Search results for: trained athletes
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1383

Search results for: trained athletes

453 The Discovery and Application of Perspective Representation in Modern Italy

Authors: Matthias Stange

Abstract:

In the early modern period, a different image of man began to prevail in Europe. The focus was on the self-determined human being and his abilities. At first, these developments could be seen in Italian painting and architecture, which again oriented itself to the concepts and forms of antiquity. For example, through the discovery of perspective representation by Brunelleschi or later the orthogonal projection by Alberti, after the ancient knowledge of optics had been forgotten in the Middle Ages. The understanding of reality in the Middle Ages was not focused on the sensually perceptible world but was determined by ecclesiastical dogmas. The empirical part of this study examines the rediscovery and development of perspective. With the paradigm of antiquity, the figure of the architect was also recognised again - the cultural man trained theoretically and practically in numerous subjects, as Vitruvius describes him. In this context, the role of the architect, the influence on the painting of the Quattrocento as well as the influence on architectural representation in the Baroque period are examined. Baroque is commonly associated with the idea of illusionistic appearance as opposed to the tangible reality presented in the Renaissance. The study has shown that the central perspective projection developed by Filippo Brunelleschi enabled another understanding of seeing and the dissemination of painted images. Brunelleschi's development made it possible to understand the sight of nature as a reflection of what is presented to the viewer's eye. Alberti later shortened Brunelleschi's central perspective representation for practical use in painting. In early modern Italian architecture and painting, these developments apparently supported each other. The pictorial representation of architecture initially served the development of an art form before it became established in building practice itself.

Keywords: Alberti, Brunelleschi, central perspective projection, orthogonal projection, quattrocento, baroque

Procedia PDF Downloads 85
452 A Brief Review on the Relationship between Pain and Sociology

Authors: Hanieh Sakha, Nader Nader, Haleh Farzin

Abstract:

Introduction: Throughout history, pain theories have been supposed by biomedicine, especially regarding its diagnosis and treatment aspects. Therefore, the feeling of pain is not only a personal experience and is affected by social background; therefore, it involves extensive systems of signals. The challenges in emotional and sentimental dimensions of pain originate from scientific medicine (i.e., the dominant theory is also referred to as the specificity theory); however, this theory has accepted some alterations by emerging physiology. Then, Von Frey suggested the theory of cutaneous senses (i.e., Muller’s concept: the common sensation of combined four major skin receptors leading to a proper sensation) 50 years after the specificity theory. The pain pathway was composed of spinothalamic tracts and thalamus with an inhibitory effect on the cortex. Pain is referred to as a series of unique experiences with various reasons and qualities. Despite the gate control theory, the biological aspect overcomes the social aspect. Vrancken provided a more extensive definition of pain and found five approaches: Somatico-technical, dualistic body-oriented, behaviorist, phenomenological, and consciousness approaches. The Western model combined physical, emotional, and existential aspects of the human body. On the other hand, Kotarba felt confused about the basic origins of chronic pain. Freund demonstrated and argued with Durkhemian about the sociological approach to emotions. Lynch provided a piece of evidence about the correlation between cardiovascular disease and emotionally life-threatening occurrences. Helman supposed a distinction between private and public pain. Conclusion: The consideration of the emotional aspect of pain could lead to effective, emotional, and social responses to pain. On the contrary, the theory of embodiment is based on the sociological view of health and illness. Social epidemiology shows an imbalanced distribution of health, illness, and disability among various social groups. The social support and socio-cultural level can result in several types of pain. It means the status of athletes might define their pain experiences. Gender is one of the important contributing factors affecting the type of pain (i.e., females are more likely to seek health services for pain relief.) Chronic non-cancer pain (CNCP) has become a serious public health issue affecting more than 70 million people globally. CNCP is a serious public health issue which is caused by the lack of awareness about chronic pain management among the general population.

Keywords: pain, sociology, sociological, body

Procedia PDF Downloads 70
451 Early Childhood Care and Education in the North-West of Nigeria: Trends and Challenges

Authors: Muhammad Adamu Kwankwaso

Abstract:

Early childhood is a critical period of rapid physical, cognitive and psycho-social development of a child. The quality of care and Education which a child receives at this crucial age will determine to a great extent the level of his/her physical and cognitive development in the future. In Nigeria, Early Childhood Care and Education (ECCE) is a fundamental aspect or form of Education for children between the age of 3-6. It was started after independence as pre-primary Education or early child development as contained in the 1977 National Policy on Education. The trends towards ECCE in Nigeria and the northwestern part of the country in particular keep up changing as in the case of other part of the world. The current trends are now towards expansions, inclusiveness, redefinition, early literacy, increased government participation and the unprecedented societal response and awareness towards the Education of the younger children. While all hands are on deck to ensure successful implementation of the ECCE programme, it is unfortunate that, ECCE is facing some challenges. This paper therefore, examines the trends in Early Childhood Care and Education and the major challenges in the north west of Nigeria. Some of the major challenges include, inadequate trained ECCE teachers, lack of unified curriculum, teacher pupil’s ratio, and the medium of instructions and inadequate infrastructural and teaching facilities respectively. To improve the situation the paper offered the following recommendations; establishment of more ECCE classes, enforcement for the use of mothers’ tongue or the languages of the immediate community as a medium of instructions, and adequate provision of infrastructural facilities and the unified curriculum across the northwestern States of Nigeria.

Keywords: early childhood care, education, trends, challenges

Procedia PDF Downloads 474
450 Influence of Instructional Supervision on Teachers Performance in Secondary Schools in Otukpo LGA of Benue State

Authors: A. Aloga, A. S. Aloga

Abstract:

The study examined the influence of instructional supervision on teachers’ performance in secondary schools in Otukpo LGA of Benue State. The study was guided by four research questions and four hypotheses. The study employed a descriptive research design. The population of the study comprised of 579 teachers in 26 public secondary schools out of which 236 respondents were sampled and used as the studied population. The instrument used for data collection was a structured questionnaire, titled ‘Instructional Supervision and Teachers Performance Questionnaire (ISTPQ)’ The data was analyzed using descriptive statistics of mean and standard deviation to answer the research questions. And Chi-Square Statistics was used to test the hypotheses at 0.05 level of significance. The study found that instructional supervision has a significant influence on teachers’ lesson planning, effective teaching, teachers’ class attendance and teachers’ classroom management. The study concluded that instructional supervision influences teachers’ performance. It was recommended that; instructional supervisors should always give useful suggestions as regards the best instructional practices needed by teachers in enhancing lesson planning. The government should recruit more trained and qualified instructional supervisors to be able to meet the intending demands of instructional supervision. This will relieve the existing few qualified instructional supervisors from work overload which may result to ineffectiveness and poor performance of their duties. Conferences and seminars should be organized for instructional supervisors from time to time to cater for the professional assistance needed by teachers. The state government should always provide adequate funding for these conferences and seminars since it provides an avenue for acquiring new knowledge in educational development by teachers among others.

Keywords: influence, instructional supervision, teachers’ performance, secondary schools

Procedia PDF Downloads 141
449 A West Coast Estuarine Case Study: A Predictive Approach to Monitor Estuarine Eutrophication

Authors: Vedant Janapaty

Abstract:

Estuaries are wetlands where fresh water from streams mixes with salt water from the sea. Also known as “kidneys of our planet”- they are extremely productive environments that filter pollutants, absorb floods from sea level rise, and shelter a unique ecosystem. However, eutrophication and loss of native species are ailing our wetlands. There is a lack of uniform data collection and sparse research on correlations between satellite data and in situ measurements. Remote sensing (RS) has shown great promise in environmental monitoring. This project attempts to use satellite data and correlate metrics with in situ observations collected at five estuaries. Images for satellite data were processed to calculate 7 bands (SIs) using Python. Average SI values were calculated per month for 23 years. Publicly available data from 6 sites at ELK was used to obtain 10 parameters (OPs). Average OP values were calculated per month for 23 years. Linear correlations between the 7 SIs and 10 OPs were made and found to be inadequate (correlation = 1 to 64%). Fourier transform analysis on 7 SIs was performed. Dominant frequencies and amplitudes were extracted for 7 SIs, and a machine learning(ML) model was trained, validated, and tested for 10 OPs. Better correlations were observed between SIs and OPs, with certain time delays (0, 3, 4, 6 month delay), and ML was again performed. The OPs saw improved R² values in the range of 0.2 to 0.93. This approach can be used to get periodic analyses of overall wetland health with satellite indices. It proves that remote sensing can be used to develop correlations with critical parameters that measure eutrophication in situ data and can be used by practitioners to easily monitor wetland health.

Keywords: estuary, remote sensing, machine learning, Fourier transform

Procedia PDF Downloads 104
448 Empowering Transformers for Evidence-Based Medicine

Authors: Jinan Fiaidhi, Hashmath Shaik

Abstract:

Breaking the barrier for practicing evidence-based medicine relies on effective methods for rapidly identifying relevant evidence from the body of biomedical literature. An important challenge confronted by medical practitioners is the long time needed to browse, filter, summarize and compile information from different medical resources. Deep learning can help in solving this based on automatic question answering (Q&A) and transformers. However, Q&A and transformer technologies are not trained to answer clinical queries that can be used for evidence-based practice, nor can they respond to structured clinical questioning protocols like PICO (Patient/Problem, Intervention, Comparison and Outcome). This article describes the use of deep learning techniques for Q&A that are based on transformer models like BERT and GPT to answer PICO clinical questions that can be used for evidence-based practice extracted from sound medical research resources like PubMed. We are reporting acceptable clinical answers that are supported by findings from PubMed. Our transformer methods are reaching an acceptable state-of-the-art performance based on two staged bootstrapping processes involving filtering relevant articles followed by identifying articles that support the requested outcome expressed by the PICO question. Moreover, we are also reporting experimentations to empower our bootstrapping techniques with patch attention to the most important keywords in the clinical case and the PICO questions. Our bootstrapped patched with attention is showing relevancy of the evidence collected based on entropy metrics.

Keywords: automatic question answering, PICO questions, evidence-based medicine, generative models, LLM transformers

Procedia PDF Downloads 45
447 Overview of Pre-Analytical Lab Errors in a Tertiary Care Hospital at Rawalpindi, Pakistan

Authors: S. Saeed, T. Butt, M. Rehan, S. Khaliq

Abstract:

Objective: To determine the frequency of pre-analytical errors in samples taken from patients for various lab tests at Fauji Foundation Hospital, Rawalpindi. Material and Methods: All the lab specimens for diagnostic purposes received at the lab from Fauji Foundation hospital, Rawalpindi indoor and outdoor patients were included. Total number of samples received in the lab is recorded in the computerized program made for the hospital. All the errors observed for pre-analytical process including patient identification, sampling techniques, test collection procedures, specimen transport/processing and storage were recorded in the log book kept for the purpose. Results: A total of 476616 specimens were received in the lab during the period of study including 237931 and 238685 from outdoor and indoor patients respectively. Forty-one percent of the samples (n=197976) revealed pre-analytical discrepancies. The discrepancies included Hemolyzed samples (34.8%), Clotted blood (27.8%), Incorrect samples (17.4%), Unlabeled samples (8.9%), Insufficient specimens (3.9%), Request forms without authorized signature (2.9%), Empty containers (3.9%) and tube breakage during centrifugation (0.8%). Most of these pre-analytical discrepancies were observed in samples received from the wards revealing that inappropriate sample collection by the medical staff of the ward, as most of the outdoor samples are collected by the lab staff who are properly trained for sample collection. Conclusion: It is mandatory to educate phlebotomists and paramedical staff particularly performing duties in the wards regarding timing and techniques of sampling/appropriate container to use/early delivery of the samples to the lab to reduce pre-analytical errors.

Keywords: pre analytical lab errors, tertiary care hospital, hemolyzed, paramedical staff

Procedia PDF Downloads 204
446 An IoT-Enabled Crop Recommendation System Utilizing Message Queuing Telemetry Transport (MQTT) for Efficient Data Transmission to AI/ML Models

Authors: Prashansa Singh, Rohit Bajaj, Manjot Kaur

Abstract:

In the modern agricultural landscape, precision farming has emerged as a pivotal strategy for enhancing crop yield and optimizing resource utilization. This paper introduces an innovative Crop Recommendation System (CRS) that leverages the Internet of Things (IoT) technology and the Message Queuing Telemetry Transport (MQTT) protocol to collect critical environmental and soil data via sensors deployed across agricultural fields. The system is designed to address the challenges of real-time data acquisition, efficient data transmission, and dynamic crop recommendation through the application of advanced Artificial Intelligence (AI) and Machine Learning (ML) models. The CRS architecture encompasses a network of sensors that continuously monitor environmental parameters such as temperature, humidity, soil moisture, and nutrient levels. This sensor data is then transmitted to a central MQTT server, ensuring reliable and low-latency communication even in bandwidth-constrained scenarios typical of rural agricultural settings. Upon reaching the server, the data is processed and analyzed by AI/ML models trained to correlate specific environmental conditions with optimal crop choices and cultivation practices. These models consider historical crop performance data, current agricultural research, and real-time field conditions to generate tailored crop recommendations. This implementation gets 99% accuracy.

Keywords: Iot, MQTT protocol, machine learning, sensor, publish, subscriber, agriculture, humidity

Procedia PDF Downloads 69
445 Design, Synthesis and Evaluation of 4-(Phenylsulfonamido)Benzamide Derivatives as Selective Butyrylcholinesterase Inhibitors

Authors: Sushil Kumar Singh, Ashok Kumar, Ankit Ganeshpurkar, Ravi Singh, Devendra Kumar

Abstract:

In spectrum of neurodegenerative diseases, Alzheimer’s disease (AD) is characterized by the presence of amyloid β plaques and neurofibrillary tangles in the brain. It results in cognitive and memory impairment due to loss of cholinergic neurons, which is considered to be one of the contributing factors. Donepezil, an acetylcholinesterase (AChE) inhibitor which also inhibits butyrylcholinesterase (BuChE) and improves the memory and brain’s cognitive functions, is the most successful and prescribed drug to treat the symptoms of AD. The present work is based on designing of the selective BuChE inhibitors using computational techniques. In this work, machine learning models were trained using classification algorithms followed by screening of diverse chemical library of compounds. The various molecular modelling and simulation techniques were used to obtain the virtual hits. The amide derivatives of 4-(phenylsulfonamido) benzoic acid were synthesized and characterized using 1H & 13C NMR, FTIR and mass spectrometry. The enzyme inhibition assays were performed on equine plasma BuChE and electric eel’s AChE by method developed by Ellman et al. Compounds 31, 34, 37, 42, 49, 52 and 54 were found to be active against equine BuChE. N-(2-chlorophenyl)-4-(phenylsulfonamido)benzamide and N-(2-bromophenyl)-4-(phenylsulfonamido)benzamide (compounds 34 and 37) displayed IC50 of 61.32 ± 7.21 and 42.64 ± 2.17 nM against equine plasma BuChE. Ortho-substituted derivatives were more active against BuChE. Further, the ortho-halogen and ortho-alkyl substituted derivatives were found to be most active among all with minimal AChE inhibition. The compounds were selective toward BuChE.

Keywords: Alzheimer disease, butyrylcholinesterase, machine learning, sulfonamides

Procedia PDF Downloads 139
444 Reconstruction of Visual Stimuli Using Stable Diffusion with Text Conditioning

Authors: ShyamKrishna Kirithivasan, Shreyas Battula, Aditi Soori, Richa Ramesh, Ramamoorthy Srinath

Abstract:

The human brain, among the most complex and mysterious aspects of the body, harbors vast potential for extensive exploration. Unraveling these enigmas, especially within neural perception and cognition, delves into the realm of neural decoding. Harnessing advancements in generative AI, particularly in Visual Computing, seeks to elucidate how the brain comprehends visual stimuli observed by humans. The paper endeavors to reconstruct human-perceived visual stimuli using Functional Magnetic Resonance Imaging (fMRI). This fMRI data is then processed through pre-trained deep-learning models to recreate the stimuli. Introducing a new architecture named LatentNeuroNet, the aim is to achieve the utmost semantic fidelity in stimuli reconstruction. The approach employs a Latent Diffusion Model (LDM) - Stable Diffusion v1.5, emphasizing semantic accuracy and generating superior quality outputs. This addresses the limitations of prior methods, such as GANs, known for poor semantic performance and inherent instability. Text conditioning within the LDM's denoising process is handled by extracting text from the brain's ventral visual cortex region. This extracted text undergoes processing through a Bootstrapping Language-Image Pre-training (BLIP) encoder before it is injected into the denoising process. In conclusion, a successful architecture is developed that reconstructs the visual stimuli perceived and finally, this research provides us with enough evidence to identify the most influential regions of the brain responsible for cognition and perception.

Keywords: BLIP, fMRI, latent diffusion model, neural perception.

Procedia PDF Downloads 68
443 The Effects of Traditional Thai Massage Technique Delivered by Parents on Stereotypical Behaviors in Children with Autism: A Pilot Study

Authors: Chanada Aonsri, Wichai Eungpinichpong

Abstract:

Stereotypical behavior is one of the learning and social skills development problems that affect children with autism. Previous studies found that traditional Thai massage (TTM) could reduce stereotypical behaviors in autistic children. However, the effects of TTM delivered by the parents of autistic children have not been explored. This pilot study investigated the effects of TTM by parents on stereotypical behaviors in children with autism. A one-group pretest-posttest design was applied for 15 children, aged 4-16 years, with their parents' permissions. They participated in the study at the Special Education program of the Special Education Center of Khon Kaen University, Thailand. After being trained in a specialized TTM for children, the parents delivered 50-minute TTM to children once a day, twice a week for eight weeks. The severity of autism and autistic behaviors were measured using the Childhood Autism Rating Scale (CARS), and the Autism Treatment Evaluation Checklist (ATEC), respectively. The functions of autonomic nervous systems were measured using Heart Rate Variability (HRV) to indicated physical and mental disorders such as stress. The data at baseline and the 8th week were analyzed using either an independent t-test or Wilcoxon signed-rank test. The study found that 16 sessions of TTM significantly improved measured data for autism in all children including the CARS (p<0.001), ATEC, speech/language/communication (p<0.001), sociability (p<0.001), sensory/cognitive awareness (p<0.001), health/physical/behavior (p < 0.001), and HRV (p<0.001). The results indicated that TTM performed by parents could be useful as an adjunct therapy for autistic children as it can reduce stereotypical behaviors and stress.

Keywords: traditional Thai massage, stereotypical behaviors, Autistic children, parent

Procedia PDF Downloads 66
442 Exploring the Process of Cultivating Tolerance: The Case of a Pakistani University

Authors: Uzma Rashid, Mommnah Asad

Abstract:

As more and more people fall victim to the intolerance that has become a plague globally, academicians are faced with the herculean task of sowing the roots for more tolerant individuals. Being the multilayered task that it is, promoting an acceptance of diversity and pushing an agenda to push back hate requires efforts on multiple levels. Not only does the curriculum need to be in line with such goals, but teachers also need to be trained to cater to the sensitivities surrounding conversations of tolerance and diversity. In addition, institutional support needs to be there to provide conducive conditions for a diversity driven learning process to take place. In reality, teachers have to struggle with forwarding ideas about diversity and tolerance which do not sound particularly risky to be shared but given the current socio-political and religious milieu, can put the teacher in a difficult position and can make the task exponentially challenging. This paper is based on an auto-ethnographic account of teaching undergraduate and graduate courses at a private university in Pakistan. These courses were aimed at teaching tolerance to adult learners through classes focused on key notions pertaining to religion, culture, gender, and society. Authors’ classroom experiences with the students in these courses indicate a marked heightening of religious sensitivities that can potentially threaten a teacher’s life chances and become a hindrance in deep, meaningful conversations, thus lending a superficiality to the whole endeavor. The paper will discuss in detail the challenges that this teacher dealt with in the process, how those were addressed, and locate them in the larger picture of how tolerance can be materialized in current times in the universities in Pakistan and in similar contexts elsewhere.

Keywords: tolerance, diversity, gender, Pakistani Universities

Procedia PDF Downloads 157
441 Omni-Modeler: Dynamic Learning for Pedestrian Redetection

Authors: Michael Karnes, Alper Yilmaz

Abstract:

This paper presents the application of the omni-modeler towards pedestrian redetection. The pedestrian redetection task creates several challenges when applying deep neural networks (DNN) due to the variety of pedestrian appearance with camera position, the variety of environmental conditions, and the specificity required to recognize one pedestrian from another. DNNs require significant training sets and are not easily adapted for changes in class appearances or changes in the set of classes held in its knowledge domain. Pedestrian redetection requires an algorithm that can actively manage its knowledge domain as individuals move in and out of the scene, as well as learn individual appearances from a few frames of a video. The Omni-Modeler is a dynamically learning few-shot visual recognition algorithm developed for tasks with limited training data availability. The Omni-Modeler adapts the knowledge domain of pre-trained deep neural networks to novel concepts with a calculated localized language encoder. The Omni-Modeler knowledge domain is generated by creating a dynamic dictionary of concept definitions, which are directly updatable as new information becomes available. Query images are identified through nearest neighbor comparison to the learned object definitions. The study presented in this paper evaluates its performance in re-identifying individuals as they move through a scene in both single-camera and multi-camera tracking applications. The results demonstrate that the Omni-Modeler shows potential for across-camera view pedestrian redetection and is highly effective for single-camera redetection with a 93% accuracy across 30 individuals using 64 example images for each individual.

Keywords: dynamic learning, few-shot learning, pedestrian redetection, visual recognition

Procedia PDF Downloads 76
440 Thermal Transport Properties of Common Transition Single Metal Atom Catalysts

Authors: Yuxi Zhu, Zhenqian Chen

Abstract:

It is of great interest to investigate the thermal properties of non-precious metal catalysts for Proton exchange membrane fuel cell (PEMFC) based on the thermal management requirements. Due to the low symmetry of materials, to accurately obtain the thermal conductivity of materials, it is necessary to obtain the second and third order force constants by combining density functional theory and machine learning interatomic potential. To be specific, the interatomic force constants are obtained by moment tensor potential (MTP), which is trained by the computational trajectory of Ab initio molecular dynamics (AIMD) at 50, 300, 600, and 900 K for 1 ps each, with a time step of 1 fs in the AIMD computation. And then the thermal conductivity can be obtained by solving the Boltzmann transport equation. In this paper, the thermal transport properties of single metal atom catalysts are studied for the first time to our best knowledge by machine-learning interatomic potential (MLIP). Results show that the single metal atom catalysts exhibit anisotropic thermal conductivities and partially exhibit good thermal conductivity. The average lattice thermal conductivities of G-FeN₄, G-CoN₄ and G-NiN₄ at 300 K are 88.61 W/mK, 205.32 W/mK and 210.57 W/mK, respectively. While other single metal atom catalysts show low thermal conductivity due to their low phonon lifetime. The results also show that low-frequency phonons (0-10 THz) dominate thermal transport properties. The results provide theoretical insights into the application of single metal atom catalysts in thermal management.

Keywords: proton exchange membrane fuel cell, single metal atom catalysts, density functional theory, thermal conductivity, machine-learning interatomic potential

Procedia PDF Downloads 24
439 Body-Worn Camera Use in the Emergency Department: Patient and Provider Satisfaction

Authors: Jeffrey Ho, Scott Joing, Paul Nystrom, William Heegaard, Danielle Hart, David Plummer, James Miner

Abstract:

Body-Worn Cameras (BWCs) are used in public safety to record encounters. They are shown to enhance the accuracy of documentation in virtually every situation. They are not widely used in medical encounters in part because of concern for patient acceptance. The goal of this pilot study was to determine if BWC use is acceptable to the patient. This was a prospective, observational study of the AXON Flex BWC (TASER International, Scottsdale, AZ) conducted at an urban, Level 1 Trauma Center Emergency Department (ED). The BWC was worn by Emergency Physicians (EPs) on their shifts during a 30-day period. The BWC was worn at eye-level mounted on a pair of clear safety glasses. Patients seen by the EP were enrolled in the study by a trained research associate. Patients who were <18 years old, who were with other people in the exam room, did not speak English, were critically ill, had chief complaints involving genitalia or sexual assault, were considered to be vulnerable adults, or with an altered mental status were excluded. Consented patients were given a survey after the encounter to determine their perception of the BWC. The questions asked involved the patients’ perceptions of a BWC being present during their interaction with their EP. Data were analyzed with descriptive statistics. There were 417 patients enrolled in the study. 3/417 (0.7%) patients were intimidated by the BWC, 1/417 (0.2%) was nervous because of the BWC, 0/417 (0%) were inhibited from telling the EP certain things because of the BWC, 57/417 (13.7%) patients did not notice the device, and 305/417 (73.1%) patients were had a favorable perception about the BWC being used during their encounter. The use of BWCs appears feasible in the ED, with largely favorable perceptions and acceptance of the device by the patients. Further study is needed to determine the best use and practices of BWCs during ED patient encounters.

Keywords: body-worn camera, documentation, patient satisfaction, video

Procedia PDF Downloads 373
438 Consumption of Animal and Vegetable Protein on Muscle Power in Road Cyclists from 18 to 20 Years in Bogota, Colombia

Authors: Oscar Rubiano, Oscar Ortiz, Natalia Morales, Lida Alfonso, Johana Alvarado, Adriana Gutierrez, Daniel Botero

Abstract:

Athletes who usually use protein supplements, are those who practice strength and power sports, whose goal is to achieve a large muscle mass. However, it has also been explored in sports or endurance activities such as cycling, and where despite requiring high power, prominent muscle development can impede good competitive performance due to the determinant of body mass for good performance of the athlete body. This research shows, the effect with protein supplements establishes a protein - muscle mass ratio, although in a lesser proportion the relationship between protein types and muscle power. Thus, we intend to explore as a first approximation, the behavior of muscle power in lower limbs after the intake of two protein supplements from different sources. The aim of the study was to describe the behavior of muscle power in lower limbs after the consumption of animal protein (AP) and vegetable protein (VP) in four route cyclists from 18 to 20 years of the Bogota cycling league. The methodological design of this study is quantitative, with a non-probabilistic sampling, based on a pre-experimental model. The jumping power was evaluated before and after the intervention by means of the squat jump test (SJ), Counter movement jump (CMJ) and Abalacov (AB). Cyclists consumed a drink with whey protein and a soy isolate after training four times a week for three months. The amount of protein in each cyclist, was calculated according to body weight (0.5 g / kg of muscle mass). The results show that subjects who consumed PV improved muscle strength and landing strength. In contrast, the power and landing force decreased for subjects who consumed PA. For the group that consumed PV, the increase was positive at 164.26 watts, 135.70 watts and 33.96 watts for the AB, SJ and CMJ jumps respectively. While for PA, the differences of the medians were negative at -32.29 watts, -82.79 watts and -143.86 watts for the AB, SJ and CMJ jumps respectively. The differences of the medians in the AB jump were positive for both the PV (121.61 Newton) and PA (454.34 Newton) cases, however, the difference was greater for PA. For the SJ jump, the difference for the PA cases was 371.52 Newton, while for the PV cases the difference was negative -448.56 Newton, so the difference was greater in the SJ jump for PA. In jump CMJ, the differences of the medians were negative for the cases of PA and PV, being -7.05 for PA and - 958.2 for PV. So the difference was greater for PA. The conclusion of this study shows that serum protein supplementation showed no improvement in muscle power in the lower limbs of the cyclists studied, which could suggest that whey protein does not have a beneficial effect on performance in terms of power, either, showed an impact on body composition. In contrast, supplementation with soy isolate showed positive effects on muscle power, body.

Keywords: animal protein (AP), muscle power, supplements, vegetable protein (VP)

Procedia PDF Downloads 177
437 1-D Convolutional Neural Network Approach for Wheel Flat Detection for Freight Wagons

Authors: Dachuan Shi, M. Hecht, Y. Ye

Abstract:

With the trend of digitalization in railway freight transport, a large number of freight wagons in Germany have been equipped with telematics devices, commonly placed on the wagon body. A telematics device contains a GPS module for tracking and a 3-axis accelerometer for shock detection. Besides these basic functions, it is desired to use the integrated accelerometer for condition monitoring without any additional sensors. Wheel flats as a common type of failure on wheel tread cause large impacts on wagons and infrastructure as well as impulsive noise. A large wheel flat may even cause safety issues such as derailments. In this sense, this paper proposes a machine learning approach for wheel flat detection by using car body accelerations. Due to suspension systems, impulsive signals caused by wheel flats are damped significantly and thus could be buried in signal noise and disturbances. Therefore, it is very challenging to detect wheel flats using car body accelerations. The proposed algorithm considers the envelope spectrum of car body accelerations to eliminate the effect of noise and disturbances. Subsequently, a 1-D convolutional neural network (CNN), which is well known as a deep learning method, is constructed to automatically extract features in the envelope-frequency domain and conduct classification. The constructed CNN is trained and tested on field test data, which are measured on the underframe of a tank wagon with a wheel flat of 20 mm length in the operational condition. The test results demonstrate the good performance of the proposed algorithm for real-time fault detection.

Keywords: fault detection, wheel flat, convolutional neural network, machine learning

Procedia PDF Downloads 131
436 Entrepreneurship in Pakistan: Opportunities and Challenges

Authors: Bushra Jamil, Nudrat Baqri, Muhammad Hassan Saeed

Abstract:

Entrepreneurship is creating or setting up a business not only for the purpose of generating profit but also for providing job opportunities. Entrepreneurs are problem solvers and product developers. They use their financial asset for hiring a professional team and combine the innovation, knowledge, and leadership leads to a successful startup or a business. To be a successful entrepreneur, one should be people-oriented and have perseverance. One must have the ability to take risk, believe in his/her potential, and have the courage to move forward in all circumstances. Most importantly, have the ability to take risk and can assess the risk. For STEM students, entrepreneurship is of specific importance and relevance as it helps them not just to be able to solve real life existing complications but to be able to recognize and identify emerging needs and glitches. It is becoming increasingly apparent that in today’s world, there is a need as well as a desire for STEM and entrepreneurship to work together. In Pakistan, entrepreneurship is slowly emerging, yet we are far behind. It is high time that we should introduce modern teaching methods and inculcate entrepreneurial initiative in students. A course on entrepreneurship can be included in the syllabus, and we must invite businessmen and policy makers to motivate young minds for entrepreneurship. This must be pitching competitions, opportunities to win seed funding, and facilities of incubation centers. In Pakistan, there are many good public sector research institutes, yet there is a void gap in the private sector. Only few research institute are meant for research and development. BJ Micro Lab is one of them. It is SECP registered company and is working in academia to promote and facilitate research in STEM. BJ Micro Lab is a women led initiative, and we are trying to promote research as a passion, not as an arduous burden. For this, we are continuously arranging training workshops and sessions. More than 100 students have been trained in ten different workshops arranged at BJ Micro Lab.

Keywords: entrepreneurship, STEM, challenges, oppurtunties

Procedia PDF Downloads 129
435 Credible Autopsy Report for Investigators and Judiciary

Authors: Sudhir K. Gupta

Abstract:

Introduction: When a forensic doctor determines that a suspicious death is a suicide, homicide, or accident, the decision virtually becomes incontestable by the investigating police officer, and it becomes an issue whether the medical opinion was created with necessary checks and balances on the other probabilities of the case. It is suggested that the opinion of Forensic Medical experts is conventional, mutable, and shifting from one expert to another. The determination of suicide, accident, or homicide is mandatorily required, which is the Gold Standard for conducting death investigations. Forensic investigations serve many audiences, but the court is by far the most critical. The likely questions on direct and cross-examination determine how forensic doctors gather and handle evidence and what conclusions they reach. Methodology: The author interacted with the investigative authority, and a crime scene visit was also done along with the perusal of the Postmortem report, subsequent opinion, and crime scene photographs and statements of the witness and accused. Further analysis of all relevant scientific documents and opinions of other forensic doctors, forensic scientists, and ballistic experts involved in these cases was done to arrive at an opinion with scientific justification. Findings: The opinions arrived at by the author and how they helped the judiciary in delivering justice in these cases have been discussed in this article. This can help the readers to understand the process involved in formulating a credible forensic medical expert opinion for investigators and the judiciary. Conclusion: A criminal case might be won or lost over doubt cast on the chain of custody. Medically trained forensic doctors, therefore, learn to practice their profession in legally appropriate ways, and opinions must be based on medical justifications with credible references.

Keywords: forensic doctor, professional credibility, investigation, expert opinion

Procedia PDF Downloads 76
434 Supervised Machine Learning Approach for Studying the Effect of Different Joint Sets on Stability of Mine Pit Slopes Under the Presence of Different External Factors

Authors: Sudhir Kumar Singh, Debashish Chakravarty

Abstract:

Slope stability analysis is an important aspect in the field of geotechnical engineering. It is also important from safety, and economic point of view as any slope failure leads to loss of valuable lives and damage to property worth millions. This paper aims at mitigating the risk of slope failure by studying the effect of different joint sets on the stability of mine pit slopes under the influence of various external factors, namely degree of saturation, rainfall intensity, and seismic coefficients. Supervised machine learning approach has been utilized for making accurate and reliable predictions regarding the stability of slopes based on the value of Factor of Safety. Numerous cases have been studied for analyzing the stability of slopes using the popular Finite Element Method, and the data thus obtained has been used as training data for the supervised machine learning models. The input data has been trained on different supervised machine learning models, namely Random Forest, Decision Tree, Support vector Machine, and XGBoost. Distinct test data that is not present in training data has been used for measuring the performance and accuracy of different models. Although all models have performed well on the test dataset but Random Forest stands out from others due to its high accuracy of greater than 95%, thus helping us by providing a valuable tool at our disposition which is neither computationally expensive nor time consuming and in good accordance with the numerical analysis result.

Keywords: finite element method, geotechnical engineering, machine learning, slope stability

Procedia PDF Downloads 101
433 A Review of Research on Pre-training Technology for Natural Language Processing

Authors: Moquan Gong

Abstract:

In recent years, with the rapid development of deep learning, pre-training technology for natural language processing has made great progress. The early field of natural language processing has long used word vector methods such as Word2Vec to encode text. These word vector methods can also be regarded as static pre-training techniques. However, this context-free text representation brings very limited improvement to subsequent natural language processing tasks and cannot solve the problem of word polysemy. ELMo proposes a context-sensitive text representation method that can effectively handle polysemy problems. Since then, pre-training language models such as GPT and BERT have been proposed one after another. Among them, the BERT model has significantly improved its performance on many typical downstream tasks, greatly promoting the technological development in the field of natural language processing, and has since entered the field of natural language processing. The era of dynamic pre-training technology. Since then, a large number of pre-trained language models based on BERT and XLNet have continued to emerge, and pre-training technology has become an indispensable mainstream technology in the field of natural language processing. This article first gives an overview of pre-training technology and its development history, and introduces in detail the classic pre-training technology in the field of natural language processing, including early static pre-training technology and classic dynamic pre-training technology; and then briefly sorts out a series of enlightening technologies. Pre-training technology, including improved models based on BERT and XLNet; on this basis, analyze the problems faced by current pre-training technology research; finally, look forward to the future development trend of pre-training technology.

Keywords: natural language processing, pre-training, language model, word vectors

Procedia PDF Downloads 57
432 Estimating Age in Deceased Persons from the North Indian Population Using Ossification of the Sternoclavicular Joint

Authors: Balaji Devanathan, Gokul G., Raveena Divya, Abhishek Yadav, Sudhir K. Gupta

Abstract:

Background: Age estimation is a common problem in administrative settings, medico legal cases, and among athletes competing in different sports. Age estimation is a problem in medico legal problems that arise in hospitals when there has been a criminal abortion, when consenting to surgery or a general physical examination, when there has been infanticide, impotence, sterility, etc. Medical imaging progress has benefited forensic anthropology in various ways, most notably in the area of determining bone age. An efficient method for researching the epiphyseal union and other differences in the body's bones and joints is multi-slice computed tomography. There isn't a significant database on Indians available. So to obtain an Indian based database author has performed this original study. Methodologies: The appearance and fusion of ossification centre of sternoclavicular joint is evaluated, and grades were assigned accordingly. Using MSCT scans, we examined the relationship between the age of the deceased and alterations in the sternoclavicular joint during the appearance and union in 500 instances, 327 men and 173 females, in the age range of 0 to 25 years. Results: According to our research in both the male and female groups, the ossification centre for the medial end of the clavicle first appeared between the ages of 18.5 and 17.1 respectively. The age range of the partial union was 20.4 and 20.2 years old. The earliest age of complete fusion was 23 years for males and 22 years for females. For fusion of their sternebrae into one, age range is 11–24 years for females and 17–24 years. The fusion of the third and fourth sternebrae was completed by 11 years. The fusions of the first and second and second and third sternebrae occur by the age of 17 years. Furthermore, correlation and reliability were carried out which yielded significant results. Conclusion: With numerous exceptions, the projected values are consistent with a large number of the previously developed age charts. These variations may be caused by the ethnic or regional heterogeneity in the ossification pattern among the population under study. The pattern of bone maturation did not significantly differ between the sexes, according to the study. The study's age range was 0 to 25 years, and for obvious reasons, the majority of the occurrences occurred in the last five years, or between 20 and 25 years of age. This resulted in a comparatively smaller study population for the 12–18 age group, where age estimate is crucial because of current legal requirements. It will require specialized PMCT research in this age range to produce population standard charts for age estimate. The medial end of the clavicle is one of several ossification foci that are being thoroughly investigated since they are challenging to assess with a traditional X-ray examination. Combining the two has been shown to be a valid result when it comes to raising the age beyond eighteen.

Keywords: age estimation, sternoclavicular joint, medial clavicle, computed tomography

Procedia PDF Downloads 44
431 Comparison of Different Machine Learning Algorithms for Solubility Prediction

Authors: Muhammet Baldan, Emel Timuçin

Abstract:

Molecular solubility prediction plays a crucial role in various fields, such as drug discovery, environmental science, and material science. In this study, we compare the performance of five machine learning algorithms—linear regression, support vector machines (SVM), random forests, gradient boosting machines (GBM), and neural networks—for predicting molecular solubility using the AqSolDB dataset. The dataset consists of 9981 data points with their corresponding solubility values. MACCS keys (166 bits), RDKit properties (20 properties), and structural properties(3) features are extracted for every smile representation in the dataset. A total of 189 features were used for training and testing for every molecule. Each algorithm is trained on a subset of the dataset and evaluated using metrics accuracy scores. Additionally, computational time for training and testing is recorded to assess the efficiency of each algorithm. Our results demonstrate that random forest model outperformed other algorithms in terms of predictive accuracy, achieving an 0.93 accuracy score. Gradient boosting machines and neural networks also exhibit strong performance, closely followed by support vector machines. Linear regression, while simpler in nature, demonstrates competitive performance but with slightly higher errors compared to ensemble methods. Overall, this study provides valuable insights into the performance of machine learning algorithms for molecular solubility prediction, highlighting the importance of algorithm selection in achieving accurate and efficient predictions in practical applications.

Keywords: random forest, machine learning, comparison, feature extraction

Procedia PDF Downloads 40
430 StockTwits Sentiment Analysis on Stock Price Prediction

Authors: Min Chen, Rubi Gupta

Abstract:

Understanding and predicting stock market movements is a challenging problem. It is believed stock markets are partially driven by public sentiments, which leads to numerous research efforts to predict stock market trend using public sentiments expressed on social media such as Twitter but with limited success. Recently a microblogging website StockTwits is becoming increasingly popular for users to share their discussions and sentiments about stocks and financial market. In this project, we analyze the text content of StockTwits tweets and extract financial sentiment using text featurization and machine learning algorithms. StockTwits tweets are first pre-processed using techniques including stopword removal, special character removal, and case normalization to remove noise. Features are extracted from these preprocessed tweets through text featurization process using bags of words, N-gram models, TF-IDF (term frequency-inverse document frequency), and latent semantic analysis. Machine learning models are then trained to classify the tweets' sentiment as positive (bullish) or negative (bearish). The correlation between the aggregated daily sentiment and daily stock price movement is then investigated using Pearson’s correlation coefficient. Finally, the sentiment information is applied together with time series stock data to predict stock price movement. The experiments on five companies (Apple, Amazon, General Electric, Microsoft, and Target) in a duration of nine months demonstrate the effectiveness of our study in improving the prediction accuracy.

Keywords: machine learning, sentiment analysis, stock price prediction, tweet processing

Procedia PDF Downloads 156
429 Working with Children and Young People as a much Neglected Area of Education within the Social Studies Curriculum in Poland

Authors: Marta Czechowska-Bieluga

Abstract:

Social work education in Poland focuses mostly on developing competencies that address the needs of individuals and families affected by a variety of life's problems. As a result of the ageing of the Polish population, much attention is equally devoted to adults, including the elderly. However, social work with children and young people is the area of education which should be given more consideration. Social work students are mostly trained to cater to the needs of families and the competencies aimed to respond to the needs of children and young people do not receive enough attention and are only offered as elective classes. This paper strives to review the social work programmes offered by the selected higher education institutions in Poland in terms of social work training aimed at helping children and young people to address their life problems. The analysis conducted in this study indicates that university education for social work focuses on training professionals who will provide assistance only to adults. Due to changes in the social and political situation, including, in particular, changes in social policy implemented for the needy, it is necessary to extend this area of education to include the specificity of the support for children and young people; especially, in the light of the appearance of new support professions within the area of social work. For example, family assistants, whose task is to support parents in performing their roles as guardians and educators, also assist children. Therefore, it becomes necessary to equip social work professionals with competencies which include issues related to the quality of life of underage people living in families. Social work curricula should be extended to include the issues of child and young person development and the patterns governing this phase of life.

Keywords: social work education, social work programmes, social worker, university

Procedia PDF Downloads 289
428 COVID_ICU_BERT: A Fine-Tuned Language Model for COVID-19 Intensive Care Unit Clinical Notes

Authors: Shahad Nagoor, Lucy Hederman, Kevin Koidl, Annalina Caputo

Abstract:

Doctors’ notes reflect their impressions, attitudes, clinical sense, and opinions about patients’ conditions and progress, and other information that is essential for doctors’ daily clinical decisions. Despite their value, clinical notes are insufficiently researched within the language processing community. Automatically extracting information from unstructured text data is known to be a difficult task as opposed to dealing with structured information such as vital physiological signs, images, and laboratory results. The aim of this research is to investigate how Natural Language Processing (NLP) techniques and machine learning techniques applied to clinician notes can assist in doctors’ decision-making in Intensive Care Unit (ICU) for coronavirus disease 2019 (COVID-19) patients. The hypothesis is that clinical outcomes like survival or mortality can be useful in influencing the judgement of clinical sentiment in ICU clinical notes. This paper introduces two contributions: first, we introduce COVID_ICU_BERT, a fine-tuned version of clinical transformer models that can reliably predict clinical sentiment for notes of COVID patients in the ICU. We train the model on clinical notes for COVID-19 patients, a type of notes that were not previously seen by clinicalBERT, and Bio_Discharge_Summary_BERT. The model, which was based on clinicalBERT achieves higher predictive accuracy (Acc 93.33%, AUC 0.98, and precision 0.96 ). Second, we perform data augmentation using clinical contextual word embedding that is based on a pre-trained clinical model to balance the samples in each class in the data (survived vs. deceased patients). Data augmentation improves the accuracy of prediction slightly (Acc 96.67%, AUC 0.98, and precision 0.92 ).

Keywords: BERT fine-tuning, clinical sentiment, COVID-19, data augmentation

Procedia PDF Downloads 207
427 Implementation of an Image Processing System Using Artificial Intelligence for the Diagnosis of Malaria Disease

Authors: Mohammed Bnebaghdad, Feriel Betouche, Malika Semmani

Abstract:

Image processing become more sophisticated over time due to technological advances, especially artificial intelligence (AI) technology. Currently, AI image processing is used in many areas, including surveillance, industry, science, and medicine. AI in medical image processing can help doctors diagnose diseases faster, with minimal mistakes, and with less effort. Among these diseases is malaria, which remains a major public health challenge in many parts of the world. It affects millions of people every year, particularly in tropical and subtropical regions. Early detection of malaria is essential to prevent serious complications and reduce the burden of the disease. In this paper, we propose and implement a scheme based on AI image processing to enhance malaria disease diagnosis through automated analysis of blood smear images. The scheme is based on the convolutional neural network (CNN) method. So, we have developed a model that classifies infected and uninfected single red cells using images available on Kaggle, as well as real blood smear images obtained from the Central Laboratory of Medical Biology EHS Laadi Flici (formerly El Kettar) in Algeria. The real images were segmented into individual cells using the watershed algorithm in order to match the images from the Kaagle dataset. The model was trained and tested, achieving an accuracy of 99% and 97% accuracy for new real images. This validates that the model performs well with new real images, although with slightly lower accuracy. Additionally, the model has been embedded in a Raspberry Pi4, and a graphical user interface (GUI) was developed to visualize the malaria diagnostic results and facilitate user interaction.

Keywords: medical image processing, malaria parasite, classification, CNN, artificial intelligence

Procedia PDF Downloads 20
426 The Effects of Dynamic Training Shoes Exercises on Isokinetic Strength Performance

Authors: Bergun Meric Bingul, Yezdan Cinel, Murat Son, Cigdem Bulgan, Mensure Aydin

Abstract:

The aim of this study was to determination of the effects of knee and hip isokinetic performance during the training with the special designed roller-shoes. 30 soccer players participated as subjects and these subjects were divided into 3 groups randomly. Training groups were; with the dynamic training shoes group, without the dynamic training shoes group and control group. Subjects were trained speed strength trainings during 8 weeks (3 days a week and 1 hour a day). 6 exercises were focused on the knee flexors and extensors, also hip adductor and abductor muscles were chosen and performed in 3x30secs at each sets. Control group was not paticipated to the training program. Before and after the training programs knee flexor and extensor muscles and hip abductor and adductor muscles’ peak torques were measured by Biodex III isokinetic dynamometer. Isokinetic strength data were analyzed by using SPSS program. A repeated measures analysis of variance (ANOVA) was used to determine differences among the peak torque values for three groups. The results indicated that soccer players’ peak torque values that the group of using the dynamic training shoes, were found higher. Also, hip adductor and abductor peak torques that the group of using the dynamic training shoes, were obtained better than the other groups. In conclusion, the ground friction forces are an important role of increasing strength. With these shoes, using rollers, soccer players were able to move easily because of the friction forces were reduced and created more range of motion. So, exercises were performed faster than before and strength movements in all angles, it ensured that the active state. This was resulted in a better use of force.

Keywords: isokinetic, soccer, dynamic training shoes, training

Procedia PDF Downloads 269
425 Teaching–Learning-Based Optimization: An Efficient Method for Chinese as a Second Language

Authors: Qi Wang

Abstract:

In the classroom, teachers have been trained to complete the target task within the limited lecture time, meanwhile learners need to receive a lot of new knowledge, however, most of the time the learners come without the proper pre-class preparation to efficiently take in the contents taught in class. Under this circumstance, teachers do have no time to check whether the learners fully understand the content or not, how the learners communicate in the different contexts, until teachers see the results when the learners are tested. In the past decade, the teaching of Chinese has taken a trend. Teaching focuses less on the use of proper grammatical terms/punctuation and is now placing a heavier focus on the materials from real life contexts. As a result, it has become a greater challenge to teachers, as this requires teachers to fully understand/prepare what they teach and explain the content with simple and understandable words to learners. On the other hand, the same challenge also applies to the learners, who come from different countries. As they have to use what they learnt, based on their personal understanding of the material to effectively communicate with others in the classroom, even in the contexts of a day to day communication. To reach this win-win stage, Feynman’s Technique plays a very important role. This practical report presents you how the Feynman’s Technique is applied into Chinese courses, both writing & oral, to motivate the learners to practice more on writing, reading and speaking in the past few years. Part 1, analysis of different teaching styles and different types of learners, to find the most efficient way to both teachers and learners. Part 2, based on the theory of Feynman’s Technique, how to let learners build the knowledge from knowing the name of something to knowing something, via different designed target tasks. Part 3. The outcomes show that Feynman’s Technique is the interaction of learning style and teaching style, the double-edged sword of Teaching & Learning Chinese as a Second Language.

Keywords: Chinese, Feynman’s technique, learners, teachers

Procedia PDF Downloads 154
424 Effect of Citrulline on the Physical Performance of a Soccer-Specific Exercises in Adult Professional Soccer Players

Authors: Bezuglov Eduard, Ryland Morgans, Talibov Oleg, Kalinin Evgeny, Butovsky Mikhail, Savin Evgeny, Tzgoev Eduard, Artemii Lazarev, Bekzhan Pirmakhanov, Anthony C. Hackney

Abstract:

Currently, there is conflicting evidence regarding the efficacy of citrulline for physical performance and post-exercise recovery. Moreover, the vast majority of studies conducted used physically active volunteers from the general population and heterogeneous exercise protocols that are not specific to most sports. A single use of citrulline, regardless of the dose, will not have a significant effect on physical performance and post-exercise recovery in highly trained soccer players performing sport-specific exercises at maximum intensity. To evaluate the effectiveness of a single administration of citrulline at various doses in adult male professional soccer players performing sport-specific exercise at maximum intensity. A randomized, double-blind, placebo-controlled study analyzing eighteen soccer players from the top divisions of several European countries. The participants were randomized into three groups of six and performed a field-based soccer-specific test at 115% VO2max for 18-minutes. Comparative analysis of the cardiovascular system, physical activity, subjective perceived fatigue and post-exercise recovery was conducted. There were no statistically significant differences in more than one analyzed parameter. A single application of 3 to 6 grams of citrulline does not affect physical performance, subjective feeling of fatigue and post-exercise recovery in adult professional soccer players who have performed a sport-specific test. Currently, citrulline cannot be recommended for use as a supplement in adult professional soccer players

Keywords: citrulline, performance, recovery, soccer players

Procedia PDF Downloads 99