dimensionless diameter was defined to confirm the relationship between the three different geometry in terms of the wall effect. In addition, a dimensionless term independent from the settling velocity was introduced to establish a unified explicit settling velocity model applicable to pipes, annulus and fractures with a mean relative error of 8.71%. An example case study was provided to demonstrate the application of the unified model for predicting particle settling velocity. This paper is the first study of annulus wall effects based on the geometric continuity concept and the unified model presented here will provide theoretical guidance for improved hydraulic design of cuttings transport, proppant placement and sand management operations.

Keywords: wall effect, particle settling velocity, cuttings transport, proppant transport in fracture

Procedia PDF Downloads 158
5664 Influences of Thermal Treatments on Dielectric Behaviors of Carbon Nanotubes-BaTiO₃ Hybrids Reinforced Polyvinylidene Fluoride Composites

Authors: Benhui Fan, Fahmi Bedoui, Jinbo Bai

Abstract:

Incorporated carbon nanotube-BaTiO₃ hybrids (H-CNT-BT) with core-shell structure, a better dispersion of CNTs can be achieved in a semi-crystalline polymeric matrix, polyvinylidene fluoride (PVDF). Carried by BT particles, CNTs are easy to mutually connect which helps to obtain an extremely low percolation threshold (fc). After thermal treatments, the dielectric constants (ε’) of samples further increase which depends on the conditions of thermal treatments such as annealing temperatures, annealing durations and cooling ways. Thus, in order to study more comprehensively about the influence of thermal treatments on composite’s dielectric behaviors, in situ synchrotron X-ray is used to detect re-crystalline behavior of PVDF. Results of wide-angle X-ray diffraction (WAXD) and small-angle X-ray scattering (SAXS) show that after the thermal treatment, the content of β polymorph (the polymorph with the highest ε’ among all the polymorphs of PVDF’s crystalline structure) has increased nearly double times at the interfacial region of CNT-PVDF, and the thickness of amorphous layers (La) in PVDF’s long periods (Lp) has shrunk around 10 Å. The evolution of CNT’s network possibly occurs in the procedure of La shrinkage, where the strong interfacial polarization may be aroused and increases ε’ at low frequency. Moreover, an increase in the thickness of crystalline lamella may also arouse more orientational polarization and improve ε’ at high frequency.

Keywords: dielectric properties, thermal treatments, carbon nanotubes, crystalline structure

Procedia PDF Downloads 321
5663 Thermodynamic and Immunochemical Studies of Antibody Biofunctionalized Gold Nanoparticles Mediated Photothermal Ablation in Human Liver Cancer Cells

Authors: Lucian Mocan, Flaviu Tabaran, Teodora Mocan, Cristian Matea, Cornel Iancu

Abstract:

We present method of Gold Nanoparticle enhanced laser thermal ablation of HepG2 cells (Human hepatocellular liver carcinoma cell line), based on a simple gold nanoparticle carrier system, such as serum albumin (BSA), and demonstrate its selective therapeutic efficacy. Hyperspectral, contrast phase, and confocal microscopy combined immunochemical staining were used to demonstrate the selective internalization of HSA-GNPs via Gp60 receptors and the caveolin-mediated endocytosis inside HepG2 cells. We examined the ability of laser-activated carbon nanotubes to induce Hsp70 expression using confocal microscopy. Hep G2 cells heat-shocked (laser activated BSA-GNPs) to 42°C demonstrated an up-regulation of Hsp70 compared with control cells (BSA-GNPs treated cells without laser), which showed no detectable constitutive expression of Hsp70. We observed a time-dependent induction in Hsp70 expression in Hep G2 treated with BSA-GNPs and LASER irradiated. The post-irradiation apoptotic rate of HepG2 cells treated with HSA-GNPs ranged from 88.24% (for 50 mg/L) at 60 seconds, while at 30 minute the rate increased to 92.34% (50 mg/L). These unique results may represent a major step in liver cancer treatment using nanolocalized thermal ablation by laser heating.

Keywords: gold nanoparticles, liver cancer, albumin, laser irradiation

Procedia PDF Downloads 296
5662 Non-Executive Employees’ Psychological Capital and Goal Attainment Development Through Positive Psychology Micro-Coaching Intervention

Authors: Iman Abrishamchi

Abstract:

The aim of this study is to investigate the effect of Positive psychology micro coaching (PPMC) on nonexecutive employees' psychological capital and the relation between goal-related self-efficacy and goal attainment. This study was in the form of a control trial design for 150 people in the factory over a period of 5 weeks; the intervention method was a strength-based approach. Participants were divided into two experimental groups (EX) and the waiting list group (WL). The measurement methods were a mix of quantitative and qualitative and included the psychological capital measurement questionnaire, a 2X2 ANOVA to analyze the within-subject factors and between-subject factors, t-tests for evaluating the time effect, and data analysis by the SPSS 25.0 statistical program. The results of the study showed that PPMC could increase psychological capital in employees, and goal-related self-efficacy can predict goal attainment, so this contributes to successful organizational outcomes.

Keywords: psychological capital, goal attainment, positive psychology, micro-coaching intervention, goal related self-efficacy

Procedia PDF Downloads 72
5661 A Comparative Study of the Effects of Vibratory Stress Relief and Thermal Aging on the Residual Stress of Explosives Materials

Authors: Xuemei Yang, Xin Sun, Cheng Fu, Qiong Lan, Chao Han

Abstract:

Residual stresses, which can be produced during the manufacturing process of plastic bonded explosive (PBX), play an important role in weapon system security and reliability. Residual stresses can and do change in service. This paper mainly studies the influence of vibratory stress relief (VSR) and thermal aging on residual stress of explosives. Firstly, the residual stress relaxation of PBX via different physical condition of VSR, such as vibration time, amplitude and dynamic strain, were studied by drill-hole technique. The result indicated that the vibratory amplitude, time and dynamic strain had a significant influence on the residual stress relief of PBX. The rate of residual stress relief of PBX increases first and then decreases with the increase of dynamic strain, amplitude and time, because the activation energy is too small to make the PBX yield plastic deformation at first. Then the dynamic strain, time and amplitude exceed a certain threshold, the residual stress changes show the same rule and decrease sharply, this sharply drop of residual stress relief rate may have been caused by over vibration. Meanwhile, the comparison between VSR and thermal aging was also studied. The conclusion is that the reduction ratio of residual stress after VSR process with applicable vibratory parameters could be equivalent to 73% of thermal aging with 7 days. In addition, the density attenuation rate, mechanical property, and dimensional stability with 3 months after VSR process was almost the same compared with thermal aging. However, compared with traditional thermal aging, VSR only takes a very short time, which greatly improves the efficiency of aging treatment for explosive materials. Therefore, the VSR could be a potential alternative technique in the industry of residual stress relaxation of PBX explosives.

Keywords: explosives, residual stresses, thermal aging, vibratory stress relief, VSR

Procedia PDF Downloads 153
5660 The Elastic Field of a Nano-Pore, and the Effective Modulus of Composites with Nano-Pores

Authors: Xin Chen, Moxiao Li, Xuechao Sun, Fei Ti, Shaobao Liu, Feng Xu, Tian Jian Lu

Abstract:

The composite materials with pores have the characteristics of light weight, sound insulation, and heat insulation, and have broad prospects in many fields, including aerospace. In general, the stiffness of such composite is less than the stiffness of the matrix material, limiting their applications. In this paper, we establish a theoretical model to analyze the deformation mechanism of a nano-pore. The interface between the pores and matrix material is described by the Gurtin-Murdoch model. By considering scale effect related with current deformation, we estimate the effective mechanical properties (e.g., effective shear modulus and bulk modulus) of a composite with nano-pores. Due to the scale effect, the elastic field in the composite was changed and local hardening was observed around the nano-pore, and the effective shear modulus and effective bulk modulus were found to be a function of the surface energy. The effective shear modulus increase with the surface energy and decrease with the size of the nano-pores, and the effective bulk modulus decrease with the surface energy and increase with the size of the nano-pores. These results have potential applications in the nanocomposite mechanics and aerospace field.

Keywords: composite mechanics, nano-inhomogeneity, nano-pores, scale effect

Procedia PDF Downloads 132
5659 The Association between Facebook Emotional Dependency with Psychological Well-Being in Eudaimonic Approach among Adolescents 13-16 Years Old

Authors: Somayyeh Naeemi, Ezhar Tamam

Abstract:

In most of the countries, Facebook allocated high rank of usage among other social network sites. Several studies have examined the effect of Facebook intensity on individuals’ psychological well-being. However, few studies have investigated its effect on eudaimonic well-being. The current study explored how emotional dependency to Facebook relates to psychological well-being in terms of eudaimonic well-being. The number of 402 adolescents 13-16 years old who studied in upper secondary school in Malaysia participated in this study. It was expected to find out a negative association between emotional dependency to Facebook and time spent on Facebook and psychological well-being. It also was examined the moderation effects of self-efficacy on psychological well-being. The results by Structural Equation Modeling revealed that emotional dependency to Facebook has a negative effect on adolescents’ psychological well-being. Surprisingly self-efficacy did not have moderation effect on the relationship between emotional dependency to Facebook and psychological well-being. Lastly, the emotional dependency to Facebook and not the time spent on Facebook lessen adolescents’ psychological well-being, suggesting the value of investigating Facebook usage among college students in future studies.

Keywords: emotional dependency to facebook, psychological well-being, eudaimonic well-being, self-efficacy, adolescent

Procedia PDF Downloads 514
5658 Influence of Reinforcement Stiffness on the Performance of Back-to-Back Reinforced Earth Wall upon Rainwater Infiltration

Authors: Gopika Rajagopal, Sudheesh Thiyyakkandi

Abstract:

Back-to-back reinforced earth (RE) walls are extensively used in these days as bridge abutments and highway ramps, owing to their cost efficiency and ease of construction. High quality select fill is the most suitable backfill material due to its excellent engineering properties and constructability. However, industries are compelled to use low quality, locally available soil because of its ample availability on site. However, several failure cases of such walls are reported, especially subsequent to rainfall events. The stiffness of reinforcement is one of the major factors affecting the performance of RE walls. The present study focused on analyzing the effect of reinforcement stiffness on the performance of complete select fill, complete marginal fill, and hybrid-fill (i.e., combination of select and marginal fills) back-to-back RE walls, immediately after construction and upon rainwater infiltration through finite element modelling. A constant width to height (W/H) ratio of 3 and height (H) of 6 m was considered for the numerical analysis and the stiffness of reinforcement layers was varied from 500 kN/m to 10000 kN/m. Results showed that reinforcement stiffness had a noticeable influence on the response of RE wall, subsequent to construction as well as rainwater infiltration. Facing displacement was found to decrease and maximum reinforcement tension and factor of safety were observed to increase with increasing the stiffness of reinforcement. However, beyond a stiffness of 5000 kN/m, no significant reduction in facing displacement was observed. The behavior of fully marginal fill wall considered in this study was found to be reasonable even after rainwater infiltration when the high stiffness reinforcement layers are used.

Keywords: back-to-back reinforced earth wall, finite element modelling, rainwater infiltration, reinforcement stiffness

Procedia PDF Downloads 151
5657 Intensification of Process Kinetics for Conversion of Organic Volatiles into Syngas Using Non-Thermal Plasma

Authors: Palash Kumar Mollick, Leire Olazar, Laura Santamaria, Pablo Comendador, Manomita Mollick, Gartzen Lopez, Martin Olazar

Abstract:

The entire world is skeptical towards a silver line technology of converting plastic waste into valuable synthetic gas. At this junction, besides an adequately studied conventional catalytic process for steam reforming, a non-thermal plasma is being introduced. Organic volatiles are produced in the first step, pyrolysing the plastic materials. Resultant lightweight olefins and carbon monoxide are the major components that undergo a steam reforming process to achieve syngas. A non-thermal plasma consists of ionized gases and free electrons with an electronic temperature as high as 10³ K. Organic volatiles are, in general, endorganics inactive and thus demand huge bond-breaking energy. Conventional catalyst is incapable of providing the required activation energy, leading to poor thermodynamic equilibrium, whereas a non-thermal plasma can actively collide with reactants to produce a rich mix of reactive species, including vibrationally or electronically excited molecules, radicals, atoms, and ions. In addition, non-thermal plasma provides nonequilibrium conditions leading to electric discharge only in certain degrees of freedom without affecting the intrinsic chemical conditions of the participating reactants and products. In this work, we report thermodynamic and kinetic aspects of the conversion of organic volatiles into syngas using a non-thermal plasma. Detailed characteristics of plasma and its effect on the overall yield of the process will be presented.

Keywords: non thermal plasma, plasma catalysis, steam reforming, syngas, plastic waste, green energy

Procedia PDF Downloads 61
5656 Utilization of Fly Ash Amended Sewage Sludge as Sustainable Building Material

Authors: Kaling Taki, Rohit Gahlot, Manish Kumar

Abstract:

Disposal of Sewage Sludge (SS) is a big issue especially in developing nation like India, where there is no control in the dynamicity of SS produced. The present research work demonstrates the potential application of SS amended with varying percentage (0-100%) of Fly Ash (FA) for brick manufacturing as an alternative of SS management. SS samples were collected from Jaspur sewage treatment plant (Ahmedabad, India) and subjected to different preconditioning treatments: (i) atmospheric drying (ii) pulverization (iii) heat treatment in oven (110°C, moisture removal) and muffle furnace (440°C, organic content removal). Geotechnical parameters of the SS were obtained as liquid limit (52%), plastic limit (24%), shrinkage limit (10%), plasticity index (28%), differential free swell index (DFSI, 47%), silt (68%), clay (27%), organic content (5%), optimum moisture content (OMC, 20%), maximum dry density (MDD, 1.55gm/cc), specific gravity (2.66), swell pressure (57kPa) and unconfined compressive strength (UCS, 207kPa). For FA liquid limit, plastic limit and specific gravity was 44%, 0% and 2.2 respectively. Initially, for brick casting pulverized SS sample was heat treated in a muffle furnace around 440℃ (5 hours) for removal of organic matter. Later, mixing of SS, FA and water by weight ratio was done at OMC. 7*7*7 cm3 sample mold was used for casting bricks at MDD. Brick samples were then first dried in room temperature for 24 hours, then in oven at 100℃ (24 hours) and finally firing in muffle furnace for 1000℃ (10 hours). The fired brick samples were then cured for 3 days according to Indian Standards (IS) common burnt clay building bricks- specification (5th revision). The Compressive strength of brick samples (0, 10, 20, 30, 40, 50 ,60, 70, 80, 90, 100%) of FA were 0.45, 0.76, 1.89, 1.83, 4.02, 3.74, 3.42, 3.19, 2.87, 0.78 and 4.95MPa when evaluated through compressive testing machine (CTM) for a stress rate of 14MPa/min. The highest strength was obtained at 40% FA mixture i.e. 4.02MPa which is much higher than the pure SS brick sample. According to IS 1077: 1992 this combination gives strength more than 3.5 MPa and can be utilized as common building bricks. The loss in weight after firing was much higher than the oven treatment, this might be due to degradation temperature higher than 100℃. The thermal conductivity of the fired brick was obtained as 0.44Wm-1K-1, indicating better insulation properties than other reported studies. TCLP (Toxicity characteristic leaching procedure) test of Cr, Cu, Co, Fe and Ni in raw SS was found as 69, 70, 21, 39502 and 47 mg/kg. The study positively concludes that SS and FA at optimum ratio can be utilized as common building bricks such as partitioning wall and other small strength requirement works. The uniqueness of the work is it emphasizes on utilization of FA for stabilizing SS as construction material as a replacement of natural clay as reported in existing studies.

Keywords: Compressive strength, Curing, Fly Ash, Sewage Sludge.

Procedia PDF Downloads 106
5655 Thermal Regeneration of CO2 Spent Palm Shell-Polyetheretherketone Activated Carbon Sorbents

Authors: Usman D. Hamza, Noor S. Nasri, Mohammed Jibril, Husna M. Zain

Abstract:

Activated carbons (M4P0, M4P2, and M5P2) used in this research were produced from palm shell and polyetherether ketone (PEEK) via carbonization, impregnation, and microwave activation. The adsorption/desorption process was carried out using static volumetric adsorption. Regeneration is important in the overall economy of the process and waste minimization. This work focuses on the thermal regeneration of the CO2 exhausted microwave activated carbons. The regeneration strategy adopted was thermal with nitrogen purge desorption with N2 feed flow rate of 20 ml/min for 1 h at atmospheric pressure followed by drying at 1500C. Seven successive adsorption/regeneration processes were carried out on the material. It was found that after seven adsorption regeneration cycles; the regeneration efficiency (RE) for CO2 activated carbon from palm shell only (M4P0) was more than 90% while that of hybrid palm shell-PEEK (M4P2, M5P2) was above 95%. The cyclic adsorption and regeneration shows the stability of the adsorbent materials.

Keywords: activated carbon, palm shell-PEEK, regeneration, thermal

Procedia PDF Downloads 484
5654 Cold Spray Coating and Its Application for High Temperature

Authors: T. S. Sidhu

Abstract:

Amongst the existing coatings methods, the cold spray is new upcoming process to deposit coatings. As from the name itself, the cold spray coating takes place at very low temperature as compare to other thermal spray coatings. In all other thermal spray coating process the partial melting of the coating powder particles takes place before deposition, but cold spray process takes place in solid state. In cold spray process, the bonding of coating power with substrate is not metallurgical as in other thermal spray processes. Due to supersonic speed and less temperature of spray particles, solid state, dense, and oxide free coatings are produced. Due to these characteristics, the cold spray coatings have been used to protect the materials against hot corrosion. In the present study, the cold spray process, cold spray fundaments, its types, and its applications for high temperatures are discussed in the light of presently available literature. In addition, the assessment of cold spray with the competitive technologies has been conferred with available literature.

Keywords: cold spray coating, hot corrosion, thermal spray coating, high-temperature materials

Procedia PDF Downloads 236
5653 Passive Solar Techniques to Improve Thermal Comfort and Reduce Energy Consumption of Domestic Use

Authors: Naci Kalkan, Ihsan Dagtekin

Abstract:

Passive design responds to improve indoor thermal comfort and minimize the energy consumption. The present research analyzed the how efficiently passive solar technologies generate heating and cooling and provide the system integration for domestic applications. In addition to this, the aim of this study is to increase the efficiency of solar systems system with integration some innovation and optimization. As a result, outputs of the project might start a new sector to provide environmentally friendly and cheap cooling for domestic use.

Keywords: passive solar systems, heating, cooling, thermal comfort, ventilation systems

Procedia PDF Downloads 291
5652 Effect of Renin Angiotensin Pathway Inhibition on the Efficacy of Anti-programmed Cell Death (PD-1/L-1) Inhibitors in Advanced Non-small Cell Lung Cancer Patients- Comparison of Single Hospital Retrospective Assessment to the Published Literature

Authors: Esther Friedlander, Philip Friedlander

Abstract:

The use of immunotherapy that inhibits programmed death-1 (PD-1) or its ligand PD-L1 confers survival benefits in patients with non-small cell lung cancer (NSCLC). However, approximately 45% of patients experience primary treatment resistance, necessitating the development of strategies to improve efficacy. While the renin-angiotensin system (RAS) has systemic hemodynamic effects, tissue-specific regulation exists along with modulation of immune activity in part through regulation of myeloid cell activity, leading to the hypothesis that RAS inhibition may improve anti-PD-1/L-1 efficacy. A retrospective analysis was conducted that included 173 advanced solid tumor cancer patients treated at Valley Hospital, a community Hospital in New Jersey, USA, who were treated with a PD-1/L-1 inhibitor in a defined time period showing a statistically significant relationship between RAS pathway inhibition (RASi through concomitant treatment with an ACE inhibitor or angiotensin receptor blocker) and positive efficacy to the immunotherapy that was independent of age, gender and cancer type. Subset analysis revealed strong numerical benefit for efficacy in both patients with squamous and nonsquamous NSCLC as determined by documented clinician assessment of efficacy and by duration of therapy. A PUBMED literature search was now conducted to identify studies assessing the effect of RAS pathway inhibition on anti-PD-1/L1 efficacy in advanced solid tumor patients and compare these findings to those seen in the Valley Hospital retrospective study with a focus on NSCLC specifically. A total of 11 articles were identified assessing the effects of RAS pathway inhibition on the efficacy of checkpoint inhibitor immunotherapy in advanced cancer patients. Of the 11 studies, 10 assessed the effect on survival of RASi in the context of treatment with anti-PD-1/PD-L1, while one assessed the effect on CTLA-4 inhibition. Eight of the studies included patients with NSCLC, while the remaining 2 were specific to genitourinary malignancies. Of the 8 studies, two were specific to NSCLC patients, with the remaining 6 studies including a range of cancer types, of which NSCLC was one. Of these 6 studies, only 2 reported specific survival data for the NSCLC subpopulation. Patient characteristics, multivariate analysis data and efficacy data seen in the 2 NSLCLC specific studies and in the 2 basket studies, which provided data on the NSCLC subpopulation, were compared to that seen in the Valley Hospital retrospective study supporting a broader effect of RASi on anti-PD-1/L1 efficacy in advanced NSLCLC with the majority of studies showing statistically significant benefit or strong statistical trends but with one study demonstrating worsened outcomes. This comparison of studies extends published findings to the community hospital setting and supports prospective assessment through randomized clinical trials of efficacy in NSCLC patients with pharmacodynamic components to determine the effect on immune cell activity in tumors and on the composition of the tumor microenvironment.

Keywords: immunotherapy, cancer, angiotensin, efficacy, PD-1, lung cancer, NSCLC

Procedia PDF Downloads 66
5651 Research on Level Adjusting Mechanism System of Large Space Environment Simulator

Authors: Han Xiao, Zhang Lei, Huang Hai, Lv Shizeng

Abstract:

Space environment simulator is a device for spacecraft test. KM8 large space environment simulator built in Tianjing Space City is the largest as well as the most advanced space environment simulator in China. Large deviation of spacecraft level will lead to abnormally work of the thermal control device in spacecraft during the thermal vacuum test. In order to avoid thermal vacuum test failure, level adjusting mechanism system is developed in the KM8 large space environment simulator as one of the most important subsystems. According to the level adjusting requirements of spacecraft’s thermal vacuum tests, the four fulcrums adjusting model is established. By means of collecting level instruments and displacement sensors data, stepping motors controlled by PLC drive four supporting legs simultaneous movement. In addition, a PID algorithm is used to control the temperature of supporting legs and level instruments which long time work under the vacuum cold and black environment in KM8 large space environment simulator during thermal vacuum tests. Based on the above methods, the data acquisition and processing, the analysis and calculation, real time adjustment and fault alarming of the level adjusting mechanism system are implemented. The level adjusting accuracy reaches 1mm/m, and carrying capacity is 20 tons. Debugging showed that the level adjusting mechanism system of KM8 large space environment simulator can meet the thermal vacuum test requirement of the new generation spacecraft. The performance and technical indicators of the level adjusting mechanism system which provides important support for the development of spacecraft in China have been ahead of similar equipment in the world.

Keywords: space environment simulator, thermal vacuum test, level adjusting, spacecraft, parallel mechanism

Procedia PDF Downloads 241
5650 Effects of Roughness Elements on Heat Transfer During Natural Convection

Authors: M. Yousaf, S. Usman

Abstract:

The present study focused on the investigation of the effects of roughness elements on heat transfer during natural convection in a rectangular cavity using a numerical technique. Roughness elements were introduced on the bottom hot wall with a normalized amplitude (A*/H) of 0.1. Thermal and hydrodynamic behavior was studied using a computational method based on Lattice Boltzmann method (LBM). Numerical studies were performed for a laminar natural convection in the range of Rayleigh number (Ra) from 103 to 106 for a rectangular cavity of aspect ratio (L/H) 2 with a fluid of Prandtl number (Pr) 1.0. The presence of the sinusoidal roughness elements caused a minimum to the maximum decrease in the heat transfer as 7% to 17% respectively compared to the smooth enclosure. The results are presented for mean Nusselt number (Nu), isotherms, and streamlines.

Keywords: natural convection, Rayleigh number, surface roughness, Nusselt number, Lattice Boltzmann method

Procedia PDF Downloads 536
5649 Thermal Analysis and Optimization of a High-Speed Permanent Magnet Synchronous Motor with Toroidal Windings

Authors: Yuan Wan, Shumei Cui, Shaopeng Wu

Abstract:

Toroidal windings were taken advantage of to reduce of axial length of the motor, so as to match the applications that have severe restrictions on the axial length. But slotting in the out edge of the stator will decrease the heat-dissipation capacity of the water cooling of the housing. Besides, the windings in the outer slots will increase the copper loss, which will further increase the difficult for heat dissipation of the motor. At present, carbon-fiber composite retaining sleeve are increasingly used to be mounted over the magnets to ensure the rotor strength at high speeds. Due to the poor thermal conductivity of carbon-fiber sleeve, the cooling of the rotor becomes very difficult, which may result in the irreversible demagnetization of magnets for the excessively high temperature. So it is necessary to analyze the temperature rise of such motor. This paper builds a computational fluid dynamic (CFD) model of a toroidal-winding high-speed permanent magnet synchronous motor (PMSM) with water cooling of housing and forced air cooling of rotor. Thermal analysis was carried out based on the model and the factors that affects the temperature rise were investigated. Then thermal optimization for the prototype was achieved. Finally, a small-size prototype was manufactured and the thermal analysis results were verified.

Keywords: thermal analysis, temperature rise, toroidal windings, high-speed PMSM, CFD

Procedia PDF Downloads 487
5648 Properties of Poly(Amide-Imide) with Low Residual Stress for Electronic Material

Authors: Kwangin Kim, Taewon Yoo, Haksoo Han

Abstract:

Polyimide is a superior polymer in the electronics industry, and we conducted a study to synthesize poly(amide-imide) at low temperatures. Poly(amide-imide) was synthesized at low-temperature curing to offer a thermal stable membrane with low residual stress and good processability. As a result, the low crack polymer with good processability could be used to various applications such as semiconductors, integrated circuits, coating materials, membranes, and display. The synthesis of poly(amide-imide) at low temperatures was confirmed by Fourier transform infrared spectroscopy (FT-IR). Thermal stabilities of the polymer was confirmed by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC).

Keywords: poly(amide-imide), residual stress, thermal stability

Procedia PDF Downloads 416
5647 Simulation Study on Polymer Flooding with Thermal Degradation in Elevated-Temperature Reservoirs

Authors: Lin Zhao, Hanqiao Jiang, Junjian Li

Abstract:

Polymers injected into elevated-temperature reservoirs inevitably suffer from thermal degradation, resulting in severe viscosity loss and poor flooding performance. However, for polymer flooding in such reservoirs, present simulators fail to provide accurate results for lack of description on thermal degradation. In light of this, the objectives of this paper are to provide a simulation model for polymer flooding with thermal degradation and study the effect of thermal degradation on polymer flooding in elevated-temperature reservoirs. Firstly, a thermal degradation experiment was conducted to obtain the degradation law of polymer concentration and viscosity. Different types of polymers degraded in the Thermo tank with elevated temperatures. Afterward, based on the obtained law, a streamline-assistant model was proposed to simulate the degradation process under in-situ flow conditions. Model validation was performed with field data from a well group of an offshore oilfield. Finally, the effect of thermal degradation on polymer flooding was studied using the proposed model. Experimental results showed that the polymer concentration remained unchanged, while the viscosity degraded exponentially with time after degradation. The polymer viscosity was functionally dependent on the polymer degradation time (PDT), which represented the elapsed time started from the polymer particle injection. Tracing the real flow path of polymer particle was required. Therefore, the presented simulation model was streamline-assistant. Equation of PDT vs. time of flight (TOF) along streamline was built by the law of polymer particle transport. Based on the field polymer sample and dynamic data, the new model proved its accuracy. Study of degradation effect on polymer flooding indicated: (1) the viscosity loss increased with TOF exponentially in the main body of polymer-slug and remained constant in the slug front; (2) the responding time of polymer flooding was delayed, but the effective time was prolonged; (3) the breakthrough of subsequent water was eased; (4) the capacity of polymer adjusting injection profile was diminished; (5) the incremental recovery was reduced significantly. In general, the effect of thermal degradation on polymer flooding performance was rather negative. This paper provides a more comprehensive insight into polymer thermal degradation in both the physical process and field application. The proposed simulation model offers an effective means for simulating the polymer flooding process with thermal degradation. The negative effect of thermal degradation suggests that the polymer thermal stability should be given full consideration when designing polymer flooding project in elevated-temperature reservoirs.

Keywords: polymer flooding, elevated-temperature reservoir, thermal degradation, numerical simulation

Procedia PDF Downloads 134
5646 Influence of the Non-Uniform Distribution of Filler Porosity on the Thermal Performance of Sensible Heat Thermocline Storage Tanks

Authors: Yuchao Hua, Lingai Luo

Abstract:

Thermal energy storage is of critical importance for the highly-efficient utilization of renewable energy sources. Over the past decades, single-tank thermocline technology has attracted much attention owing to its high cost-effectiveness. In the present work, we investigate the influence of the filler porosity’s non-uniform distribution on the thermal performance of the packed-bed sensible heat thermocline storage tanks on the basis of the analytical model obtained by the Laplace transform. It is found that when the total amount of filler materials (i.e., the integration of porosity) is fixed, the different porosity distributions can result in the significantly-different behaviors of outlet temperature and thus the varied charging and discharging efficiencies. Our results indicate that a non-uniform distribution of the fillers with the proper design can improve the heat storage performance without changing the total amount of the filling materials.

Keywords: energy storage, heat thermocline storage tank, packed bed, transient thermal analysis

Procedia PDF Downloads 88
5645 Analyzing Initial Efficacy of Animal Assisted Therapy for Autism Spectrum Disorders: A Case Study

Authors: Georgitta Joseph Valiyamattam

Abstract:

Autism spectrum disorders (ASD) are a growing phenomenon in India with over 10 million cases being recorded. Children with various levels and forms of ASD can be a major challenge both within the context of regular or special schooling. According to statistics by the Centers for Disease Control and Prevention (CDC), one in every 88 children today is born with autism spectrum disorder (ASD) against a ratio of one in 110 few years back. The growing number of children with autism spectrum disorders places greater demands on health services and necessitates the roping in of non-traditional modes of treatment to complement or even substitute traditional health care methods when possible. Research evidence, particularly from Western countries, as also some parts of Asia, suggests that animal-assisted therapy, or zootherapy, may be used as an effective individual or complementary therapeutic tool for increasing overall wellbeing and quality of life among children with Autism spectrum disorders. The paper through a case-study format seeks to evaluate the efficacy (initial stage) of animal assisted therapy (canine-therapy with visiting dog: breed-Golden retriever), as a non-conventional treatment modality for improving cognitive functioning and managing the behavioral and psychological symptoms of Autism Spectrum Disorders. As a pilot study forming the basis for subsequent larger application of AAT, it analyses areas of efficacy as also the challenges faced, both with regard to the mode of therapy, as also particular to the Indian setting.

Keywords: animal assisted therapy, autism, canine therapy, analyzing initial efficacy

Procedia PDF Downloads 546
5644 Optimal Seismic Design of Reinforced Concrete Shear Wall-Frame Structure

Authors: H. Nikzad, S. Yoshitomi

Abstract:

In this paper, the optimal seismic design of reinforced concrete shear wall-frame building structures was done using structural optimization. The optimal section sizes were generated through structural optimization based on linear static analysis conforming to American Concrete Institute building design code (ACI 318-14). An analytical procedure was followed to validate the accuracy of the proposed method by comparing stresses on structural members through output files of MATLAB and ETABS. In order to consider the difference of stresses in structural elements by ETABS and MATLAB, and to avoid over-stress members by ETABS, a stress constraint ratio of MATLAB to ETABS was modified and introduced for the most critical load combinations and structural members. Moreover, seismic design of the structure was done following the International Building Code (IBC 2012), American Concrete Institute Building Code (ACI 318-14) and American Society of Civil Engineering (ASCE 7-10) standards. Typical reinforcement requirements for the structural wall, beam and column were discussed and presented using ETABS structural analysis software. The placement and detailing of reinforcement of structural members were also explained and discussed. The outcomes of this study show that the modification of section sizes play a vital role in finding an optimal combination of practical section sizes. In contrast, the optimization problem with size constraints has a higher cost than that of without size constraints. Moreover, the comparison of optimization problem with that of ETABS program shown to be satisfactory and governed ACI 318-14 building design code criteria.

Keywords: structural optimization, seismic design, linear static analysis, etabs, matlab, rc shear wall-frame structures

Procedia PDF Downloads 171
5643 Comparison of Structure and Corrosion Properties of Titanium Oxide Films Prepared by Thermal Oxidation, DC Plasma Oxidation, and by the Sol-Gel

Authors: O. Çomaklı, M. Yazıcı, T. Yetim, A. F. Yetim, A. Çelik

Abstract:

In this work, TiO₂ films were deposited on Cp-Ti substrates by thermal oxidation, DC plasma oxidation, and by the sol-gel method. Microstructures of uncoated and TiO₂ film coated samples were examined by X-ray diffraction and SEM. Thin oxide film consisting of anatase (A) and rutile (R) TiO₂ structures was observed on the surface of CP-Ti by under three different treatments. Also, the more intense anatase and rutile peaks appeared at samples plasma oxidized at 700˚C. The thicknesses of films were about 1.8 μm at the TiO₂ film coated samples by sol-gel and about 2.7 μm at thermal oxidated samples, while it was measured as 3.9 μm at the plasma oxidated samples. Electrochemical corrosion behaviour of uncoated and coated specimens was mainly carried out by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) in simulated body fluid (SBF) solution. Results showed that at the plasma oxidated samples exhibited a better resistance property to corrosion than that of other treatments.

Keywords: TiO₂, CP-Ti, corrosion properties, thermal oxidation, plasma oxidation, sol-gel

Procedia PDF Downloads 279
5642 Dynamic Study of a Two Phase Thermosyphon Loop

Authors: Selva Georgena D., Videcoq Etienne, Caner Julien, Benselama Adel, Girault Manu

Abstract:

A Two-Phase Thermosyphon Loop (TPTL) is a passive cooling system which does not require a pump to function. Therefore, TPTL is a simple and robust device and its physics is complex to describe because of the coupled phenomena: heat flux, nucleation, fluid dynamics and gravitational effects. Moreover, the dynamic behavior of TPTL shows some physical instabilities and the actual occurrence of such a behavior remains unknown. The aim of this study is to propose a thermal balance of the TPTL to better identify the fundamental reasons for the appearance of the instabilities.

Keywords: Two-phase flow, passive cooling system, thermal reliability, thermal experimental study, liquid-vapor phase change

Procedia PDF Downloads 108