Search results for: support vector data description
29468 Developing a Spatial Decision Support System for Rationality Assessment of Land Use Planning Locations in Thai Binh Province, Vietnam
Authors: Xuan Linh Nguyen, Tien Yin Chou, Yao Min Fang, Feng Cheng Lin, Thanh Van Hoang, Yin Min Huang
Abstract:
In Vietnam, land use planning is the most important and powerful tool of the government for sustainable land use and land management. Nevertheless, many of land use planning locations are facing protests from surrounding households due to environmental impacts. In addition, locations are planned completely based on the subjective decisions of planners who are unsupported by tools or scientific methods. Hence, this research aims to assist the decision-makers in evaluating the rationality of planning locations by developing a Spatial Decision Support System (SDSS) using approaches of Geographic Information System (GIS)-based technology, Analytic Hierarchy Process (AHP) multi-criteria-based technique and Fuzzy set theory. An ArcGIS Desktop add-ins named SDSS-LUPA was developed to support users analyzing data and presenting results in friendly format. The Fuzzy-AHP method has been utilized as analytic model for this SDSS. There are 18 planned locations in Hung Ha district (Thai Binh province, Vietnam) as a case study. The experimental results indicated that the assessment threshold higher than 0.65 while the 18 planned locations were irrational because of close to residential areas or close to water sources. Some potential sites were also proposed to the authorities for consideration of land use planning changes.Keywords: analytic hierarchy process, fuzzy set theory, land use planning, spatial decision support system
Procedia PDF Downloads 37929467 A Study of Islamic Stock Indices and Macroeconomic Variables
Authors: Mohammad Irfan
Abstract:
The purpose of this paper is to investigate the relationship among the key macroeconomic variables and Islamic stock market in India. This study is based on the time series data of financial years 2009-2015 to explore the consistency of relationship between macroeconomic variables and Shariah Indices. The ADF (Augmented Dickey–Fuller Test Statistic) and PP (Phillips–Perron Test Statistic) tests are employed to check stationarity of the data. The study depicts the long run relationship between Shariah indices and macroeconomic variables by using the Johansen Co-integration test. BSE Shariah and Nifty Shariah have uni-direct Granger causality. The outcome of VECM is significantly confirming the applicability of best fitted model. Thus, Islamic stock indices are proficiently working for the development of Indian economy. It suggests that by keeping eyes on Islamic stock market which will be more interactive in the future with other macroeconomic variables.Keywords: Indian Shariah Indices, macroeconomic variables, co-integration, Granger causality, vector error correction model (VECM)
Procedia PDF Downloads 28029466 Understanding Level 5 Sport Student’s Perspectives of the Barriers to Progression and Attainment
Authors: Emma Whewell, Lee Waters, Mark Wall
Abstract:
This paper is a mixed methods investigation into the perceived barriers to attainment and progression. Initially entry level data was analysed to identify some of the key characteristics of the student cohort- for example entry route, age and ethnic background. Secondly, a phenomenological case study of the lived experiences of 15 level 5 sport and exercise students was conducted. It aimed to understand the complexities of success in higher education, far beyond entry qualifications, indices of deprivation and POLAR characteristics, to offer a first-hand account of student perceptions and interpretations of the barriers they face in progression, retention and completion on their programme. Using focus groups and interviews with students from a range of indices we offer a set of rich case studies exploring the interpretations of our students’ lived experiences and challenges. Findings demonstrate a complex set of circumstances that centre on managing workload, use of support services and aspirations of students that conflict with university priorities. Conclusions centre on the role of academic and pastoral support, assumptions about priorities of students and practical interventions to support achievement.Keywords: access and participation, higher education, progression and retention, barriers
Procedia PDF Downloads 10929465 Design of a Real Time Heart Sounds Recognition System
Authors: Omer Abdalla Ishag, Magdi Baker Amien
Abstract:
Physicians used the stethoscope for listening patient heart sounds in order to make a diagnosis. However, the determination of heart conditions by acoustic stethoscope is a difficult task so it requires special training of medical staff. This study developed an accurate model for analyzing the phonocardiograph signal based on PC and DSP processor. The system has been realized into two phases; offline and real time phase. In offline phase, 30 cases of heart sounds files were collected from medical students and doctor's world website. For experimental phase (real time), an electronic stethoscope has been designed, implemented and recorded signals from 30 volunteers, 17 were normal cases and 13 were various pathologies cases, these acquired 30 signals were preprocessed using an adaptive filter to remove lung sounds. The background noise has been removed from both offline and real data, using wavelet transform, then graphical and statistics features vector elements were extracted, finally a look-up table was used for classification heart sounds cases. The obtained results of the implemented system showed accuracy of 90%, 80% and sensitivity of 87.5%, 82.4% for offline data, and real data respectively. The whole system has been designed on TMS320VC5509a DSP Platform.Keywords: code composer studio, heart sounds, phonocardiograph, wavelet transform
Procedia PDF Downloads 44629464 Lived Experiences of Primary Caregiver of Schizophrenia Patients at Acute Crisis Intervention Service
Authors: Mykah W. Sumoldao, Maria Erissa C. Susa, Triny Cate M. Telan, Christian Arvin M. Torres, Jasmine I. Udasco, Franceis Jeramil M. Walis, Shellyn S. Wandagan, Janine May M. Warding, Queenie Diana Rose P. Zalun Hope Lulet A. Lomioan
Abstract:
This descriptive phenomenological study explored the lived experiences of the primary caregiver of schizophrenia patients at the Acute Crisis Intervention Service in Cagayan Valley Medical Center. The research aimed to understand the emotional, physical, and financial challenges these primary caregivers face. Data was gathered through interviews with nine (9) primary caregivers and analyzed using Colaizzi’s seven-step method. Two main themes emerged: Experience/ Challenges (Emotional, Physical, and Financial Challenges) and Managing Mechanisms (Support Systems and Resilience and Commitment). The study found that primary caregivers deal with a complex mix of difficulties, often with limited resources. They rely heavily on personal strength, faith, family, friends and community support to manage their roles. The findings highlighted the need for better support systems to ease primary caregivers' burdens. Financial aid, respite care, and mental health support are crucial for improving primary caregivers' quality of life and the care they provide. Additionally, raising awareness about primary caregivers' challenges can foster a supportive community, with more help from local organizations and government entities. Thus, this study provided insights into the caregiving experiences of those supporting schizophrenia patients. It emphasized the importance of practical support and emotional resilience. By addressing these needs, a more supportive environment can be created, benefiting both primary caregivers and their patients.Keywords: primary caregiver burden, mental health, primary caregiver well-being, primary caregiver
Procedia PDF Downloads 2929463 Modeling Engagement with Multimodal Multisensor Data: The Continuous Performance Test as an Objective Tool to Track Flow
Authors: Mohammad H. Taheri, David J. Brown, Nasser Sherkat
Abstract:
Engagement is one of the most important factors in determining successful outcomes and deep learning in students. Existing approaches to detect student engagement involve periodic human observations that are subject to inter-rater reliability. Our solution uses real-time multimodal multisensor data labeled by objective performance outcomes to infer the engagement of students. The study involves four students with a combined diagnosis of cerebral palsy and a learning disability who took part in a 3-month trial over 59 sessions. Multimodal multisensor data were collected while they participated in a continuous performance test. Eye gaze, electroencephalogram, body pose, and interaction data were used to create a model of student engagement through objective labeling from the continuous performance test outcomes. In order to achieve this, a type of continuous performance test is introduced, the Seek-X type. Nine features were extracted including high-level handpicked compound features. Using leave-one-out cross-validation, a series of different machine learning approaches were evaluated. Overall, the random forest classification approach achieved the best classification results. Using random forest, 93.3% classification for engagement and 42.9% accuracy for disengagement were achieved. We compared these results to outcomes from different models: AdaBoost, decision tree, k-Nearest Neighbor, naïve Bayes, neural network, and support vector machine. We showed that using a multisensor approach achieved higher accuracy than using features from any reduced set of sensors. We found that using high-level handpicked features can improve the classification accuracy in every sensor mode. Our approach is robust to both sensor fallout and occlusions. The single most important sensor feature to the classification of engagement and distraction was shown to be eye gaze. It has been shown that we can accurately predict the level of engagement of students with learning disabilities in a real-time approach that is not subject to inter-rater reliability, human observation or reliant on a single mode of sensor input. This will help teachers design interventions for a heterogeneous group of students, where teachers cannot possibly attend to each of their individual needs. Our approach can be used to identify those with the greatest learning challenges so that all students are supported to reach their full potential.Keywords: affective computing in education, affect detection, continuous performance test, engagement, flow, HCI, interaction, learning disabilities, machine learning, multimodal, multisensor, physiological sensors, student engagement
Procedia PDF Downloads 9429462 Addressing Challenging Behaviours of Individuals with Positive Behaviour Support
Authors: Divi Sharma
Abstract:
The emergence of positive behaviour support (PBS) is directly linked to applied behaviour analysis that incorporates evidence-based approaches to addressing ethical challenges and improving autonomy, participation, and the overall quality of life of people living and learning in complex social environments. Its features include lifestyle improvement, collaboration with general caregivers, tracking progress with sound steps, comprehensive performance-based interventions, striving for contextual equality, and ensuring entry and implementation. This document aims to summarize its features with the support of case examples such as involving caregivers to play an active role in behavioural interventions, creating effective interventions within natural practices. Additionally, dealing with lifestyle changes, as well as a wide variety of behavioural changes, develop strong strategies which reduce professional dependence.Keywords: positive behaviour support, quality of life, performance-based interventions, behavioural changes, participation
Procedia PDF Downloads 17029461 A Prediction Model of Adopting IPTV
Authors: Jeonghwan Jeon
Abstract:
With the advent of IPTV in the fierce competition with existing broadcasting system, it is emerged as an important issue to predict how much the adoption of IPTV service will be. This paper aims to suggest a prediction model for adopting IPTV using classification and Ranking Belief Simplex (CaRBS). A simplex plot method of representing data allows a clear visual representation to the degree of interaction of the support from the variables to the prediction of the objects. CaRBS is applied to the survey data on the IPTV adoption.Keywords: prediction, adoption, IPTV, CaRBS
Procedia PDF Downloads 41229460 Bag of Words Representation Based on Fusing Two Color Local Descriptors and Building Multiple Dictionaries
Authors: Fatma Abdedayem
Abstract:
We propose an extension to the famous method called Bag of words (BOW) which proved a successful role in the field of image categorization. Practically, this method based on representing image with visual words. In this work, firstly, we extract features from images using Spatial Pyramid Representation (SPR) and two dissimilar color descriptors which are opponent-SIFT and transformed-color-SIFT. Secondly, we fuse color local features by joining the two histograms coming from these descriptors. Thirdly, after collecting of all features, we generate multi-dictionaries coming from n random feature subsets that obtained by dividing all features into n random groups. Then, by using these dictionaries separately each image can be represented by n histograms which are lately concatenated horizontally and form the final histogram, that allows to combine Multiple Dictionaries (MDBoW). In the final step, in order to classify image we have applied Support Vector Machine (SVM) on the generated histograms. Experimentally, we have used two dissimilar image datasets in order to test our proposition: Caltech 256 and PASCAL VOC 2007.Keywords: bag of words (BOW), color descriptors, multi-dictionaries, MDBoW
Procedia PDF Downloads 29729459 Social Support and Quality of Life of Youth Suffering from Cerebral Palsy Temporarily Orphaned Due to Emigration of a Parent
Authors: A. Gagat-Matuła
Abstract:
The article is concerned in the issue of social support and quality of life of youth suffering from cerebral palsy, who are temporarily orphaned due to the emigration of a parent. Migration causes multi-aspect consequences in various spheres of life. They are particularly severe for the functioning of families. Temporal parting of parents and children, especially the disabled, is a difficult situation. In this case, the family structure is changed, as well as the quality of life of its members. Children can handle migration parting in a better or worse way; these can be divided into properly functioning and manifesting behaviour disorders. In conditions of the progressing phenomenon of labour migration of Poles and a wide spectrum of consequences for the whole social life, it is essential to undertake actions aimed at support of migrants and their families. This article focuses mainly on social support and quality of families members, of which, are the labour migrants perceived by youth suffering from cerebral palsy. The quantitative method was used in this study. In the study, the Satisfaction with Life Scale (SWLS) by Diener, was used. The analysed group consisted of 50 persons (37 girls and 13 boys), aged 16 years to 18 years, whose parents are labour migrants. The results indicate that the quality of life and social support for youth suffering from cerebral palsy who are temporarily orphaned is at a low and average level.Keywords: social support, quality of life, migration, cerebral palsy
Procedia PDF Downloads 19129458 The Staff Performance Efficiency of the Faculty of Management Science, Suan Sunandha Rajabhat University
Authors: Nipawan Tharasak, Ladda Hirunyava
Abstract:
The objective of the research was to study factors affecting working efficiency and the relationship between working environment, satisfaction to human resources management and operation employees’ working efficiency of Faculty of Management Science, Suan Sunandha Rajabhat University. The sample size of the research was based on 33 employees of Faculty of Management Science. The researcher had classified the support employees into 4 divisions by using Stratified Random Sampling. Individual sample was randomized by using Simple Random Sampling. Data was collected through the instrument. The Statistical Package for the Windows was utilized for data processing. Percentage, mean, standard deviation, the t-test, One-way ANOVA, and Pearson product moment correlation coefficient were applied. The result found the support employees’ satisfaction in human resources management of Faculty of Management Science in following areas: remuneration; employee recruitment & selection; manpower planning; performance evaluation; staff training & developing; and spirit & fairness were overall in good level.Keywords: faculty of management science, operational factors, practice performance, staff working
Procedia PDF Downloads 23529457 Preservice Science Teachers' Understanding of Equitable Assessment
Authors: Kemal Izci, Ahmet Oguz Akturk
Abstract:
Learning is dependent on cognitive and physical differences as well as other differences such as ethnicity, language, and culture. Furthermore, these differences also influence how students show their learning. Assessment is an integral part of learning and teaching process and is essential for effective instruction. In order to provide effective instruction, teachers need to provide equal assessment opportunities for all students to see their learning difficulties and use them to modify instruction to aid learning. Successful assessment practices are dependent upon the knowledge and value of teachers. Therefore, in order to use assessment to assess and support diverse students learning, preservice and inservice teachers should hold an appropriate understanding of equitable assessment. In order to prepare teachers to help them support diverse student learning, as a first step, this study aims to explore how preservice teachers’ understand equitable assessment. 105 preservice science teachers studying at teacher preparation program in a large university located at Eastern part of Turkey participated in the current study. A questionnaire, preservice teachers’ reflection papers and interviews served as data sources for this study. All collected data qualitatively analyzed to develop themes that illustrate preservice science teachers’ understanding of equitable assessment. Results of the study showed that preservice teachers mostly emphasized fairness including fairness in grading and fairness in asking questions not out of covered concepts for equitable assessment. However, most of preservice teachers do not show an understanding of equity for providing equal opportunities for all students to display their understanding of related content. For some preservice teachers providing different opportunities (providing extra time for non-native speaking students) for some students seems to be unfair for other students and therefore, these kinds of refinements do not need to be used. The results of the study illustrated that preservice science teachers mostly understand equitable assessment as fairness and less highlight the role of using equitable assessment to support all student learning, which is more important in order to improve students’ achievement of science. Therefore, we recommend that more opportunities should be provided for preservice teachers engage in a more broad understanding of equitable assessment and learn how to use equitable assessment practices to aid and support all students learning trough classroom assessment.Keywords: science teaching, equitable assessment, assessment literacy, preservice science teachers
Procedia PDF Downloads 30429456 An Empirical Analysis of Euthanasia Issues in Taiwan
Authors: Wen-Shai Hung
Abstract:
This paper examines the factors influencing euthanasia issues in Taiwan. The data used is from the 2015 Survey Research on Attitudes towards the Death Penalty and Related Values in Taiwan, which focused on knowledge, attitudes towards the death penalty, and the concepts of social, political, and law values. The sample ages are from 21 to 94. The method used is probit modelling for examining the influences on euthanasia issues in Taiwan. The main empirical results find that older people, persons with higher educational attainment, those who favour abolition of the death penalty and do not oppose divorce, abortion, same-sex relationships, and putting down homeless’ cats or dogs are more likely to approve of the use of euthanasia to end their lives. In contrast, Mainlanders, people who support the death penalty and favour long-term prison sentences are less likely to support the use of euthanasia.Keywords: euthanasia, homosexual, death penalty, and probit model
Procedia PDF Downloads 37729455 Advances of Image Processing in Precision Agriculture: Using Deep Learning Convolution Neural Network for Soil Nutrient Classification
Authors: Halimatu S. Abdullahi, Ray E. Sheriff, Fatima Mahieddine
Abstract:
Agriculture is essential to the continuous existence of human life as they directly depend on it for the production of food. The exponential rise in population calls for a rapid increase in food with the application of technology to reduce the laborious work and maximize production. Technology can aid/improve agriculture in several ways through pre-planning and post-harvest by the use of computer vision technology through image processing to determine the soil nutrient composition, right amount, right time, right place application of farm input resources like fertilizers, herbicides, water, weed detection, early detection of pest and diseases etc. This is precision agriculture which is thought to be solution required to achieve our goals. There has been significant improvement in the area of image processing and data processing which has being a major challenge. A database of images is collected through remote sensing, analyzed and a model is developed to determine the right treatment plans for different crop types and different regions. Features of images from vegetations need to be extracted, classified, segmented and finally fed into the model. Different techniques have been applied to the processes from the use of neural network, support vector machine, fuzzy logic approach and recently, the most effective approach generating excellent results using the deep learning approach of convolution neural network for image classifications. Deep Convolution neural network is used to determine soil nutrients required in a plantation for maximum production. The experimental results on the developed model yielded results with an average accuracy of 99.58%.Keywords: convolution, feature extraction, image analysis, validation, precision agriculture
Procedia PDF Downloads 31629454 Road Accident Blackspot Analysis: Development of Decision Criteria for Accident Blackspot Safety Strategies
Authors: Tania Viju, Bimal P., Naseer M. A.
Abstract:
This study aims to develop a conceptual framework for the decision support system (DSS), that helps the decision-makers to dynamically choose appropriate safety measures for each identified accident blackspot. An accident blackspot is a segment of road where the frequency of accident occurrence is disproportionately greater than other sections on roadways. According to a report by the World Bank, India accounts for the highest, that is, eleven percent of the global death in road accidents with just one percent of the world’s vehicles. Hence in 2015, the Ministry of Road Transport and Highways of India gave prime importance to the rectification of accident blackspots. To enhance road traffic safety and reduce the traffic accident rate, effectively identifying and rectifying accident blackspots is of great importance. This study helps to understand and evaluate the existing methods in accident blackspot identification and prediction that are used around the world and their application in Indian roadways. The decision support system, with the help of IoT, ICT and smart systems, acts as a management and planning tool for the government for employing efficient and cost-effective rectification strategies. In order to develop a decision criterion, several factors in terms of quantitative as well as qualitative data that influence the safety conditions of the road are analyzed. Factors include past accident severity data, occurrence time, light, weather and road conditions, visibility, driver conditions, junction type, land use, road markings and signs, road geometry, etc. The framework conceptualizes decision-making by classifying blackspot stretches based on factors like accident occurrence time, different climatic and road conditions and suggesting mitigation measures based on these identified factors. The decision support system will help the public administration dynamically manage and plan the necessary safety interventions required to enhance the safety of the road network.Keywords: decision support system, dynamic management, road accident blackspots, road safety
Procedia PDF Downloads 14429453 Strengthening Factors of Family Living with Disabilities
Authors: Supranee Sittikan, Darunee Jongudomkarn, Rutja Phuphaibul
Abstract:
Thai’s families with disabilities are diverse, poor economy, low education disproportionately characterized their living that includes stress and suffering. This article reports a preliminary study using a qualitative case study with six disabilities (five physical and one mental problem) Their six family caregivers who perceived they were managing well with their conditions as well. Data were collected by in-depth interviews during November-December 2017 in North-East of Thailand. Preliminary results were found factors of moving in comprised of three themes as followings Karma: the families believe that the disability happened because of bad-karma which attached to them. From the reason, the members of families have to deserve and accept it. Family attachment: the families believe in the importance of being the family so they have to take good care in one another whether happy or suffering Community support: the families can get more to received helping hands from local health care providers and community health volunteers. These activities are very important to be representative in taking the families through health accessibility, which help them face with disabling problems. Nevertheless, the study needs further exploring on other families’ and health care team's perspective in larger scales leading to develop an appropriate health care service system which can support and promote the well-being of the families living with disabilities in the future.Keywords: families with disabilities, Karma, family attachment, community support
Procedia PDF Downloads 16429452 Each One, Reach One: Peer Mentoring Support for Faculty Women of Color
Authors: Teresa Leary Handy
Abstract:
As awareness of the importance of diversity has increased in society, higher education has also begun to recognize the importance of supporting faculty of color. In the university setting, faculty women of color specifically encounter barriers that impact their level of job satisfaction, retention rates, and pedagogical practices. These barriers and challenges not only undermine faculty diversity efforts but also hinder the ability of colleges and universities to provide a supportive environment that fosters students' academic success and sense of belonging. Faculty who are marginalized and on the periphery in higher education institutions need support so that they can feel confident in building a student’s sense of belonging which can impact a student’s academic success and goal of earning a college degree. This study examined and sought to understand the importance of supporting faculty of color, specifically women faculty of color, and how this type of faculty support can impact student academic success and a student’s sense of belonging. The study furthered original research on strategies to move an institution forward on the equity spectrum to support belonging and inclusions as core culture elements.Keywords: equity, inclusion, belonging, women, faculty support
Procedia PDF Downloads 6729451 Design of Data Management Software System Supporting Rendezvous and Docking with Various Spaceships
Authors: Zhan Panpan, Lu Lan, Sun Yong, He Xiongwen, Yan Dong, Gu Ming
Abstract:
The function of the two spacecraft docking network, the communication and control of a docking target with various spacecrafts is realized in the space lab data management system. In order to solve the problem of the complex data communication mode between the space lab and various spaceships, and the problem of software reuse caused by non-standard protocol, a data management software system supporting rendezvous and docking with various spaceships has been designed. The software system is based on CCSDS Spcecraft Onboard Interface Service(SOIS). It consists of Software Driver Layer, Middleware Layer and Appliaction Layer. The Software Driver Layer hides the various device interfaces using the uniform device driver framework. The Middleware Layer is divided into three lays, including transfer layer, application support layer and system business layer. The communication of space lab plaform bus and the docking bus is realized in transfer layer. Application support layer provides the inter tasks communitaion and the function of unified time management for the software system. The data management software functions are realized in system business layer, which contains telemetry management service, telecontrol management service, flight status management service, rendezvous and docking management service and so on. The Appliaction Layer accomplishes the space lab data management system defined tasks using the standard interface supplied by the Middleware Layer. On the basis of layered architecture, rendezvous and docking tasks and the rendezvous and docking management service are independent in the software system. The rendezvous and docking tasks will be activated and executed according to the different spaceships. In this way, the communication management functions in the independent flight mode, the combination mode of the manned spaceship and the combination mode of the cargo spaceship are achieved separately. The software architecture designed standard appliction interface for the services in each layer. Different requirements of the space lab can be supported by the use of standard services per layer, and the scalability and flexibility of the data management software can be effectively improved. It can also dynamically expand the number and adapt to the protocol of visiting spaceships. The software system has been applied in the data management subsystem of the space lab, and has been verified in the flight of the space lab. The research results of this paper can provide the basis for the design of the data manage system in the future space station.Keywords: space lab, rendezvous and docking, data management, software system
Procedia PDF Downloads 36829450 A609 Modeling of AC Servomotor Using Genetic Algorithm and Tests for Control of a Robotic Joint
Authors: J. G. Batista, T. S. Santiago, E. A. Ribeiro, G. A. P. Thé
Abstract:
This work deals with parameter identification of permanent magnet motors, a class of ac motor which is particularly important in industrial automation due to characteristics like applications high performance, are very attractive for applications with limited space and reducing the need to eliminate because they have reduced size and volume and can operate in a wide speed range, without independent ventilation. By using experimental data and genetic algorithm we have been able to extract values for both the motor inductance and the electromechanical coupling constant, which are then compared to measure and/or expected values.Keywords: modeling, AC servomotor, permanent magnet synchronous motor-PMSM, genetic algorithm, vector control, robotic manipulator, control
Procedia PDF Downloads 52029449 PhilSHORE: Development of a WebGIS-Based Marine Spatial Planning Tool for Tidal Current Energy Resource Assessment and Site Suitability Analysis
Authors: Ma. Rosario Concepcion O. Ang, Luis Caezar Ian K. Panganiban, Charmyne B. Mamador, Oliver Dan G. De Luna, Michael D. Bausas, Joselito P. Cruz
Abstract:
PhilSHORE is a multi-site, multi-device and multi-criteria decision support tool designed to support the development of tidal current energy in the Philippines. Its platform is based on Geographic Information Systems (GIS) which allows for the collection, storage, processing, analyses and display of geospatial data. Combining GIS tools with open source web development applications, PhilSHORE becomes a webGIS-based marine spatial planning tool. To date, PhilSHORE displays output maps and graphs of power and energy density, site suitability and site-device analysis. It enables stakeholders and the public easy access to the results of tidal current energy resource assessments and site suitability analyses. Results of the initial development shows PhilSHORE is a promising decision support tool for ORE project developments.Keywords: gis, site suitability analysis, tidal current energy resource assessment, webgis
Procedia PDF Downloads 52529448 Document-level Sentiment Analysis: An Exploratory Case Study of Low-resource Language Urdu
Authors: Ammarah Irum, Muhammad Ali Tahir
Abstract:
Document-level sentiment analysis in Urdu is a challenging Natural Language Processing (NLP) task due to the difficulty of working with lengthy texts in a language with constrained resources. Deep learning models, which are complex neural network architectures, are well-suited to text-based applications in addition to data formats like audio, image, and video. To investigate the potential of deep learning for Urdu sentiment analysis, we implemented five different deep learning models, including Bidirectional Long Short Term Memory (BiLSTM), Convolutional Neural Network (CNN), Convolutional Neural Network with Bidirectional Long Short Term Memory (CNN-BiLSTM), and Bidirectional Encoder Representation from Transformer (BERT). In this study, we developed a hybrid deep learning model called BiLSTM-Single Layer Multi Filter Convolutional Neural Network (BiLSTM-SLMFCNN) by fusing BiLSTM and CNN architecture. The proposed and baseline techniques are applied on Urdu Customer Support data set and IMDB Urdu movie review data set by using pre-trained Urdu word embedding that are suitable for sentiment analysis at the document level. Results of these techniques are evaluated and our proposed model outperforms all other deep learning techniques for Urdu sentiment analysis. BiLSTM-SLMFCNN outperformed the baseline deep learning models and achieved 83%, 79%, 83% and 94% accuracy on small, medium and large sized IMDB Urdu movie review data set and Urdu Customer Support data set respectively.Keywords: urdu sentiment analysis, deep learning, natural language processing, opinion mining, low-resource language
Procedia PDF Downloads 7229447 The Prevalence of Symptoms of Common Mental Disorders Among Professional Golfers
Authors: Georgia Hopley, Andrew Murray, Alan Macpherson
Abstract:
Objectives: This study aims to (i) assess the prevalence of symptoms of mental health disorders among a cohort of professional golfers, (ii) compare prevalence values with data from the general population and other elite athlete cohorts, and (iii) assess how players cope with mental health problems and players’ opinions on the mental health support services available to them. Methods: Players competing on the 2020 Challenge Tour (n=261) were sent a questionnaire that assessed symptoms of depression, distress, anxiety, sleep disturbance, and obsessive-compulsive disorder. Questions were also included to assess coping behaviors and opinions on current support measures. Results: The two-week symptom prevalence was 10.3% for depression, 51.7% for distress, 8.6% for anxiety, 10.3% for sleep disturbance, 13.8% for obsessive thoughts, and 27.6% for compulsive behavior. The prevalence of symptoms is comparable with other elite athlete cohorts, and symptoms of anxiety and distress were reported more frequently than in the general population. 67% of players who had experienced a mental health issue did not seek professional help at the time, and 61% of players did not think sufficient support was available to them. Conclusion: Mental health problems are prevalent among elite golfers; however, this study demonstrates that the majority of players do not seek help from professionally accredited practitioners. Following the discussion of this study, the European Tour Group now provides a 24/7 mental health crisis hotline for players and has educated staff members on how to identify players with mental health issues and signpost them to the appropriate support.Keywords: elite athletes, golf, mental health, sport science, sport psychiatry
Procedia PDF Downloads 6229446 150 KVA Multifunction Laboratory Test Unit Based on Power-Frequency Converter
Authors: Bartosz Kedra, Robert Malkowski
Abstract:
This paper provides description and presentation of laboratory test unit built basing on 150 kVA power frequency converter and Simulink RealTime platform. Assumptions, based on criteria which load and generator types may be simulated using discussed device, are presented, as well as control algorithm structure. As laboratory setup contains transformer with thyristor controlled tap changer, a wider scope of setup capabilities is presented. Information about used communication interface, data maintenance, and storage solution as well as used Simulink real-time features is presented. List and description of all measurements are provided. Potential of laboratory setup modifications is evaluated. For purposes of Rapid Control Prototyping, a dedicated environment was used Simulink RealTime. Therefore, load model Functional Unit Controller is based on a PC computer with I/O cards and Simulink RealTime software. Simulink RealTime was used to create real-time applications directly from Simulink models. In the next step, applications were loaded on a target computer connected to physical devices that provided opportunity to perform Hardware in the Loop (HIL) tests, as well as the mentioned Rapid Control Prototyping process. With Simulink RealTime, Simulink models were extended with I/O cards driver blocks that made automatic generation of real-time applications and performing interactive or automated runs on a dedicated target computer equipped with a real-time kernel, multicore CPU, and I/O cards possible. Results of performed laboratory tests are presented. Different load configurations are described and experimental results are presented. This includes simulation of under frequency load shedding, frequency and voltage dependent characteristics of groups of load units, time characteristics of group of different load units in a chosen area and arbitrary active and reactive power regulation basing on defined schedule.Keywords: MATLAB, power converter, Simulink Real-Time, thyristor-controlled tap changer
Procedia PDF Downloads 32329445 Recurrent Neural Networks for Classifying Outliers in Electronic Health Record Clinical Text
Authors: Duncan Wallace, M-Tahar Kechadi
Abstract:
In recent years, Machine Learning (ML) approaches have been successfully applied to an analysis of patient symptom data in the context of disease diagnosis, at least where such data is well codified. However, much of the data present in Electronic Health Records (EHR) are unlikely to prove suitable for classic ML approaches. Furthermore, as scores of data are widely spread across both hospitals and individuals, a decentralized, computationally scalable methodology is a priority. The focus of this paper is to develop a method to predict outliers in an out-of-hours healthcare provision center (OOHC). In particular, our research is based upon the early identification of patients who have underlying conditions which will cause them to repeatedly require medical attention. OOHC act as an ad-hoc delivery of triage and treatment, where interactions occur without recourse to a full medical history of the patient in question. Medical histories, relating to patients contacting an OOHC, may reside in several distinct EHR systems in multiple hospitals or surgeries, which are unavailable to the OOHC in question. As such, although a local solution is optimal for this problem, it follows that the data under investigation is incomplete, heterogeneous, and comprised mostly of noisy textual notes compiled during routine OOHC activities. Through the use of Deep Learning methodologies, the aim of this paper is to provide the means to identify patient cases, upon initial contact, which are likely to relate to such outliers. To this end, we compare the performance of Long Short-Term Memory, Gated Recurrent Units, and combinations of both with Convolutional Neural Networks. A further aim of this paper is to elucidate the discovery of such outliers by examining the exact terms which provide a strong indication of positive and negative case entries. While free-text is the principal data extracted from EHRs for classification, EHRs also contain normalized features. Although the specific demographical features treated within our corpus are relatively limited in scope, we examine whether it is beneficial to include such features among the inputs to our neural network, or whether these features are more successfully exploited in conjunction with a different form of a classifier. In this section, we compare the performance of randomly generated regression trees and support vector machines and determine the extent to which our classification program can be improved upon by using either of these machine learning approaches in conjunction with the output of our Recurrent Neural Network application. The output of our neural network is also used to help determine the most significant lexemes present within the corpus for determining high-risk patients. By combining the confidence of our classification program in relation to lexemes within true positive and true negative cases, with an inverse document frequency of the lexemes related to these cases, we can determine what features act as the primary indicators of frequent-attender and non-frequent-attender cases, providing a human interpretable appreciation of how our program classifies cases.Keywords: artificial neural networks, data-mining, machine learning, medical informatics
Procedia PDF Downloads 13129444 How to Reach Adolescents Vulnerable for Suicidal Behaviour: A Qualitative Study
Authors: Birgit Reime, Sonja Gscheidle, Toni Hübener, Lara Hübener
Abstract:
Suicide in individuals under 30 years is a global public health concern. The objective of this study was to identify strategies for the prevention of suicide and suicidal behavior preferred by adolescents and young adults who are vulnerable to suicidal behavior and by relevant experts. Using semi-structured interviews with n= 17 adolescents and young adults (18-25 years of age) and with n= 11 experts from relevant fields, we have applied an inductive approach and applied thematic content analysis. Six strategies for suicide prevention in young individuals were reported. These were digital solutions with appealing designs, anonymous support, trained peer support, spiritual support, improving existing structures, and raising suicide literacy. Accessibility of anonymous digital support may contribute to suicide prevention in young people.Keywords: suicide prevention, adolescents, E-health, Germany
Procedia PDF Downloads 18529443 Communication Infrastructure Required for a Driver Behaviour Monitoring System, ‘SiaMOTO’ IT Platform
Authors: Dogaru-Ulieru Valentin, Sălișteanu Ioan Corneliu, Ardeleanu Mihăiță Nicolae, Broscăreanu Ștefan, Sălișteanu Bogdan, Mihai Mihail
Abstract:
The SiaMOTO system is a communications and data processing platform for vehicle traffic. The human factor is the most important factor in the generation of this data, as the driver is the one who dictates the trajectory of the vehicle. Like any trajectory, specific parameters refer to position, speed and acceleration. Constant knowledge of these parameters allows complex analyses. Roadways allow many vehicles to travel through their confined space, and the overlapping trajectories of several vehicles increase the likelihood of collision events, known as road accidents. Any such event has causes that lead to its occurrence, so the conditions for its occurrence are known. The human factor is predominant in deciding the trajectory parameters of the vehicle on the road, so monitoring it by knowing the events reported by the DiaMOTO device over time, will generate a guide to target any potentially high-risk driving behavior and reward those who control the driving phenomenon well. In this paper, we have focused on detailing the communication infrastructure of the DiaMOTO device with the traffic data collection server, the infrastructure through which the database that will be used for complex AI/DLM analysis is built. The central element of this description is the data string in CODEC-8 format sent by the DiaMOTO device to the SiaMOTO collection server database. The data presented are specific to a functional infrastructure implemented in an experimental model stage, by installing on a number of 50 vehicles DiaMOTO unique code devices, integrating ADAS and GPS functions, through which vehicle trajectories can be monitored 24 hours a day.Keywords: DiaMOTO, Codec-8, ADAS, GPS, driver monitoring
Procedia PDF Downloads 7829442 Health Status, Perception of Self-Efficacy and Social Support of Thailand Aging
Authors: Wipakon Sonsnam, Kanya Napapongsa
Abstract:
The quantitative aim of the study; 1) health conditions, to examine the state of health of the aging, 2) perceived of self-efficacy, self-care of aging ,3) perceived of social support of the aging, 4) to examine factors associated with self-efficacy in enhancing the health and self-care when illness. 100 samples selected from communities in Dusit, Bangkok, 2014 by random sampling. The questionnaires were used to collect data have 5-point rating scale, consisting of strongly agree, agree, undecided, disagree, and strongly disagree; approved content valid by 3 experts, reliability coefficients alpha was .784 for perceived of self-efficacy, self-care of aging and .827 for perceived of social support of the aging. ST-5, 2Q used for collect mental health. The ability to engage in a daily routine was collected by Barthel ADL index. Founding, the sample group were female (68%). (33%) of them were in the age of 60-65. Most of them were married and still live with their spouse (55%) and do not work (38%). The average annual income was less than 10,000 baht supported by child. Most people think that income was adequate (49.0%) and Satisfaction (61.0%). Most of aging caring them-self, followed by them spouse (26%). Welfare of the public had supported, living for the aging (100%), followed by Join and health volunteers in communities (23%). In terms of health, (53%) of the sample group feels health was fair, hypertension was the most common health condition among sample group (68%), following by diabetes (55%). About eyesight, (42%) have visual acuity. (59.0%) do not need hearing aids. 84% have more than 20 teeth remaining, and have no problem with chewing (61%). In terms of Ability to engage in a daily routine, most of people (84%) in sample group are in type 1. (91%) of the participants don’t have bladder incontinence. For mental condition, (82%) do not have insomnia. (87%) do not have anxiety. (96%) do not have depression. However, (77%) of the sample group is facing stress. In terms of environment in home, bathroom in the home (90.0%) and floor of bathroom was slippery (91.0%). (48%) of the sample group has the skills of how to look after themselves while being sick, and how to keep up healthy lifestyle. Besides, some other factors, such as gender, age and educational background are related to the health perception. The statistical significance was <0.05. Suggestion: The instruments available to national standards such as ST-5, 2Q and Barthel ADL index. Reliability coefficients alpha was .784 for perceived of self-efficacy, self-care of aging and .827 for perceived of social support of the aging. The instrument used to collect perceived of social support must be further developed to study level of influence of social support that affect the health of elderly.Keywords: ้health status, perception of aging, self-efficacy, social support
Procedia PDF Downloads 54429441 Determinants of Income Diversification among Support Zone Communities of National Parks in Nigeria
Authors: Daniel Etim Jacob, Samuel Onadeko, Edem A. Eniang, Imaobong Ufot Nelson
Abstract:
This paper examined determinants of income diversification among households in support zones communities of national parks in Nigeria. This involved the use household data collected through questionnaires administered randomly among 1009 household heads in the study area. The data obtained were analyzed using probability and non-probability statistical analysis such as regression and analysis of variance to test for mean difference between parks. The result obtained indicates that majority of the household heads were male (92.57%0, between the age class of 21 – 40 years (44.90%), had non-formal education (38.16%), were farmers (65.21%), owned land (95.44%), with a household size of 1 – 5 (36.67%) and an annual income range of ₦401,000 - ₦600,000 (24.58%). Mean Simpson index of diversity showed a general low (0.375) level of income diversification among the households. Income, age, off-farm dependence, education, household size and occupation where significant (p<0.01) factors that affected households’ income diversification. The study recommends improvement in the existing infrastructures and social capital in the communities as avenues to improve the livelihood and ensure positive conservation behaviors in the study area.Keywords: income diversification, protected area, livelihood, poverty, Nigeria
Procedia PDF Downloads 14329440 Women Entrepreneurial Resiliency Amidst COVID-19
Authors: Divya Juneja, Sukhjeet Kaur Matharu
Abstract:
Purpose: The paper is aimed at identifying the challenging factors experienced by the women entrepreneurs in India in operating their enterprises amidst the challenges posed by the COVID-19 pandemic. Methodology: The sample for the study comprised 396 women entrepreneurs from different regions of India. A purposive sampling technique was adopted for data collection. Data was collected through a self-administered questionnaire. Analysis was performed using the SPSS package for quantitative data analysis. Findings: The results of the study state that entrepreneurial characteristics, resourcefulness, networking, adaptability, and continuity have a positive influence on the resiliency of women entrepreneurs when faced with a crisis situation. Practical Implications: The findings of the study have some important implications for women entrepreneurs, organizations, government, and other institutions extending support to entrepreneurs.Keywords: women entrepreneurs, analysis, data analysis, positive influence, resiliency
Procedia PDF Downloads 11429439 Comparison of Different Reanalysis Products for Predicting Extreme Precipitation in the Southern Coast of the Caspian Sea
Authors: Parvin Ghafarian, Mohammadreza Mohammadpur Panchah, Mehri Fallahi
Abstract:
Synoptic patterns from surface up to tropopause are very important for forecasting the weather and atmospheric conditions. There are many tools to prepare and analyze these maps. Reanalysis data and the outputs of numerical weather prediction models, satellite images, meteorological radar, and weather station data are used in world forecasting centers to predict the weather. The forecasting extreme precipitating on the southern coast of the Caspian Sea (CS) is the main issue due to complex topography. Also, there are different types of climate in these areas. In this research, we used two reanalysis data such as ECMWF Reanalysis 5th Generation Description (ERA5) and National Centers for Environmental Prediction /National Center for Atmospheric Research (NCEP/NCAR) for verification of the numerical model. ERA5 is the latest version of ECMWF. The temporal resolution of ERA5 is hourly, and the NCEP/NCAR is every six hours. Some atmospheric parameters such as mean sea level pressure, geopotential height, relative humidity, wind speed and direction, sea surface temperature, etc. were selected and analyzed. Some different type of precipitation (rain and snow) was selected. The results showed that the NCEP/NCAR has more ability to demonstrate the intensity of the atmospheric system. The ERA5 is suitable for extract the value of parameters for specific point. Also, ERA5 is appropriate to analyze the snowfall events over CS (snow cover and snow depth). Sea surface temperature has the main role to generate instability over CS, especially when the cold air pass from the CS. Sea surface temperature of NCEP/NCAR product has low resolution near coast. However, both data were able to detect meteorological synoptic patterns that led to heavy rainfall over CS. However, due to the time lag, they are not suitable for forecast centers. The application of these two data is for research and verification of meteorological models. Finally, ERA5 has a better resolution, respect to NCEP/NCAR reanalysis data, but NCEP/NCAR data is available from 1948 and appropriate for long term research.Keywords: synoptic patterns, heavy precipitation, reanalysis data, snow
Procedia PDF Downloads 123